bigbiff | 7b4c7a6 | 2015-01-01 19:44:14 -0500 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2007 Karel Zak <kzak@redhat.com> |
| 3 | * Copyright (C) 2012 Davidlohr Bueso <dave@gnu.org> |
| 4 | * |
| 5 | * GUID Partition Table (GPT) support. Based on UEFI Specs 2.3.1 |
| 6 | * Chapter 5: GUID Partition Table (GPT) Disk Layout (Jun 27th, 2012). |
| 7 | * Some ideas and inspiration from GNU parted and gptfdisk. |
| 8 | */ |
| 9 | #include <stdio.h> |
| 10 | #include <string.h> |
| 11 | #include <stdlib.h> |
| 12 | #include <inttypes.h> |
| 13 | #include <sys/stat.h> |
| 14 | #include <sys/utsname.h> |
| 15 | #include <sys/types.h> |
| 16 | #include <fcntl.h> |
| 17 | #include <unistd.h> |
| 18 | #include <errno.h> |
| 19 | #include <ctype.h> |
| 20 | #include <uuid.h> |
| 21 | |
| 22 | #include "fdiskP.h" |
| 23 | |
| 24 | #include "nls.h" |
| 25 | #include "crc32.h" |
| 26 | #include "blkdev.h" |
| 27 | #include "bitops.h" |
| 28 | #include "strutils.h" |
| 29 | #include "all-io.h" |
| 30 | |
| 31 | /** |
| 32 | * SECTION: gpt |
| 33 | * @title: UEFI GPT |
| 34 | * @short_description: specific functionality |
| 35 | */ |
| 36 | |
| 37 | #define GPT_HEADER_SIGNATURE 0x5452415020494645LL /* EFI PART */ |
| 38 | #define GPT_HEADER_REVISION_V1_02 0x00010200 |
| 39 | #define GPT_HEADER_REVISION_V1_00 0x00010000 |
| 40 | #define GPT_HEADER_REVISION_V0_99 0x00009900 |
| 41 | #define GPT_HEADER_MINSZ 92 /* bytes */ |
| 42 | |
| 43 | #define GPT_PMBR_LBA 0 |
| 44 | #define GPT_MBR_PROTECTIVE 1 |
| 45 | #define GPT_MBR_HYBRID 2 |
| 46 | |
| 47 | #define GPT_PRIMARY_PARTITION_TABLE_LBA 0x00000001 |
| 48 | |
| 49 | #define EFI_PMBR_OSTYPE 0xEE |
| 50 | #define MSDOS_MBR_SIGNATURE 0xAA55 |
| 51 | #define GPT_PART_NAME_LEN (72 / sizeof(uint16_t)) |
| 52 | #define GPT_NPARTITIONS 128 |
| 53 | |
| 54 | /* Globally unique identifier */ |
| 55 | struct gpt_guid { |
| 56 | uint32_t time_low; |
| 57 | uint16_t time_mid; |
| 58 | uint16_t time_hi_and_version; |
| 59 | uint8_t clock_seq_hi; |
| 60 | uint8_t clock_seq_low; |
| 61 | uint8_t node[6]; |
| 62 | }; |
| 63 | |
| 64 | |
| 65 | /* only checking that the GUID is 0 is enough to verify an empty partition. */ |
| 66 | #define GPT_UNUSED_ENTRY_GUID \ |
| 67 | ((struct gpt_guid) { 0x00000000, 0x0000, 0x0000, 0x00, 0x00, \ |
| 68 | { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }}) |
| 69 | |
| 70 | /* Linux native partition type */ |
| 71 | #define GPT_DEFAULT_ENTRY_TYPE "0FC63DAF-8483-4772-8E79-3D69D8477DE4" |
| 72 | |
| 73 | /* |
| 74 | * Attribute bits |
| 75 | */ |
| 76 | enum { |
| 77 | /* UEFI specific */ |
| 78 | GPT_ATTRBIT_REQ = 0, |
| 79 | GPT_ATTRBIT_NOBLOCK = 1, |
| 80 | GPT_ATTRBIT_LEGACY = 2, |
| 81 | |
| 82 | /* GUID specific (range 48..64)*/ |
| 83 | GPT_ATTRBIT_GUID_FIRST = 48, |
| 84 | GPT_ATTRBIT_GUID_COUNT = 16 |
| 85 | }; |
| 86 | |
| 87 | #define GPT_ATTRSTR_REQ "RequiredPartiton" |
| 88 | #define GPT_ATTRSTR_NOBLOCK "NoBlockIOProtocol" |
| 89 | #define GPT_ATTRSTR_LEGACY "LegacyBIOSBootable" |
| 90 | |
| 91 | /* The GPT Partition entry array contains an array of GPT entries. */ |
| 92 | struct gpt_entry { |
| 93 | struct gpt_guid type; /* purpose and type of the partition */ |
| 94 | struct gpt_guid partition_guid; |
| 95 | uint64_t lba_start; |
| 96 | uint64_t lba_end; |
| 97 | uint64_t attrs; |
| 98 | uint16_t name[GPT_PART_NAME_LEN]; |
| 99 | } __attribute__ ((packed)); |
| 100 | |
| 101 | /* GPT header */ |
| 102 | struct gpt_header { |
| 103 | uint64_t signature; /* header identification */ |
| 104 | uint32_t revision; /* header version */ |
| 105 | uint32_t size; /* in bytes */ |
| 106 | uint32_t crc32; /* header CRC checksum */ |
| 107 | uint32_t reserved1; /* must be 0 */ |
| 108 | uint64_t my_lba; /* LBA of block that contains this struct (LBA 1) */ |
| 109 | uint64_t alternative_lba; /* backup GPT header */ |
| 110 | uint64_t first_usable_lba; /* first usable logical block for partitions */ |
| 111 | uint64_t last_usable_lba; /* last usable logical block for partitions */ |
| 112 | struct gpt_guid disk_guid; /* unique disk identifier */ |
| 113 | uint64_t partition_entry_lba; /* LBA of start of partition entries array */ |
| 114 | uint32_t npartition_entries; /* total partition entries - normally 128 */ |
| 115 | uint32_t sizeof_partition_entry; /* bytes for each GUID pt */ |
| 116 | uint32_t partition_entry_array_crc32; /* partition CRC checksum */ |
| 117 | uint8_t reserved2[512 - 92]; /* must all be 0 */ |
| 118 | } __attribute__ ((packed)); |
| 119 | |
| 120 | struct gpt_record { |
| 121 | uint8_t boot_indicator; /* unused by EFI, set to 0x80 for bootable */ |
| 122 | uint8_t start_head; /* unused by EFI, pt start in CHS */ |
| 123 | uint8_t start_sector; /* unused by EFI, pt start in CHS */ |
| 124 | uint8_t start_track; |
| 125 | uint8_t os_type; /* EFI and legacy non-EFI OS types */ |
| 126 | uint8_t end_head; /* unused by EFI, pt end in CHS */ |
| 127 | uint8_t end_sector; /* unused by EFI, pt end in CHS */ |
| 128 | uint8_t end_track; /* unused by EFI, pt end in CHS */ |
| 129 | uint32_t starting_lba; /* used by EFI - start addr of the on disk pt */ |
| 130 | uint32_t size_in_lba; /* used by EFI - size of pt in LBA */ |
| 131 | } __attribute__ ((packed)); |
| 132 | |
| 133 | /* Protected MBR and legacy MBR share same structure */ |
| 134 | struct gpt_legacy_mbr { |
| 135 | uint8_t boot_code[440]; |
| 136 | uint32_t unique_mbr_signature; |
| 137 | uint16_t unknown; |
| 138 | struct gpt_record partition_record[4]; |
| 139 | uint16_t signature; |
| 140 | } __attribute__ ((packed)); |
| 141 | |
| 142 | /* |
| 143 | * Here be dragons! |
| 144 | * See: http://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_type_GUIDs |
| 145 | */ |
| 146 | #define DEF_GUID(_u, _n) \ |
| 147 | { \ |
| 148 | .typestr = (_u), \ |
| 149 | .name = (_n), \ |
| 150 | } |
| 151 | |
| 152 | static struct fdisk_parttype gpt_parttypes[] = |
| 153 | { |
| 154 | /* Generic OS */ |
| 155 | DEF_GUID("C12A7328-F81F-11D2-BA4B-00A0C93EC93B", N_("EFI System")), |
| 156 | |
| 157 | DEF_GUID("024DEE41-33E7-11D3-9D69-0008C781F39F", N_("MBR partition scheme")), |
| 158 | DEF_GUID("D3BFE2DE-3DAF-11DF-BA40-E3A556D89593", N_("Intel Fast Flash")), |
| 159 | |
| 160 | /* Hah!IdontneedEFI */ |
| 161 | DEF_GUID("21686148-6449-6E6F-744E-656564454649", N_("BIOS boot")), |
| 162 | |
| 163 | /* Windows */ |
| 164 | DEF_GUID("E3C9E316-0B5C-4DB8-817D-F92DF00215AE", N_("Microsoft reserved")), |
| 165 | DEF_GUID("EBD0A0A2-B9E5-4433-87C0-68B6B72699C7", N_("Microsoft basic data")), |
| 166 | DEF_GUID("5808C8AA-7E8F-42E0-85D2-E1E90434CFB3", N_("Microsoft LDM metadata")), |
| 167 | DEF_GUID("AF9B60A0-1431-4F62-BC68-3311714A69AD", N_("Microsoft LDM data")), |
| 168 | DEF_GUID("DE94BBA4-06D1-4D40-A16A-BFD50179D6AC", N_("Windows recovery environment")), |
| 169 | DEF_GUID("37AFFC90-EF7D-4E96-91C3-2D7AE055B174", N_("IBM General Parallel Fs")), |
| 170 | DEF_GUID("E75CAF8F-F680-4CEE-AFA3-B001E56EFC2D", N_("Microsoft Storage Spaces")), |
| 171 | |
| 172 | /* HP-UX */ |
| 173 | DEF_GUID("75894C1E-3AEB-11D3-B7C1-7B03A0000000", N_("HP-UX data")), |
| 174 | DEF_GUID("E2A1E728-32E3-11D6-A682-7B03A0000000", N_("HP-UX service")), |
| 175 | |
| 176 | /* Linux (http://www.freedesktop.org/wiki/Specifications/DiscoverablePartitionsSpec) */ |
| 177 | DEF_GUID("0657FD6D-A4AB-43C4-84E5-0933C84B4F4F", N_("Linux swap")), |
| 178 | DEF_GUID("0FC63DAF-8483-4772-8E79-3D69D8477DE4", N_("Linux filesystem")), |
| 179 | DEF_GUID("3B8F8425-20E0-4F3B-907F-1A25A76F98E8", N_("Linux server data")), |
| 180 | DEF_GUID("44479540-F297-41B2-9AF7-D131D5F0458A", N_("Linux root (x86)")), |
| 181 | DEF_GUID("4F68BCE3-E8CD-4DB1-96E7-FBCAF984B709", N_("Linux root (x86-64)")), |
| 182 | DEF_GUID("8DA63339-0007-60C0-C436-083AC8230908", N_("Linux reserved")), |
| 183 | DEF_GUID("933AC7E1-2EB4-4F13-B844-0E14E2AEF915", N_("Linux home")), |
| 184 | DEF_GUID("A19D880F-05FC-4D3B-A006-743F0F84911E", N_("Linux RAID")), |
| 185 | DEF_GUID("BC13C2FF-59E6-4262-A352-B275FD6F7172", N_("Linux extended boot")), |
| 186 | DEF_GUID("E6D6D379-F507-44C2-A23C-238F2A3DF928", N_("Linux LVM")), |
| 187 | |
| 188 | /* FreeBSD */ |
| 189 | DEF_GUID("516E7CB4-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD data")), |
| 190 | DEF_GUID("83BD6B9D-7F41-11DC-BE0B-001560B84F0F", N_("FreeBSD boot")), |
| 191 | DEF_GUID("516E7CB5-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD swap")), |
| 192 | DEF_GUID("516E7CB6-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD UFS")), |
| 193 | DEF_GUID("516E7CBA-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD ZFS")), |
| 194 | DEF_GUID("516E7CB8-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD Vinum")), |
| 195 | |
| 196 | /* Apple OSX */ |
| 197 | DEF_GUID("48465300-0000-11AA-AA11-00306543ECAC", N_("Apple HFS/HFS+")), |
| 198 | DEF_GUID("55465300-0000-11AA-AA11-00306543ECAC", N_("Apple UFS")), |
| 199 | DEF_GUID("52414944-0000-11AA-AA11-00306543ECAC", N_("Apple RAID")), |
| 200 | DEF_GUID("52414944-5F4F-11AA-AA11-00306543ECAC", N_("Apple RAID offline")), |
| 201 | DEF_GUID("426F6F74-0000-11AA-AA11-00306543ECAC", N_("Apple boot")), |
| 202 | DEF_GUID("4C616265-6C00-11AA-AA11-00306543ECAC", N_("Apple label")), |
| 203 | DEF_GUID("5265636F-7665-11AA-AA11-00306543ECAC", N_("Apple TV recovery")), |
| 204 | DEF_GUID("53746F72-6167-11AA-AA11-00306543ECAC", N_("Apple Core storage")), |
| 205 | |
| 206 | /* Solaris */ |
| 207 | DEF_GUID("6A82CB45-1DD2-11B2-99A6-080020736631", N_("Solaris boot")), |
| 208 | DEF_GUID("6A85CF4D-1DD2-11B2-99A6-080020736631", N_("Solaris root")), |
| 209 | /* same as Apple ZFS */ |
| 210 | DEF_GUID("6A898CC3-1DD2-11B2-99A6-080020736631", N_("Solaris /usr & Apple ZFS")), |
| 211 | DEF_GUID("6A87C46F-1DD2-11B2-99A6-080020736631", N_("Solaris swap")), |
| 212 | DEF_GUID("6A8B642B-1DD2-11B2-99A6-080020736631", N_("Solaris backup")), |
| 213 | DEF_GUID("6A8EF2E9-1DD2-11B2-99A6-080020736631", N_("Solaris /var")), |
| 214 | DEF_GUID("6A90BA39-1DD2-11B2-99A6-080020736631", N_("Solaris /home")), |
| 215 | DEF_GUID("6A9283A5-1DD2-11B2-99A6-080020736631", N_("Solaris alternate sector")), |
| 216 | DEF_GUID("6A945A3B-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 1")), |
| 217 | DEF_GUID("6A9630D1-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 2")), |
| 218 | DEF_GUID("6A980767-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 3")), |
| 219 | DEF_GUID("6A96237F-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 4")), |
| 220 | DEF_GUID("6A8D2AC7-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 5")), |
| 221 | |
| 222 | /* NetBSD */ |
| 223 | DEF_GUID("49F48D32-B10E-11DC-B99B-0019D1879648", N_("NetBSD swap")), |
| 224 | DEF_GUID("49F48D5A-B10E-11DC-B99B-0019D1879648", N_("NetBSD FFS")), |
| 225 | DEF_GUID("49F48D82-B10E-11DC-B99B-0019D1879648", N_("NetBSD LFS")), |
| 226 | DEF_GUID("2DB519C4-B10E-11DC-B99B-0019D1879648", N_("NetBSD concatenated")), |
| 227 | DEF_GUID("2DB519EC-B10E-11DC-B99B-0019D1879648", N_("NetBSD encrypted")), |
| 228 | DEF_GUID("49F48DAA-B10E-11DC-B99B-0019D1879648", N_("NetBSD RAID")), |
| 229 | |
| 230 | /* ChromeOS */ |
| 231 | DEF_GUID("FE3A2A5D-4F32-41A7-B725-ACCC3285A309", N_("ChromeOS kernel")), |
| 232 | DEF_GUID("3CB8E202-3B7E-47DD-8A3C-7FF2A13CFCEC", N_("ChromeOS root fs")), |
| 233 | DEF_GUID("2E0A753D-9E48-43B0-8337-B15192CB1B5E", N_("ChromeOS reserved")), |
| 234 | |
| 235 | /* MidnightBSD */ |
| 236 | DEF_GUID("85D5E45A-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD data")), |
| 237 | DEF_GUID("85D5E45E-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD boot")), |
| 238 | DEF_GUID("85D5E45B-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD swap")), |
| 239 | DEF_GUID("0394Ef8B-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD UFS")), |
| 240 | DEF_GUID("85D5E45D-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD ZFS")), |
| 241 | DEF_GUID("85D5E45C-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD Vinum")), |
| 242 | }; |
| 243 | |
| 244 | /* gpt_entry macros */ |
| 245 | #define gpt_partition_start(_e) le64_to_cpu((_e)->lba_start) |
| 246 | #define gpt_partition_end(_e) le64_to_cpu((_e)->lba_end) |
| 247 | |
| 248 | /* |
| 249 | * in-memory fdisk GPT stuff |
| 250 | */ |
| 251 | struct fdisk_gpt_label { |
| 252 | struct fdisk_label head; /* generic part */ |
| 253 | |
| 254 | /* gpt specific part */ |
| 255 | struct gpt_header *pheader; /* primary header */ |
| 256 | struct gpt_header *bheader; /* backup header */ |
| 257 | struct gpt_entry *ents; /* entries (partitions) */ |
| 258 | }; |
| 259 | |
| 260 | static void gpt_deinit(struct fdisk_label *lb); |
| 261 | |
| 262 | static inline struct fdisk_gpt_label *self_label(struct fdisk_context *cxt) |
| 263 | { |
| 264 | return (struct fdisk_gpt_label *) cxt->label; |
| 265 | } |
| 266 | |
| 267 | /* |
| 268 | * Returns the partition length, or 0 if end is before beginning. |
| 269 | */ |
| 270 | static uint64_t gpt_partition_size(const struct gpt_entry *e) |
| 271 | { |
| 272 | uint64_t start = gpt_partition_start(e); |
| 273 | uint64_t end = gpt_partition_end(e); |
| 274 | |
| 275 | return start > end ? 0 : end - start + 1ULL; |
| 276 | } |
| 277 | |
| 278 | /* prints UUID in the real byte order! */ |
| 279 | static void gpt_debug_uuid(const char *mesg, struct gpt_guid *guid) |
| 280 | { |
| 281 | const unsigned char *uuid = (unsigned char *) guid; |
| 282 | |
| 283 | fprintf(stderr, "%s: " |
| 284 | "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x\n", |
| 285 | mesg, |
| 286 | uuid[0], uuid[1], uuid[2], uuid[3], |
| 287 | uuid[4], uuid[5], |
| 288 | uuid[6], uuid[7], |
| 289 | uuid[8], uuid[9], |
| 290 | uuid[10], uuid[11], uuid[12], uuid[13], uuid[14],uuid[15]); |
| 291 | } |
| 292 | |
| 293 | /* |
| 294 | * UUID is traditionally 16 byte big-endian array, except Intel EFI |
| 295 | * specification where the UUID is a structure of little-endian fields. |
| 296 | */ |
| 297 | static void swap_efi_guid(struct gpt_guid *uid) |
| 298 | { |
| 299 | uid->time_low = swab32(uid->time_low); |
| 300 | uid->time_mid = swab16(uid->time_mid); |
| 301 | uid->time_hi_and_version = swab16(uid->time_hi_and_version); |
| 302 | } |
| 303 | |
| 304 | static int string_to_guid(const char *in, struct gpt_guid *guid) |
| 305 | { |
| 306 | if (uuid_parse(in, (unsigned char *) guid)) /* BE */ |
| 307 | return -1; |
| 308 | swap_efi_guid(guid); /* LE */ |
| 309 | return 0; |
| 310 | } |
| 311 | |
| 312 | static char *guid_to_string(const struct gpt_guid *guid, char *out) |
| 313 | { |
| 314 | struct gpt_guid u = *guid; /* LE */ |
| 315 | |
| 316 | swap_efi_guid(&u); /* BE */ |
| 317 | uuid_unparse_upper((unsigned char *) &u, out); |
| 318 | |
| 319 | return out; |
| 320 | } |
| 321 | |
| 322 | static struct fdisk_parttype *gpt_partition_parttype( |
| 323 | struct fdisk_context *cxt, |
| 324 | const struct gpt_entry *e) |
| 325 | { |
| 326 | struct fdisk_parttype *t; |
| 327 | char str[37]; |
| 328 | |
| 329 | guid_to_string(&e->type, str); |
| 330 | t = fdisk_label_get_parttype_from_string(cxt->label, str); |
| 331 | return t ? : fdisk_new_unknown_parttype(0, str); |
| 332 | } |
| 333 | |
| 334 | static void gpt_entry_set_type(struct gpt_entry *e, struct gpt_guid *uuid) |
| 335 | { |
| 336 | e->type = *uuid; |
| 337 | DBG(LABEL, gpt_debug_uuid("new type", &(e->type))); |
| 338 | } |
| 339 | |
| 340 | static void gpt_entry_set_name(struct gpt_entry *e, char *str) |
| 341 | { |
| 342 | char name[GPT_PART_NAME_LEN] = { 0 }; |
| 343 | size_t i, sz = strlen(str); |
| 344 | |
| 345 | if (sz) { |
| 346 | if (sz > GPT_PART_NAME_LEN) |
| 347 | sz = GPT_PART_NAME_LEN; |
| 348 | memcpy(name, str, sz); |
| 349 | } |
| 350 | |
| 351 | for (i = 0; i < GPT_PART_NAME_LEN; i++) |
| 352 | e->name[i] = cpu_to_le16((uint16_t) name[i]); |
| 353 | } |
| 354 | |
| 355 | static int gpt_entry_set_uuid(struct gpt_entry *e, char *str) |
| 356 | { |
| 357 | struct gpt_guid uuid; |
| 358 | int rc; |
| 359 | |
| 360 | rc = string_to_guid(str, &uuid); |
| 361 | if (rc) |
| 362 | return rc; |
| 363 | |
| 364 | e->partition_guid = uuid; |
| 365 | return 0; |
| 366 | } |
| 367 | |
| 368 | |
| 369 | static const char *gpt_get_header_revstr(struct gpt_header *header) |
| 370 | { |
| 371 | if (!header) |
| 372 | goto unknown; |
| 373 | |
| 374 | switch (header->revision) { |
| 375 | case GPT_HEADER_REVISION_V1_02: |
| 376 | return "1.2"; |
| 377 | case GPT_HEADER_REVISION_V1_00: |
| 378 | return "1.0"; |
| 379 | case GPT_HEADER_REVISION_V0_99: |
| 380 | return "0.99"; |
| 381 | default: |
| 382 | goto unknown; |
| 383 | } |
| 384 | |
| 385 | unknown: |
| 386 | return "unknown"; |
| 387 | } |
| 388 | |
| 389 | static inline int partition_unused(const struct gpt_entry *e) |
| 390 | { |
| 391 | return !memcmp(&e->type, &GPT_UNUSED_ENTRY_GUID, |
| 392 | sizeof(struct gpt_guid)); |
| 393 | } |
| 394 | |
| 395 | /* |
| 396 | * Builds a clean new valid protective MBR - will wipe out any existing data. |
| 397 | * Returns 0 on success, otherwise < 0 on error. |
| 398 | */ |
| 399 | static int gpt_mknew_pmbr(struct fdisk_context *cxt) |
| 400 | { |
| 401 | struct gpt_legacy_mbr *pmbr = NULL; |
| 402 | int rc; |
| 403 | |
| 404 | if (!cxt || !cxt->firstsector) |
| 405 | return -ENOSYS; |
| 406 | |
| 407 | rc = fdisk_init_firstsector_buffer(cxt); |
| 408 | if (rc) |
| 409 | return rc; |
| 410 | |
| 411 | pmbr = (struct gpt_legacy_mbr *) cxt->firstsector; |
| 412 | |
| 413 | pmbr->signature = cpu_to_le16(MSDOS_MBR_SIGNATURE); |
| 414 | pmbr->partition_record[0].os_type = EFI_PMBR_OSTYPE; |
| 415 | pmbr->partition_record[0].start_sector = 1; |
| 416 | pmbr->partition_record[0].end_head = 0xFE; |
| 417 | pmbr->partition_record[0].end_sector = 0xFF; |
| 418 | pmbr->partition_record[0].end_track = 0xFF; |
| 419 | pmbr->partition_record[0].starting_lba = cpu_to_le32(1); |
| 420 | pmbr->partition_record[0].size_in_lba = |
| 421 | cpu_to_le32(min((uint32_t) cxt->total_sectors - 1, 0xFFFFFFFF)); |
| 422 | |
| 423 | return 0; |
| 424 | } |
| 425 | |
| 426 | /* some universal differences between the headers */ |
| 427 | static void gpt_mknew_header_common(struct fdisk_context *cxt, |
| 428 | struct gpt_header *header, uint64_t lba) |
| 429 | { |
| 430 | if (!cxt || !header) |
| 431 | return; |
| 432 | |
| 433 | header->my_lba = cpu_to_le64(lba); |
| 434 | |
| 435 | if (lba == GPT_PRIMARY_PARTITION_TABLE_LBA) { /* primary */ |
| 436 | header->alternative_lba = cpu_to_le64(cxt->total_sectors - 1); |
| 437 | header->partition_entry_lba = cpu_to_le64(2); |
| 438 | } else { /* backup */ |
| 439 | uint64_t esz = le32_to_cpu(header->npartition_entries) * sizeof(struct gpt_entry); |
| 440 | uint64_t esects = (esz + cxt->sector_size - 1) / cxt->sector_size; |
| 441 | |
| 442 | header->alternative_lba = cpu_to_le64(GPT_PRIMARY_PARTITION_TABLE_LBA); |
| 443 | header->partition_entry_lba = cpu_to_le64(cxt->total_sectors - 1 - esects); |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | /* |
| 448 | * Builds a new GPT header (at sector lba) from a backup header2. |
| 449 | * If building a primary header, then backup is the secondary, and vice versa. |
| 450 | * |
| 451 | * Always pass a new (zeroized) header to build upon as we don't |
| 452 | * explicitly zero-set some values such as CRCs and reserved. |
| 453 | * |
| 454 | * Returns 0 on success, otherwise < 0 on error. |
| 455 | */ |
| 456 | static int gpt_mknew_header_from_bkp(struct fdisk_context *cxt, |
| 457 | struct gpt_header *header, |
| 458 | uint64_t lba, |
| 459 | struct gpt_header *header2) |
| 460 | { |
| 461 | if (!cxt || !header || !header2) |
| 462 | return -ENOSYS; |
| 463 | |
| 464 | header->signature = header2->signature; |
| 465 | header->revision = header2->revision; |
| 466 | header->size = header2->size; |
| 467 | header->npartition_entries = header2->npartition_entries; |
| 468 | header->sizeof_partition_entry = header2->sizeof_partition_entry; |
| 469 | header->first_usable_lba = header2->first_usable_lba; |
| 470 | header->last_usable_lba = header2->last_usable_lba; |
| 471 | |
| 472 | memcpy(&header->disk_guid, |
| 473 | &header2->disk_guid, sizeof(header2->disk_guid)); |
| 474 | gpt_mknew_header_common(cxt, header, lba); |
| 475 | |
| 476 | return 0; |
| 477 | } |
| 478 | |
| 479 | static struct gpt_header *gpt_copy_header(struct fdisk_context *cxt, |
| 480 | struct gpt_header *src) |
| 481 | { |
| 482 | struct gpt_header *res; |
| 483 | |
| 484 | if (!cxt || !src) |
| 485 | return NULL; |
| 486 | |
| 487 | res = calloc(1, sizeof(*res)); |
| 488 | if (!res) { |
| 489 | fdisk_warn(cxt, _("failed to allocate GPT header")); |
| 490 | return NULL; |
| 491 | } |
| 492 | |
| 493 | res->my_lba = src->alternative_lba; |
| 494 | res->alternative_lba = src->my_lba; |
| 495 | |
| 496 | res->signature = src->signature; |
| 497 | res->revision = src->revision; |
| 498 | res->size = src->size; |
| 499 | res->npartition_entries = src->npartition_entries; |
| 500 | res->sizeof_partition_entry = src->sizeof_partition_entry; |
| 501 | res->first_usable_lba = src->first_usable_lba; |
| 502 | res->last_usable_lba = src->last_usable_lba; |
| 503 | |
| 504 | memcpy(&res->disk_guid, &src->disk_guid, sizeof(src->disk_guid)); |
| 505 | |
| 506 | |
| 507 | if (res->my_lba == GPT_PRIMARY_PARTITION_TABLE_LBA) |
| 508 | res->partition_entry_lba = cpu_to_le64(2); |
| 509 | else { |
| 510 | uint64_t esz = le32_to_cpu(src->npartition_entries) * sizeof(struct gpt_entry); |
| 511 | uint64_t esects = (esz + cxt->sector_size - 1) / cxt->sector_size; |
| 512 | |
| 513 | res->partition_entry_lba = cpu_to_le64(cxt->total_sectors - 1 - esects); |
| 514 | } |
| 515 | |
| 516 | return res; |
| 517 | } |
| 518 | |
| 519 | static void count_first_last_lba(struct fdisk_context *cxt, |
| 520 | uint64_t *first, uint64_t *last) |
| 521 | { |
| 522 | uint64_t esz = 0; |
| 523 | |
| 524 | assert(cxt); |
| 525 | |
| 526 | esz = sizeof(struct gpt_entry) * GPT_NPARTITIONS / cxt->sector_size; |
| 527 | *last = cxt->total_sectors - 2 - esz; |
| 528 | *first = esz + 2; |
| 529 | |
| 530 | if (*first < cxt->first_lba && cxt->first_lba < *last) |
| 531 | /* Align according to topology */ |
| 532 | *first = cxt->first_lba; |
| 533 | } |
| 534 | |
| 535 | /* |
| 536 | * Builds a clean new GPT header (currently under revision 1.0). |
| 537 | * |
| 538 | * Always pass a new (zeroized) header to build upon as we don't |
| 539 | * explicitly zero-set some values such as CRCs and reserved. |
| 540 | * |
| 541 | * Returns 0 on success, otherwise < 0 on error. |
| 542 | */ |
| 543 | static int gpt_mknew_header(struct fdisk_context *cxt, |
| 544 | struct gpt_header *header, uint64_t lba) |
| 545 | { |
| 546 | uint64_t first, last; |
| 547 | int has_id = 0; |
| 548 | |
| 549 | if (!cxt || !header) |
| 550 | return -ENOSYS; |
| 551 | |
| 552 | header->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); |
| 553 | header->revision = cpu_to_le32(GPT_HEADER_REVISION_V1_00); |
| 554 | header->size = cpu_to_le32(sizeof(struct gpt_header)); |
| 555 | |
| 556 | /* |
| 557 | * 128 partitions are the default. It can go beyond that, but |
| 558 | * we're creating a de facto header here, so no funny business. |
| 559 | */ |
| 560 | header->npartition_entries = cpu_to_le32(GPT_NPARTITIONS); |
| 561 | header->sizeof_partition_entry = cpu_to_le32(sizeof(struct gpt_entry)); |
| 562 | |
| 563 | count_first_last_lba(cxt, &first, &last); |
| 564 | header->first_usable_lba = cpu_to_le64(first); |
| 565 | header->last_usable_lba = cpu_to_le64(last); |
| 566 | |
| 567 | gpt_mknew_header_common(cxt, header, lba); |
| 568 | |
| 569 | if (cxt->script) { |
| 570 | const char *id = fdisk_script_get_header(cxt->script, "label-id"); |
| 571 | if (id && string_to_guid(id, &header->disk_guid) == 0) |
| 572 | has_id = 1; |
| 573 | } |
| 574 | |
| 575 | if (!has_id) { |
| 576 | uuid_generate_random((unsigned char *) &header->disk_guid); |
| 577 | swap_efi_guid(&header->disk_guid); |
| 578 | } |
| 579 | return 0; |
| 580 | } |
| 581 | |
| 582 | /* |
| 583 | * Checks if there is a valid protective MBR partition table. |
| 584 | * Returns 0 if it is invalid or failure. Otherwise, return |
| 585 | * GPT_MBR_PROTECTIVE or GPT_MBR_HYBRID, depeding on the detection. |
| 586 | */ |
| 587 | static int valid_pmbr(struct fdisk_context *cxt) |
| 588 | { |
| 589 | int i, part = 0, ret = 0; /* invalid by default */ |
| 590 | struct gpt_legacy_mbr *pmbr = NULL; |
| 591 | uint32_t sz_lba = 0; |
| 592 | |
| 593 | if (!cxt->firstsector) |
| 594 | goto done; |
| 595 | |
| 596 | pmbr = (struct gpt_legacy_mbr *) cxt->firstsector; |
| 597 | |
| 598 | if (le16_to_cpu(pmbr->signature) != MSDOS_MBR_SIGNATURE) |
| 599 | goto done; |
| 600 | |
| 601 | /* LBA of the GPT partition header */ |
| 602 | if (pmbr->partition_record[0].starting_lba != |
| 603 | cpu_to_le32(GPT_PRIMARY_PARTITION_TABLE_LBA)) |
| 604 | goto done; |
| 605 | |
| 606 | /* seems like a valid MBR was found, check DOS primary partitions */ |
| 607 | for (i = 0; i < 4; i++) { |
| 608 | if (pmbr->partition_record[i].os_type == EFI_PMBR_OSTYPE) { |
| 609 | /* |
| 610 | * Ok, we at least know that there's a protective MBR, |
| 611 | * now check if there are other partition types for |
| 612 | * hybrid MBR. |
| 613 | */ |
| 614 | part = i; |
| 615 | ret = GPT_MBR_PROTECTIVE; |
| 616 | goto check_hybrid; |
| 617 | } |
| 618 | } |
| 619 | |
| 620 | if (ret != GPT_MBR_PROTECTIVE) |
| 621 | goto done; |
| 622 | check_hybrid: |
| 623 | for (i = 0 ; i < 4; i++) { |
| 624 | if ((pmbr->partition_record[i].os_type != EFI_PMBR_OSTYPE) && |
| 625 | (pmbr->partition_record[i].os_type != 0x00)) |
| 626 | ret = GPT_MBR_HYBRID; |
| 627 | } |
| 628 | |
| 629 | /* |
| 630 | * Protective MBRs take up the lesser of the whole disk |
| 631 | * or 2 TiB (32bit LBA), ignoring the rest of the disk. |
| 632 | * Some partitioning programs, nonetheless, choose to set |
| 633 | * the size to the maximum 32-bit limitation, disregarding |
| 634 | * the disk size. |
| 635 | * |
| 636 | * Hybrid MBRs do not necessarily comply with this. |
| 637 | * |
| 638 | * Consider a bad value here to be a warning to support dd-ing |
| 639 | * an image from a smaller disk to a bigger disk. |
| 640 | */ |
| 641 | if (ret == GPT_MBR_PROTECTIVE) { |
| 642 | sz_lba = le32_to_cpu(pmbr->partition_record[part].size_in_lba); |
| 643 | if (sz_lba != (uint32_t) cxt->total_sectors - 1 && sz_lba != 0xFFFFFFFF) { |
| 644 | fdisk_warnx(cxt, _("GPT PMBR size mismatch (%u != %u) " |
| 645 | "will be corrected by w(rite)."), |
| 646 | sz_lba, |
| 647 | (uint32_t) cxt->total_sectors - 1); |
| 648 | fdisk_label_set_changed(cxt->label, 1); |
| 649 | } |
| 650 | } |
| 651 | done: |
| 652 | return ret; |
| 653 | } |
| 654 | |
| 655 | static uint64_t last_lba(struct fdisk_context *cxt) |
| 656 | { |
| 657 | struct stat s; |
| 658 | uint64_t sectors = 0; |
| 659 | |
| 660 | memset(&s, 0, sizeof(s)); |
| 661 | if (fstat(cxt->dev_fd, &s) == -1) { |
| 662 | fdisk_warn(cxt, _("gpt: stat() failed")); |
| 663 | return 0; |
| 664 | } |
| 665 | |
| 666 | if (S_ISBLK(s.st_mode)) |
| 667 | sectors = cxt->total_sectors - 1; |
| 668 | else if (S_ISREG(s.st_mode)) |
| 669 | sectors = ((uint64_t) s.st_size / |
| 670 | (uint64_t) cxt->sector_size) - 1ULL; |
| 671 | else |
| 672 | fdisk_warnx(cxt, _("gpt: cannot handle files with mode %o"), s.st_mode); |
| 673 | |
| 674 | DBG(LABEL, ul_debug("GPT last LBA: %ju", sectors)); |
| 675 | return sectors; |
| 676 | } |
| 677 | |
| 678 | static ssize_t read_lba(struct fdisk_context *cxt, uint64_t lba, |
| 679 | void *buffer, const size_t bytes) |
| 680 | { |
| 681 | off_t offset = lba * cxt->sector_size; |
| 682 | |
| 683 | if (lseek(cxt->dev_fd, offset, SEEK_SET) == (off_t) -1) |
| 684 | return -1; |
| 685 | return read(cxt->dev_fd, buffer, bytes) != bytes; |
| 686 | } |
| 687 | |
| 688 | |
| 689 | /* Returns the GPT entry array */ |
| 690 | static struct gpt_entry *gpt_read_entries(struct fdisk_context *cxt, |
| 691 | struct gpt_header *header) |
| 692 | { |
| 693 | ssize_t sz; |
| 694 | struct gpt_entry *ret = NULL; |
| 695 | off_t offset; |
| 696 | |
| 697 | assert(cxt); |
| 698 | assert(header); |
| 699 | |
| 700 | sz = le32_to_cpu(header->npartition_entries) * |
| 701 | le32_to_cpu(header->sizeof_partition_entry); |
| 702 | |
| 703 | ret = calloc(1, sz); |
| 704 | if (!ret) |
| 705 | return NULL; |
| 706 | offset = le64_to_cpu(header->partition_entry_lba) * |
| 707 | cxt->sector_size; |
| 708 | |
| 709 | if (offset != lseek(cxt->dev_fd, offset, SEEK_SET)) |
| 710 | goto fail; |
| 711 | if (sz != read(cxt->dev_fd, ret, sz)) |
| 712 | goto fail; |
| 713 | |
| 714 | return ret; |
| 715 | |
| 716 | fail: |
| 717 | free(ret); |
| 718 | return NULL; |
| 719 | } |
| 720 | |
| 721 | static inline uint32_t count_crc32(const unsigned char *buf, size_t len) |
| 722 | { |
| 723 | return (crc32(~0L, buf, len) ^ ~0L); |
| 724 | } |
| 725 | |
| 726 | /* |
| 727 | * Recompute header and partition array 32bit CRC checksums. |
| 728 | * This function does not fail - if there's corruption, then it |
| 729 | * will be reported when checksuming it again (ie: probing or verify). |
| 730 | */ |
| 731 | static void gpt_recompute_crc(struct gpt_header *header, struct gpt_entry *ents) |
| 732 | { |
| 733 | uint32_t crc = 0; |
| 734 | size_t entry_sz = 0; |
| 735 | |
| 736 | if (!header) |
| 737 | return; |
| 738 | |
| 739 | /* header CRC */ |
| 740 | header->crc32 = 0; |
| 741 | crc = count_crc32((unsigned char *) header, le32_to_cpu(header->size)); |
| 742 | header->crc32 = cpu_to_le32(crc); |
| 743 | |
| 744 | /* partition entry array CRC */ |
| 745 | header->partition_entry_array_crc32 = 0; |
| 746 | entry_sz = le32_to_cpu(header->npartition_entries) * |
| 747 | le32_to_cpu(header->sizeof_partition_entry); |
| 748 | |
| 749 | crc = count_crc32((unsigned char *) ents, entry_sz); |
| 750 | header->partition_entry_array_crc32 = cpu_to_le32(crc); |
| 751 | } |
| 752 | |
| 753 | /* |
| 754 | * Compute the 32bit CRC checksum of the partition table header. |
| 755 | * Returns 1 if it is valid, otherwise 0. |
| 756 | */ |
| 757 | static int gpt_check_header_crc(struct gpt_header *header, struct gpt_entry *ents) |
| 758 | { |
| 759 | uint32_t crc, orgcrc = le32_to_cpu(header->crc32); |
| 760 | |
| 761 | header->crc32 = 0; |
| 762 | crc = count_crc32((unsigned char *) header, le32_to_cpu(header->size)); |
| 763 | header->crc32 = cpu_to_le32(orgcrc); |
| 764 | |
| 765 | if (crc == le32_to_cpu(header->crc32)) |
| 766 | return 1; |
| 767 | |
| 768 | /* |
| 769 | * If we have checksum mismatch it may be due to stale data, |
| 770 | * like a partition being added or deleted. Recompute the CRC again |
| 771 | * and make sure this is not the case. |
| 772 | */ |
| 773 | if (ents) { |
| 774 | gpt_recompute_crc(header, ents); |
| 775 | orgcrc = le32_to_cpu(header->crc32); |
| 776 | header->crc32 = 0; |
| 777 | crc = count_crc32((unsigned char *) header, le32_to_cpu(header->size)); |
| 778 | header->crc32 = cpu_to_le32(orgcrc); |
| 779 | |
| 780 | return crc == le32_to_cpu(header->crc32); |
| 781 | } |
| 782 | |
| 783 | return 0; |
| 784 | } |
| 785 | |
| 786 | /* |
| 787 | * It initializes the partition entry array. |
| 788 | * Returns 1 if the checksum is valid, otherwise 0. |
| 789 | */ |
| 790 | static int gpt_check_entryarr_crc(struct gpt_header *header, |
| 791 | struct gpt_entry *ents) |
| 792 | { |
| 793 | int ret = 0; |
| 794 | ssize_t entry_sz; |
| 795 | uint32_t crc; |
| 796 | |
| 797 | if (!header || !ents) |
| 798 | goto done; |
| 799 | |
| 800 | entry_sz = le32_to_cpu(header->npartition_entries) * |
| 801 | le32_to_cpu(header->sizeof_partition_entry); |
| 802 | |
| 803 | if (!entry_sz) |
| 804 | goto done; |
| 805 | |
| 806 | crc = count_crc32((unsigned char *) ents, entry_sz); |
| 807 | ret = (crc == le32_to_cpu(header->partition_entry_array_crc32)); |
| 808 | done: |
| 809 | return ret; |
| 810 | } |
| 811 | |
| 812 | static int gpt_check_lba_sanity(struct fdisk_context *cxt, struct gpt_header *header) |
| 813 | { |
| 814 | int ret = 0; |
| 815 | uint64_t lu, fu, lastlba = last_lba(cxt); |
| 816 | |
| 817 | fu = le64_to_cpu(header->first_usable_lba); |
| 818 | lu = le64_to_cpu(header->last_usable_lba); |
| 819 | |
| 820 | /* check if first and last usable LBA make sense */ |
| 821 | if (lu < fu) { |
| 822 | DBG(LABEL, ul_debug("error: header last LBA is before first LBA")); |
| 823 | goto done; |
| 824 | } |
| 825 | |
| 826 | /* check if first and last usable LBAs with the disk's last LBA */ |
| 827 | if (fu > lastlba || lu > lastlba) { |
| 828 | DBG(LABEL, ul_debug("error: header LBAs are after the disk's last LBA")); |
| 829 | goto done; |
| 830 | } |
| 831 | |
| 832 | /* the header has to be outside usable range */ |
| 833 | if (fu < GPT_PRIMARY_PARTITION_TABLE_LBA && |
| 834 | GPT_PRIMARY_PARTITION_TABLE_LBA < lu) { |
| 835 | DBG(LABEL, ul_debug("error: header outside of usable range")); |
| 836 | goto done; |
| 837 | } |
| 838 | |
| 839 | ret = 1; /* sane */ |
| 840 | done: |
| 841 | return ret; |
| 842 | } |
| 843 | |
| 844 | /* Check if there is a valid header signature */ |
| 845 | static int gpt_check_signature(struct gpt_header *header) |
| 846 | { |
| 847 | return header->signature == cpu_to_le64(GPT_HEADER_SIGNATURE); |
| 848 | } |
| 849 | |
| 850 | /* |
| 851 | * Return the specified GPT Header, or NULL upon failure/invalid. |
| 852 | * Note that all tests must pass to ensure a valid header, |
| 853 | * we do not rely on only testing the signature for a valid probe. |
| 854 | */ |
| 855 | static struct gpt_header *gpt_read_header(struct fdisk_context *cxt, |
| 856 | uint64_t lba, |
| 857 | struct gpt_entry **_ents) |
| 858 | { |
| 859 | struct gpt_header *header = NULL; |
| 860 | struct gpt_entry *ents = NULL; |
| 861 | uint32_t hsz; |
| 862 | |
| 863 | if (!cxt) |
| 864 | return NULL; |
| 865 | |
| 866 | header = calloc(1, sizeof(*header)); |
| 867 | if (!header) |
| 868 | return NULL; |
| 869 | |
| 870 | /* read and verify header */ |
| 871 | if (read_lba(cxt, lba, header, sizeof(struct gpt_header)) != 0) |
| 872 | goto invalid; |
| 873 | |
| 874 | if (!gpt_check_signature(header)) |
| 875 | goto invalid; |
| 876 | |
| 877 | if (!gpt_check_header_crc(header, NULL)) |
| 878 | goto invalid; |
| 879 | |
| 880 | /* read and verify entries */ |
| 881 | ents = gpt_read_entries(cxt, header); |
| 882 | if (!ents) |
| 883 | goto invalid; |
| 884 | |
| 885 | if (!gpt_check_entryarr_crc(header, ents)) |
| 886 | goto invalid; |
| 887 | |
| 888 | if (!gpt_check_lba_sanity(cxt, header)) |
| 889 | goto invalid; |
| 890 | |
| 891 | /* valid header must be at MyLBA */ |
| 892 | if (le64_to_cpu(header->my_lba) != lba) |
| 893 | goto invalid; |
| 894 | |
| 895 | /* make sure header size is between 92 and sector size bytes */ |
| 896 | hsz = le32_to_cpu(header->size); |
| 897 | if (hsz < GPT_HEADER_MINSZ || hsz > cxt->sector_size) |
| 898 | goto invalid; |
| 899 | |
| 900 | if (_ents) |
| 901 | *_ents = ents; |
| 902 | else |
| 903 | free(ents); |
| 904 | |
| 905 | DBG(LABEL, ul_debug("found valid GPT Header on LBA %ju", lba)); |
| 906 | return header; |
| 907 | invalid: |
| 908 | free(header); |
| 909 | free(ents); |
| 910 | |
| 911 | DBG(LABEL, ul_debug("read GPT Header on LBA %ju failed", lba)); |
| 912 | return NULL; |
| 913 | } |
| 914 | |
| 915 | |
| 916 | static int gpt_locate_disklabel(struct fdisk_context *cxt, int n, |
| 917 | const char **name, off_t *offset, size_t *size) |
| 918 | { |
| 919 | struct fdisk_gpt_label *gpt; |
| 920 | |
| 921 | assert(cxt); |
| 922 | |
| 923 | *name = NULL; |
| 924 | *offset = 0; |
| 925 | *size = 0; |
| 926 | |
| 927 | switch (n) { |
| 928 | case 0: |
| 929 | *name = "PMBR"; |
| 930 | *offset = 0; |
| 931 | *size = 512; |
| 932 | break; |
| 933 | case 1: |
| 934 | *name = _("GPT Header"); |
| 935 | *offset = GPT_PRIMARY_PARTITION_TABLE_LBA * cxt->sector_size; |
| 936 | *size = sizeof(struct gpt_header); |
| 937 | break; |
| 938 | case 2: |
| 939 | *name = _("GPT Entries"); |
| 940 | gpt = self_label(cxt); |
| 941 | *offset = le64_to_cpu(gpt->pheader->partition_entry_lba) * cxt->sector_size; |
| 942 | *size = le32_to_cpu(gpt->pheader->npartition_entries) * |
| 943 | le32_to_cpu(gpt->pheader->sizeof_partition_entry); |
| 944 | break; |
| 945 | default: |
| 946 | return 1; /* no more chunks */ |
| 947 | } |
| 948 | |
| 949 | return 0; |
| 950 | } |
| 951 | |
| 952 | |
| 953 | |
| 954 | /* |
| 955 | * Returns the number of partitions that are in use. |
| 956 | */ |
| 957 | static unsigned partitions_in_use(struct gpt_header *header, |
| 958 | struct gpt_entry *ents) |
| 959 | { |
| 960 | uint32_t i, used = 0; |
| 961 | |
| 962 | if (!header || ! ents) |
| 963 | return 0; |
| 964 | |
| 965 | for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) |
| 966 | if (!partition_unused(&ents[i])) |
| 967 | used++; |
| 968 | return used; |
| 969 | } |
| 970 | |
| 971 | |
| 972 | /* |
| 973 | * Check if a partition is too big for the disk (sectors). |
| 974 | * Returns the faulting partition number, otherwise 0. |
| 975 | */ |
| 976 | static uint32_t check_too_big_partitions(struct gpt_header *header, |
| 977 | struct gpt_entry *ents, uint64_t sectors) |
| 978 | { |
| 979 | uint32_t i; |
| 980 | |
| 981 | for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) { |
| 982 | if (partition_unused(&ents[i])) |
| 983 | continue; |
| 984 | if (gpt_partition_end(&ents[i]) >= sectors) |
| 985 | return i + 1; |
| 986 | } |
| 987 | |
| 988 | return 0; |
| 989 | } |
| 990 | |
| 991 | /* |
| 992 | * Check if a partition ends before it begins |
| 993 | * Returns the faulting partition number, otherwise 0. |
| 994 | */ |
| 995 | static uint32_t check_start_after_end_paritions(struct gpt_header *header, |
| 996 | struct gpt_entry *ents) |
| 997 | { |
| 998 | uint32_t i; |
| 999 | |
| 1000 | for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) { |
| 1001 | if (partition_unused(&ents[i])) |
| 1002 | continue; |
| 1003 | if (gpt_partition_start(&ents[i]) > gpt_partition_end(&ents[i])) |
| 1004 | return i + 1; |
| 1005 | } |
| 1006 | |
| 1007 | return 0; |
| 1008 | } |
| 1009 | |
| 1010 | /* |
| 1011 | * Check if partition e1 overlaps with partition e2. |
| 1012 | */ |
| 1013 | static inline int partition_overlap(struct gpt_entry *e1, struct gpt_entry *e2) |
| 1014 | { |
| 1015 | uint64_t start1 = gpt_partition_start(e1); |
| 1016 | uint64_t end1 = gpt_partition_end(e1); |
| 1017 | uint64_t start2 = gpt_partition_start(e2); |
| 1018 | uint64_t end2 = gpt_partition_end(e2); |
| 1019 | |
| 1020 | return (start1 && start2 && (start1 <= end2) != (end1 < start2)); |
| 1021 | } |
| 1022 | |
| 1023 | /* |
| 1024 | * Find any partitions that overlap. |
| 1025 | */ |
| 1026 | static uint32_t check_overlap_partitions(struct gpt_header *header, |
| 1027 | struct gpt_entry *ents) |
| 1028 | { |
| 1029 | uint32_t i, j; |
| 1030 | |
| 1031 | for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) |
| 1032 | for (j = 0; j < i; j++) { |
| 1033 | if (partition_unused(&ents[i]) || |
| 1034 | partition_unused(&ents[j])) |
| 1035 | continue; |
| 1036 | if (partition_overlap(&ents[i], &ents[j])) { |
| 1037 | DBG(LABEL, ul_debug("GPT partitions overlap detected [%u vs. %u]", i, j)); |
| 1038 | return i + 1; |
| 1039 | } |
| 1040 | } |
| 1041 | |
| 1042 | return 0; |
| 1043 | } |
| 1044 | |
| 1045 | /* |
| 1046 | * Find the first available block after the starting point; returns 0 if |
| 1047 | * there are no available blocks left, or error. From gdisk. |
| 1048 | */ |
| 1049 | static uint64_t find_first_available(struct gpt_header *header, |
| 1050 | struct gpt_entry *ents, uint64_t start) |
| 1051 | { |
| 1052 | uint64_t first; |
| 1053 | uint32_t i, first_moved = 0; |
| 1054 | |
| 1055 | uint64_t fu, lu; |
| 1056 | |
| 1057 | if (!header || !ents) |
| 1058 | return 0; |
| 1059 | |
| 1060 | fu = le64_to_cpu(header->first_usable_lba); |
| 1061 | lu = le64_to_cpu(header->last_usable_lba); |
| 1062 | |
| 1063 | /* |
| 1064 | * Begin from the specified starting point or from the first usable |
| 1065 | * LBA, whichever is greater... |
| 1066 | */ |
| 1067 | first = start < fu ? fu : start; |
| 1068 | |
| 1069 | /* |
| 1070 | * Now search through all partitions; if first is within an |
| 1071 | * existing partition, move it to the next sector after that |
| 1072 | * partition and repeat. If first was moved, set firstMoved |
| 1073 | * flag; repeat until firstMoved is not set, so as to catch |
| 1074 | * cases where partitions are out of sequential order.... |
| 1075 | */ |
| 1076 | do { |
| 1077 | first_moved = 0; |
| 1078 | for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) { |
| 1079 | if (partition_unused(&ents[i])) |
| 1080 | continue; |
| 1081 | if (first < gpt_partition_start(&ents[i])) |
| 1082 | continue; |
| 1083 | if (first <= gpt_partition_end(&ents[i])) { |
| 1084 | first = gpt_partition_end(&ents[i]) + 1; |
| 1085 | first_moved = 1; |
| 1086 | } |
| 1087 | } |
| 1088 | } while (first_moved == 1); |
| 1089 | |
| 1090 | if (first > lu) |
| 1091 | first = 0; |
| 1092 | |
| 1093 | return first; |
| 1094 | } |
| 1095 | |
| 1096 | |
| 1097 | /* Returns last available sector in the free space pointed to by start. From gdisk. */ |
| 1098 | static uint64_t find_last_free(struct gpt_header *header, |
| 1099 | struct gpt_entry *ents, uint64_t start) |
| 1100 | { |
| 1101 | uint32_t i; |
| 1102 | uint64_t nearest_start; |
| 1103 | |
| 1104 | if (!header || !ents) |
| 1105 | return 0; |
| 1106 | |
| 1107 | nearest_start = le64_to_cpu(header->last_usable_lba); |
| 1108 | |
| 1109 | for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) { |
| 1110 | uint64_t ps = gpt_partition_start(&ents[i]); |
| 1111 | |
| 1112 | if (nearest_start > ps && ps > start) |
| 1113 | nearest_start = ps - 1; |
| 1114 | } |
| 1115 | |
| 1116 | return nearest_start; |
| 1117 | } |
| 1118 | |
| 1119 | /* Returns the last free sector on the disk. From gdisk. */ |
| 1120 | static uint64_t find_last_free_sector(struct gpt_header *header, |
| 1121 | struct gpt_entry *ents) |
| 1122 | { |
| 1123 | uint32_t i, last_moved; |
| 1124 | uint64_t last = 0; |
| 1125 | |
| 1126 | if (!header || !ents) |
| 1127 | goto done; |
| 1128 | |
| 1129 | /* start by assuming the last usable LBA is available */ |
| 1130 | last = le64_to_cpu(header->last_usable_lba); |
| 1131 | do { |
| 1132 | last_moved = 0; |
| 1133 | for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) { |
| 1134 | if ((last >= gpt_partition_start(&ents[i])) && |
| 1135 | (last <= gpt_partition_end(&ents[i]))) { |
| 1136 | last = gpt_partition_start(&ents[i]) - 1; |
| 1137 | last_moved = 1; |
| 1138 | } |
| 1139 | } |
| 1140 | } while (last_moved == 1); |
| 1141 | done: |
| 1142 | return last; |
| 1143 | } |
| 1144 | |
| 1145 | /* |
| 1146 | * Finds the first available sector in the largest block of unallocated |
| 1147 | * space on the disk. Returns 0 if there are no available blocks left. |
| 1148 | * From gdisk. |
| 1149 | */ |
| 1150 | static uint64_t find_first_in_largest(struct gpt_header *header, |
| 1151 | struct gpt_entry *ents) |
| 1152 | { |
| 1153 | uint64_t start = 0, first_sect, last_sect; |
| 1154 | uint64_t segment_size, selected_size = 0, selected_segment = 0; |
| 1155 | |
| 1156 | if (!header || !ents) |
| 1157 | goto done; |
| 1158 | |
| 1159 | do { |
| 1160 | first_sect = find_first_available(header, ents, start); |
| 1161 | if (first_sect != 0) { |
| 1162 | last_sect = find_last_free(header, ents, first_sect); |
| 1163 | segment_size = last_sect - first_sect + 1; |
| 1164 | |
| 1165 | if (segment_size > selected_size) { |
| 1166 | selected_size = segment_size; |
| 1167 | selected_segment = first_sect; |
| 1168 | } |
| 1169 | start = last_sect + 1; |
| 1170 | } |
| 1171 | } while (first_sect != 0); |
| 1172 | |
| 1173 | done: |
| 1174 | return selected_segment; |
| 1175 | } |
| 1176 | |
| 1177 | /* |
| 1178 | * Find the total number of free sectors, the number of segments in which |
| 1179 | * they reside, and the size of the largest of those segments. From gdisk. |
| 1180 | */ |
| 1181 | static uint64_t get_free_sectors(struct fdisk_context *cxt, struct gpt_header *header, |
| 1182 | struct gpt_entry *ents, uint32_t *nsegments, |
| 1183 | uint64_t *largest_segment) |
| 1184 | { |
| 1185 | uint32_t num = 0; |
| 1186 | uint64_t first_sect, last_sect; |
| 1187 | uint64_t largest_seg = 0, segment_sz; |
| 1188 | uint64_t totfound = 0, start = 0; /* starting point for each search */ |
| 1189 | |
| 1190 | if (!cxt->total_sectors) |
| 1191 | goto done; |
| 1192 | |
| 1193 | do { |
| 1194 | first_sect = find_first_available(header, ents, start); |
| 1195 | if (first_sect) { |
| 1196 | last_sect = find_last_free(header, ents, first_sect); |
| 1197 | segment_sz = last_sect - first_sect + 1; |
| 1198 | |
| 1199 | if (segment_sz > largest_seg) |
| 1200 | largest_seg = segment_sz; |
| 1201 | totfound += segment_sz; |
| 1202 | num++; |
| 1203 | start = last_sect + 1; |
| 1204 | } |
| 1205 | } while (first_sect); |
| 1206 | |
| 1207 | done: |
| 1208 | if (nsegments) |
| 1209 | *nsegments = num; |
| 1210 | if (largest_segment) |
| 1211 | *largest_segment = largest_seg; |
| 1212 | |
| 1213 | return totfound; |
| 1214 | } |
| 1215 | |
| 1216 | static int gpt_probe_label(struct fdisk_context *cxt) |
| 1217 | { |
| 1218 | int mbr_type; |
| 1219 | struct fdisk_gpt_label *gpt; |
| 1220 | |
| 1221 | assert(cxt); |
| 1222 | assert(cxt->label); |
| 1223 | assert(fdisk_is_label(cxt, GPT)); |
| 1224 | |
| 1225 | gpt = self_label(cxt); |
| 1226 | |
| 1227 | /* TODO: it would be nice to support scenario when GPT headers are OK, |
| 1228 | * but PMBR is corrupt */ |
| 1229 | mbr_type = valid_pmbr(cxt); |
| 1230 | if (!mbr_type) |
| 1231 | goto failed; |
| 1232 | |
| 1233 | DBG(LABEL, ul_debug("found a %s MBR", mbr_type == GPT_MBR_PROTECTIVE ? |
| 1234 | "protective" : "hybrid")); |
| 1235 | |
| 1236 | /* primary header */ |
| 1237 | gpt->pheader = gpt_read_header(cxt, GPT_PRIMARY_PARTITION_TABLE_LBA, |
| 1238 | &gpt->ents); |
| 1239 | |
| 1240 | if (gpt->pheader) |
| 1241 | /* primary OK, try backup from alternative LBA */ |
| 1242 | gpt->bheader = gpt_read_header(cxt, |
| 1243 | le64_to_cpu(gpt->pheader->alternative_lba), |
| 1244 | NULL); |
| 1245 | else |
| 1246 | /* primary corrupted -- try last LBA */ |
| 1247 | gpt->bheader = gpt_read_header(cxt, last_lba(cxt), &gpt->ents); |
| 1248 | |
| 1249 | if (!gpt->pheader && !gpt->bheader) |
| 1250 | goto failed; |
| 1251 | |
| 1252 | /* primary OK, backup corrupted -- recovery */ |
| 1253 | if (gpt->pheader && !gpt->bheader) { |
| 1254 | fdisk_warnx(cxt, _("The backup GPT table is corrupt, but the " |
| 1255 | "primary appears OK, so that will be used.")); |
| 1256 | gpt->bheader = gpt_copy_header(cxt, gpt->pheader); |
| 1257 | if (!gpt->bheader) |
| 1258 | goto failed; |
| 1259 | gpt_recompute_crc(gpt->bheader, gpt->ents); |
| 1260 | |
| 1261 | /* primary corrupted, backup OK -- recovery */ |
| 1262 | } else if (!gpt->pheader && gpt->bheader) { |
| 1263 | fdisk_warnx(cxt, _("The primary GPT table is corrupt, but the " |
| 1264 | "backup appears OK, so that will be used.")); |
| 1265 | gpt->pheader = gpt_copy_header(cxt, gpt->bheader); |
| 1266 | if (!gpt->pheader) |
| 1267 | goto failed; |
| 1268 | gpt_recompute_crc(gpt->pheader, gpt->ents); |
| 1269 | } |
| 1270 | |
| 1271 | cxt->label->nparts_max = le32_to_cpu(gpt->pheader->npartition_entries); |
| 1272 | cxt->label->nparts_cur = partitions_in_use(gpt->pheader, gpt->ents); |
| 1273 | return 1; |
| 1274 | failed: |
| 1275 | DBG(LABEL, ul_debug("GPT probe failed")); |
| 1276 | gpt_deinit(cxt->label); |
| 1277 | return 0; |
| 1278 | } |
| 1279 | |
| 1280 | /* |
| 1281 | * Stolen from libblkid - can be removed once partition semantics |
| 1282 | * are added to the fdisk API. |
| 1283 | */ |
| 1284 | static char *encode_to_utf8(unsigned char *src, size_t count) |
| 1285 | { |
| 1286 | uint16_t c; |
| 1287 | char *dest; |
| 1288 | size_t i, j, len = count; |
| 1289 | |
| 1290 | dest = calloc(1, count); |
| 1291 | if (!dest) |
| 1292 | return NULL; |
| 1293 | |
| 1294 | for (j = i = 0; i + 2 <= count; i += 2) { |
| 1295 | /* always little endian */ |
| 1296 | c = (src[i+1] << 8) | src[i]; |
| 1297 | if (c == 0) { |
| 1298 | dest[j] = '\0'; |
| 1299 | break; |
| 1300 | } else if (c < 0x80) { |
| 1301 | if (j+1 >= len) |
| 1302 | break; |
| 1303 | dest[j++] = (uint8_t) c; |
| 1304 | } else if (c < 0x800) { |
| 1305 | if (j+2 >= len) |
| 1306 | break; |
| 1307 | dest[j++] = (uint8_t) (0xc0 | (c >> 6)); |
| 1308 | dest[j++] = (uint8_t) (0x80 | (c & 0x3f)); |
| 1309 | } else { |
| 1310 | if (j+3 >= len) |
| 1311 | break; |
| 1312 | dest[j++] = (uint8_t) (0xe0 | (c >> 12)); |
| 1313 | dest[j++] = (uint8_t) (0x80 | ((c >> 6) & 0x3f)); |
| 1314 | dest[j++] = (uint8_t) (0x80 | (c & 0x3f)); |
| 1315 | } |
| 1316 | } |
| 1317 | dest[j] = '\0'; |
| 1318 | |
| 1319 | return dest; |
| 1320 | } |
| 1321 | |
| 1322 | static int gpt_entry_attrs_to_string(struct gpt_entry *e, char **res) |
| 1323 | { |
| 1324 | unsigned int n, count = 0; |
| 1325 | size_t l; |
| 1326 | char *bits, *p; |
| 1327 | uint64_t attrs; |
| 1328 | |
| 1329 | assert(e); |
| 1330 | assert(res); |
| 1331 | |
| 1332 | *res = NULL; |
| 1333 | attrs = le64_to_cpu(e->attrs); |
| 1334 | if (!attrs) |
| 1335 | return 0; /* no attributes at all */ |
| 1336 | |
| 1337 | bits = (char *) &attrs; |
| 1338 | |
| 1339 | /* Note that sizeof() is correct here, we need separators between |
| 1340 | * the strings so also count \0 is correct */ |
| 1341 | *res = calloc(1, sizeof(GPT_ATTRSTR_NOBLOCK) + |
| 1342 | sizeof(GPT_ATTRSTR_REQ) + |
| 1343 | sizeof(GPT_ATTRSTR_LEGACY) + |
| 1344 | sizeof("GUID:") + (GPT_ATTRBIT_GUID_COUNT * 3)); |
| 1345 | if (!*res) |
| 1346 | return -errno; |
| 1347 | |
| 1348 | p = *res; |
| 1349 | if (isset(bits, GPT_ATTRBIT_REQ)) { |
| 1350 | memcpy(p, GPT_ATTRSTR_REQ, (l = sizeof(GPT_ATTRSTR_REQ))); |
| 1351 | p += l - 1; |
| 1352 | } |
| 1353 | if (isset(bits, GPT_ATTRBIT_NOBLOCK)) { |
| 1354 | if (p > *res) |
| 1355 | *p++ = ' '; |
| 1356 | memcpy(p, GPT_ATTRSTR_NOBLOCK, (l = sizeof(GPT_ATTRSTR_NOBLOCK))); |
| 1357 | p += l - 1; |
| 1358 | } |
| 1359 | if (isset(bits, GPT_ATTRBIT_LEGACY)) { |
| 1360 | if (p > *res) |
| 1361 | *p++ = ' '; |
| 1362 | memcpy(p, GPT_ATTRSTR_LEGACY, (l = sizeof(GPT_ATTRSTR_LEGACY))); |
| 1363 | p += l - 1; |
| 1364 | } |
| 1365 | |
| 1366 | for (n = GPT_ATTRBIT_GUID_FIRST; |
| 1367 | n < GPT_ATTRBIT_GUID_FIRST + GPT_ATTRBIT_GUID_COUNT; n++) { |
| 1368 | |
| 1369 | if (!isset(bits, n)) |
| 1370 | continue; |
| 1371 | if (!count) { |
| 1372 | if (p > *res) |
| 1373 | *p++ = ' '; |
| 1374 | p += sprintf(p, "GUID:%u", n); |
| 1375 | } else |
| 1376 | p += sprintf(p, ",%u", n); |
| 1377 | count++; |
| 1378 | } |
| 1379 | |
| 1380 | return 0; |
| 1381 | } |
| 1382 | |
| 1383 | static int gpt_entry_attrs_from_string( |
| 1384 | struct fdisk_context *cxt, |
| 1385 | struct gpt_entry *e, |
| 1386 | const char *str) |
| 1387 | { |
| 1388 | const char *p = str; |
| 1389 | uint64_t attrs = 0; |
| 1390 | char *bits; |
| 1391 | |
| 1392 | assert(e); |
| 1393 | assert(p); |
| 1394 | |
| 1395 | DBG(LABEL, ul_debug("GPT: parsing string attributes '%s'", p)); |
| 1396 | |
| 1397 | bits = (char *) &attrs; |
| 1398 | |
| 1399 | while (p && *p) { |
| 1400 | int bit = -1; |
| 1401 | |
| 1402 | while (isblank(*p)) p++; |
| 1403 | if (!*p) |
| 1404 | break; |
| 1405 | |
| 1406 | DBG(LABEL, ul_debug(" parsing item '%s'", p)); |
| 1407 | |
| 1408 | if (strncmp(p, "GUID:", 5) == 0) { |
| 1409 | p += 5; |
| 1410 | continue; |
| 1411 | } else if (strncmp(p, GPT_ATTRSTR_REQ, |
| 1412 | sizeof(GPT_ATTRSTR_REQ) - 1) == 0) { |
| 1413 | bit = GPT_ATTRBIT_REQ; |
| 1414 | p += sizeof(GPT_ATTRSTR_REQ) - 1; |
| 1415 | } else if (strncmp(p, GPT_ATTRSTR_LEGACY, |
| 1416 | sizeof(GPT_ATTRSTR_LEGACY) - 1) == 0) { |
| 1417 | bit = GPT_ATTRBIT_LEGACY; |
| 1418 | p += sizeof(GPT_ATTRSTR_LEGACY) - 1; |
| 1419 | } else if (strncmp(p, GPT_ATTRSTR_NOBLOCK, |
| 1420 | sizeof(GPT_ATTRSTR_NOBLOCK) - 1) == 0) { |
| 1421 | bit = GPT_ATTRBIT_NOBLOCK; |
| 1422 | p += sizeof(GPT_ATTRSTR_NOBLOCK) - 1; |
| 1423 | } else if (isdigit((unsigned int) *p)) { |
| 1424 | char *end = NULL; |
| 1425 | |
| 1426 | errno = 0; |
| 1427 | bit = strtol(p, &end, 0); |
| 1428 | if (errno || !end || end == str |
| 1429 | || bit < GPT_ATTRBIT_GUID_FIRST |
| 1430 | || bit >= GPT_ATTRBIT_GUID_FIRST + GPT_ATTRBIT_GUID_COUNT) |
| 1431 | bit = -1; |
| 1432 | else |
| 1433 | p = end; |
| 1434 | } |
| 1435 | |
| 1436 | if (bit < 0) { |
| 1437 | fdisk_warnx(cxt, _("unssuported GPT attribute bit '%s'"), p); |
| 1438 | return -EINVAL; |
| 1439 | } |
| 1440 | |
| 1441 | setbit(bits, bit); |
| 1442 | |
| 1443 | while (isblank(*p)) p++; |
| 1444 | if (*p == ',') |
| 1445 | p++; |
| 1446 | } |
| 1447 | |
| 1448 | e->attrs = cpu_to_le64(attrs); |
| 1449 | return 0; |
| 1450 | } |
| 1451 | |
| 1452 | static int gpt_get_partition(struct fdisk_context *cxt, size_t n, |
| 1453 | struct fdisk_partition *pa) |
| 1454 | { |
| 1455 | struct fdisk_gpt_label *gpt; |
| 1456 | struct gpt_entry *e; |
| 1457 | char u_str[37]; |
| 1458 | int rc = 0; |
| 1459 | |
| 1460 | assert(cxt); |
| 1461 | assert(cxt->label); |
| 1462 | assert(fdisk_is_label(cxt, GPT)); |
| 1463 | |
| 1464 | gpt = self_label(cxt); |
| 1465 | |
| 1466 | if ((uint32_t) n >= le32_to_cpu(gpt->pheader->npartition_entries)) |
| 1467 | return -EINVAL; |
| 1468 | |
| 1469 | gpt = self_label(cxt); |
| 1470 | e = &gpt->ents[n]; |
| 1471 | |
| 1472 | pa->used = !partition_unused(e) || gpt_partition_start(e); |
| 1473 | if (!pa->used) |
| 1474 | return 0; |
| 1475 | |
| 1476 | pa->start = gpt_partition_start(e); |
| 1477 | pa->size = gpt_partition_size(e); |
| 1478 | pa->type = gpt_partition_parttype(cxt, e); |
| 1479 | |
| 1480 | if (guid_to_string(&e->partition_guid, u_str)) { |
| 1481 | pa->uuid = strdup(u_str); |
| 1482 | if (!pa->uuid) { |
| 1483 | rc = -errno; |
| 1484 | goto done; |
| 1485 | } |
| 1486 | } else |
| 1487 | pa->uuid = NULL; |
| 1488 | |
| 1489 | rc = gpt_entry_attrs_to_string(e, &pa->attrs); |
| 1490 | if (rc) |
| 1491 | goto done; |
| 1492 | |
| 1493 | pa->name = encode_to_utf8((unsigned char *)e->name, sizeof(e->name)); |
| 1494 | return 0; |
| 1495 | done: |
| 1496 | fdisk_reset_partition(pa); |
| 1497 | return rc; |
| 1498 | } |
| 1499 | |
| 1500 | |
| 1501 | static int gpt_set_partition(struct fdisk_context *cxt, size_t n, |
| 1502 | struct fdisk_partition *pa) |
| 1503 | { |
| 1504 | struct fdisk_gpt_label *gpt; |
| 1505 | struct gpt_entry *e; |
| 1506 | int rc = 0; |
| 1507 | uint64_t start, end; |
| 1508 | |
| 1509 | assert(cxt); |
| 1510 | assert(cxt->label); |
| 1511 | assert(fdisk_is_label(cxt, GPT)); |
| 1512 | |
| 1513 | gpt = self_label(cxt); |
| 1514 | |
| 1515 | if ((uint32_t) n >= le32_to_cpu(gpt->pheader->npartition_entries)) |
| 1516 | return -EINVAL; |
| 1517 | |
| 1518 | FDISK_INIT_UNDEF(start); |
| 1519 | FDISK_INIT_UNDEF(end); |
| 1520 | |
| 1521 | gpt = self_label(cxt); |
| 1522 | e = &gpt->ents[n]; |
| 1523 | |
| 1524 | if (pa->uuid) { |
| 1525 | char new_u[37], old_u[37]; |
| 1526 | |
| 1527 | guid_to_string(&e->partition_guid, old_u); |
| 1528 | rc = gpt_entry_set_uuid(e, pa->uuid); |
| 1529 | if (rc) |
| 1530 | return rc; |
| 1531 | guid_to_string(&e->partition_guid, new_u); |
| 1532 | fdisk_info(cxt, _("Partition UUID changed from %s to %s."), |
| 1533 | old_u, new_u); |
| 1534 | } |
| 1535 | |
| 1536 | if (pa->name) { |
| 1537 | char *old = encode_to_utf8((unsigned char *)e->name, sizeof(e->name)); |
| 1538 | gpt_entry_set_name(e, pa->name); |
| 1539 | |
| 1540 | fdisk_info(cxt, _("Partition name changed from '%s' to '%.*s'."), |
| 1541 | old, (int) GPT_PART_NAME_LEN, pa->name); |
| 1542 | free(old); |
| 1543 | } |
| 1544 | |
| 1545 | if (pa->type && pa->type->typestr) { |
| 1546 | struct gpt_guid typeid; |
| 1547 | |
| 1548 | rc = string_to_guid(pa->type->typestr, &typeid); |
| 1549 | if (rc) |
| 1550 | return rc; |
| 1551 | gpt_entry_set_type(e, &typeid); |
| 1552 | } |
| 1553 | if (pa->attrs) { |
| 1554 | rc = gpt_entry_attrs_from_string(cxt, e, pa->attrs); |
| 1555 | if (rc) |
| 1556 | return rc; |
| 1557 | } |
| 1558 | |
| 1559 | if (fdisk_partition_has_start(pa)) |
| 1560 | start = pa->start; |
| 1561 | if (fdisk_partition_has_size(pa)) |
| 1562 | end = gpt_partition_start(e) + pa->size - 1ULL; |
| 1563 | |
| 1564 | if (pa->end_follow_default) { |
| 1565 | /* enlarge */ |
| 1566 | if (!FDISK_IS_UNDEF(start)) |
| 1567 | start = gpt_partition_start(e); |
| 1568 | end = find_last_free(gpt->bheader, gpt->ents, start); |
| 1569 | if (!end) |
| 1570 | FDISK_INIT_UNDEF(end); |
| 1571 | } |
| 1572 | |
| 1573 | if (!FDISK_IS_UNDEF(start)) |
| 1574 | e->lba_start = cpu_to_le64(start); |
| 1575 | if (!FDISK_IS_UNDEF(end)) |
| 1576 | e->lba_end = cpu_to_le64(end); |
| 1577 | |
| 1578 | gpt_recompute_crc(gpt->pheader, gpt->ents); |
| 1579 | gpt_recompute_crc(gpt->bheader, gpt->ents); |
| 1580 | |
| 1581 | fdisk_label_set_changed(cxt->label, 1); |
| 1582 | return rc; |
| 1583 | } |
| 1584 | |
| 1585 | |
| 1586 | /* |
| 1587 | * List label partitions. |
| 1588 | */ |
| 1589 | static int gpt_list_disklabel(struct fdisk_context *cxt) |
| 1590 | { |
| 1591 | assert(cxt); |
| 1592 | assert(cxt->label); |
| 1593 | assert(fdisk_is_label(cxt, GPT)); |
| 1594 | |
| 1595 | if (fdisk_is_details(cxt)) { |
| 1596 | struct gpt_header *h = self_label(cxt)->pheader; |
| 1597 | |
| 1598 | fdisk_info(cxt, _("First LBA: %ju"), h->first_usable_lba); |
| 1599 | fdisk_info(cxt, _("Last LBA: %ju"), h->last_usable_lba); |
| 1600 | /* TRANSLATORS: The LBA (Logical Block Address) of the backup GPT header. */ |
| 1601 | fdisk_info(cxt, _("Alternative LBA: %ju"), h->alternative_lba); |
| 1602 | /* TRANSLATORS: The start of the array of partition entries. */ |
| 1603 | fdisk_info(cxt, _("Partition entries LBA: %ju"), h->partition_entry_lba); |
| 1604 | fdisk_info(cxt, _("Allocated partition entries: %u"), h->npartition_entries); |
| 1605 | } |
| 1606 | |
| 1607 | return 0; |
| 1608 | } |
| 1609 | |
| 1610 | /* |
| 1611 | * Write partitions. |
| 1612 | * Returns 0 on success, or corresponding error otherwise. |
| 1613 | */ |
| 1614 | static int gpt_write_partitions(struct fdisk_context *cxt, |
| 1615 | struct gpt_header *header, struct gpt_entry *ents) |
| 1616 | { |
| 1617 | off_t offset = le64_to_cpu(header->partition_entry_lba) * cxt->sector_size; |
| 1618 | uint32_t nparts = le32_to_cpu(header->npartition_entries); |
| 1619 | uint32_t totwrite = nparts * le32_to_cpu(header->sizeof_partition_entry); |
| 1620 | ssize_t rc; |
| 1621 | |
| 1622 | if (offset != lseek(cxt->dev_fd, offset, SEEK_SET)) |
| 1623 | goto fail; |
| 1624 | |
| 1625 | rc = write(cxt->dev_fd, ents, totwrite); |
| 1626 | if (rc > 0 && totwrite == (uint32_t) rc) |
| 1627 | return 0; |
| 1628 | fail: |
| 1629 | return -errno; |
| 1630 | } |
| 1631 | |
| 1632 | /* |
| 1633 | * Write a GPT header to a specified LBA |
| 1634 | * Returns 0 on success, or corresponding error otherwise. |
| 1635 | */ |
| 1636 | static int gpt_write_header(struct fdisk_context *cxt, |
| 1637 | struct gpt_header *header, uint64_t lba) |
| 1638 | { |
| 1639 | off_t offset = lba * cxt->sector_size; |
| 1640 | |
| 1641 | if (offset != lseek(cxt->dev_fd, offset, SEEK_SET)) |
| 1642 | goto fail; |
| 1643 | if (cxt->sector_size == |
| 1644 | (size_t) write(cxt->dev_fd, header, cxt->sector_size)) |
| 1645 | return 0; |
| 1646 | fail: |
| 1647 | return -errno; |
| 1648 | } |
| 1649 | |
| 1650 | /* |
| 1651 | * Write the protective MBR. |
| 1652 | * Returns 0 on success, or corresponding error otherwise. |
| 1653 | */ |
| 1654 | static int gpt_write_pmbr(struct fdisk_context *cxt) |
| 1655 | { |
| 1656 | off_t offset; |
| 1657 | struct gpt_legacy_mbr *pmbr = NULL; |
| 1658 | |
| 1659 | assert(cxt); |
| 1660 | assert(cxt->firstsector); |
| 1661 | |
| 1662 | pmbr = (struct gpt_legacy_mbr *) cxt->firstsector; |
| 1663 | |
| 1664 | /* zero out the legacy partitions */ |
| 1665 | memset(pmbr->partition_record, 0, sizeof(pmbr->partition_record)); |
| 1666 | |
| 1667 | pmbr->signature = cpu_to_le16(MSDOS_MBR_SIGNATURE); |
| 1668 | pmbr->partition_record[0].os_type = EFI_PMBR_OSTYPE; |
| 1669 | pmbr->partition_record[0].start_sector = 1; |
| 1670 | pmbr->partition_record[0].end_head = 0xFE; |
| 1671 | pmbr->partition_record[0].end_sector = 0xFF; |
| 1672 | pmbr->partition_record[0].end_track = 0xFF; |
| 1673 | pmbr->partition_record[0].starting_lba = cpu_to_le32(1); |
| 1674 | |
| 1675 | /* |
| 1676 | * Set size_in_lba to the size of the disk minus one. If the size of the disk |
| 1677 | * is too large to be represented by a 32bit LBA (2Tb), set it to 0xFFFFFFFF. |
| 1678 | */ |
| 1679 | if (cxt->total_sectors - 1 > 0xFFFFFFFFULL) |
| 1680 | pmbr->partition_record[0].size_in_lba = cpu_to_le32(0xFFFFFFFF); |
| 1681 | else |
| 1682 | pmbr->partition_record[0].size_in_lba = |
| 1683 | cpu_to_le32(cxt->total_sectors - 1UL); |
| 1684 | |
| 1685 | offset = GPT_PMBR_LBA * cxt->sector_size; |
| 1686 | if (offset != lseek(cxt->dev_fd, offset, SEEK_SET)) |
| 1687 | goto fail; |
| 1688 | |
| 1689 | /* pMBR covers the first sector (LBA) of the disk */ |
| 1690 | if (write_all(cxt->dev_fd, pmbr, cxt->sector_size)) |
| 1691 | goto fail; |
| 1692 | return 0; |
| 1693 | fail: |
| 1694 | return -errno; |
| 1695 | } |
| 1696 | |
| 1697 | /* |
| 1698 | * Writes in-memory GPT and pMBR data to disk. |
| 1699 | * Returns 0 if successful write, otherwise, a corresponding error. |
| 1700 | * Any indication of error will abort the operation. |
| 1701 | */ |
| 1702 | static int gpt_write_disklabel(struct fdisk_context *cxt) |
| 1703 | { |
| 1704 | struct fdisk_gpt_label *gpt; |
| 1705 | int mbr_type; |
| 1706 | |
| 1707 | assert(cxt); |
| 1708 | assert(cxt->label); |
| 1709 | assert(fdisk_is_label(cxt, GPT)); |
| 1710 | |
| 1711 | gpt = self_label(cxt); |
| 1712 | mbr_type = valid_pmbr(cxt); |
| 1713 | |
| 1714 | /* check that disk is big enough to handle the backup header */ |
| 1715 | if (le64_to_cpu(gpt->pheader->alternative_lba) > cxt->total_sectors) |
| 1716 | goto err0; |
| 1717 | |
| 1718 | /* check that the backup header is properly placed */ |
| 1719 | if (le64_to_cpu(gpt->pheader->alternative_lba) < cxt->total_sectors - 1) |
| 1720 | /* TODO: correct this (with user authorization) and write */ |
| 1721 | goto err0; |
| 1722 | |
| 1723 | if (check_overlap_partitions(gpt->pheader, gpt->ents)) |
| 1724 | goto err0; |
| 1725 | |
| 1726 | /* recompute CRCs for both headers */ |
| 1727 | gpt_recompute_crc(gpt->pheader, gpt->ents); |
| 1728 | gpt_recompute_crc(gpt->bheader, gpt->ents); |
| 1729 | |
| 1730 | /* |
| 1731 | * UEFI requires writing in this specific order: |
| 1732 | * 1) backup partition tables |
| 1733 | * 2) backup GPT header |
| 1734 | * 3) primary partition tables |
| 1735 | * 4) primary GPT header |
| 1736 | * 5) protective MBR |
| 1737 | * |
| 1738 | * If any write fails, we abort the rest. |
| 1739 | */ |
| 1740 | if (gpt_write_partitions(cxt, gpt->bheader, gpt->ents) != 0) |
| 1741 | goto err1; |
| 1742 | if (gpt_write_header(cxt, gpt->bheader, |
| 1743 | le64_to_cpu(gpt->pheader->alternative_lba)) != 0) |
| 1744 | goto err1; |
| 1745 | if (gpt_write_partitions(cxt, gpt->pheader, gpt->ents) != 0) |
| 1746 | goto err1; |
| 1747 | if (gpt_write_header(cxt, gpt->pheader, GPT_PRIMARY_PARTITION_TABLE_LBA) != 0) |
| 1748 | goto err1; |
| 1749 | |
| 1750 | if (mbr_type == GPT_MBR_HYBRID) |
| 1751 | fdisk_warnx(cxt, _("The device contains hybrid MBR -- writing GPT only. " |
| 1752 | "You have to sync the MBR manually.")); |
| 1753 | else if (gpt_write_pmbr(cxt) != 0) |
| 1754 | goto err1; |
| 1755 | |
| 1756 | DBG(LABEL, ul_debug("GPT write success")); |
| 1757 | return 0; |
| 1758 | err0: |
| 1759 | DBG(LABEL, ul_debug("GPT write failed: incorrect input")); |
| 1760 | errno = EINVAL; |
| 1761 | return -EINVAL; |
| 1762 | err1: |
| 1763 | DBG(LABEL, ul_debug("GPT write failed: %m")); |
| 1764 | return -errno; |
| 1765 | } |
| 1766 | |
| 1767 | /* |
| 1768 | * Verify data integrity and report any found problems for: |
| 1769 | * - primary and backup header validations |
| 1770 | * - paritition validations |
| 1771 | */ |
| 1772 | static int gpt_verify_disklabel(struct fdisk_context *cxt) |
| 1773 | { |
| 1774 | int nerror = 0; |
| 1775 | unsigned int ptnum; |
| 1776 | struct fdisk_gpt_label *gpt; |
| 1777 | |
| 1778 | assert(cxt); |
| 1779 | assert(cxt->label); |
| 1780 | assert(fdisk_is_label(cxt, GPT)); |
| 1781 | |
| 1782 | gpt = self_label(cxt); |
| 1783 | |
| 1784 | if (!gpt || !gpt->bheader) { |
| 1785 | nerror++; |
| 1786 | fdisk_warnx(cxt, _("Disk does not contain a valid backup header.")); |
| 1787 | } |
| 1788 | |
| 1789 | if (!gpt_check_header_crc(gpt->pheader, gpt->ents)) { |
| 1790 | nerror++; |
| 1791 | fdisk_warnx(cxt, _("Invalid primary header CRC checksum.")); |
| 1792 | } |
| 1793 | if (gpt->bheader && !gpt_check_header_crc(gpt->bheader, gpt->ents)) { |
| 1794 | nerror++; |
| 1795 | fdisk_warnx(cxt, _("Invalid backup header CRC checksum.")); |
| 1796 | } |
| 1797 | |
| 1798 | if (!gpt_check_entryarr_crc(gpt->pheader, gpt->ents)) { |
| 1799 | nerror++; |
| 1800 | fdisk_warnx(cxt, _("Invalid partition entry checksum.")); |
| 1801 | } |
| 1802 | |
| 1803 | if (!gpt_check_lba_sanity(cxt, gpt->pheader)) { |
| 1804 | nerror++; |
| 1805 | fdisk_warnx(cxt, _("Invalid primary header LBA sanity checks.")); |
| 1806 | } |
| 1807 | if (gpt->bheader && !gpt_check_lba_sanity(cxt, gpt->bheader)) { |
| 1808 | nerror++; |
| 1809 | fdisk_warnx(cxt, _("Invalid backup header LBA sanity checks.")); |
| 1810 | } |
| 1811 | |
| 1812 | if (le64_to_cpu(gpt->pheader->my_lba) != GPT_PRIMARY_PARTITION_TABLE_LBA) { |
| 1813 | nerror++; |
| 1814 | fdisk_warnx(cxt, _("MyLBA mismatch with real position at primary header.")); |
| 1815 | } |
| 1816 | if (gpt->bheader && le64_to_cpu(gpt->bheader->my_lba) != last_lba(cxt)) { |
| 1817 | nerror++; |
| 1818 | fdisk_warnx(cxt, _("MyLBA mismatch with real position at backup header.")); |
| 1819 | |
| 1820 | } |
| 1821 | if (le64_to_cpu(gpt->pheader->alternative_lba) >= cxt->total_sectors) { |
| 1822 | nerror++; |
| 1823 | fdisk_warnx(cxt, _("Disk is too small to hold all data.")); |
| 1824 | } |
| 1825 | |
| 1826 | /* |
| 1827 | * if the GPT is the primary table, check the alternateLBA |
| 1828 | * to see if it is a valid GPT |
| 1829 | */ |
| 1830 | if (gpt->bheader && (le64_to_cpu(gpt->pheader->my_lba) != |
| 1831 | le64_to_cpu(gpt->bheader->alternative_lba))) { |
| 1832 | nerror++; |
| 1833 | fdisk_warnx(cxt, _("Primary and backup header mismatch.")); |
| 1834 | } |
| 1835 | |
| 1836 | ptnum = check_overlap_partitions(gpt->pheader, gpt->ents); |
| 1837 | if (ptnum) { |
| 1838 | nerror++; |
| 1839 | fdisk_warnx(cxt, _("Partition %u overlaps with partition %u."), |
| 1840 | ptnum, ptnum+1); |
| 1841 | } |
| 1842 | |
| 1843 | ptnum = check_too_big_partitions(gpt->pheader, gpt->ents, cxt->total_sectors); |
| 1844 | if (ptnum) { |
| 1845 | nerror++; |
| 1846 | fdisk_warnx(cxt, _("Partition %u is too big for the disk."), |
| 1847 | ptnum); |
| 1848 | } |
| 1849 | |
| 1850 | ptnum = check_start_after_end_paritions(gpt->pheader, gpt->ents); |
| 1851 | if (ptnum) { |
| 1852 | nerror++; |
| 1853 | fdisk_warnx(cxt, _("Partition %u ends before it starts."), |
| 1854 | ptnum); |
| 1855 | } |
| 1856 | |
| 1857 | if (!nerror) { /* yay :-) */ |
| 1858 | uint32_t nsegments = 0; |
| 1859 | uint64_t free_sectors = 0, largest_segment = 0; |
| 1860 | char *strsz = NULL; |
| 1861 | |
| 1862 | fdisk_info(cxt, _("No errors detected.")); |
| 1863 | fdisk_info(cxt, _("Header version: %s"), gpt_get_header_revstr(gpt->pheader)); |
| 1864 | fdisk_info(cxt, _("Using %u out of %d partitions."), |
| 1865 | partitions_in_use(gpt->pheader, gpt->ents), |
| 1866 | le32_to_cpu(gpt->pheader->npartition_entries)); |
| 1867 | |
| 1868 | free_sectors = get_free_sectors(cxt, gpt->pheader, gpt->ents, |
| 1869 | &nsegments, &largest_segment); |
| 1870 | if (largest_segment) |
| 1871 | strsz = size_to_human_string(SIZE_SUFFIX_SPACE | SIZE_SUFFIX_3LETTER, |
| 1872 | largest_segment * cxt->sector_size); |
| 1873 | |
| 1874 | fdisk_info(cxt, |
| 1875 | P_("A total of %ju free sectors is available in %u segment.", |
| 1876 | "A total of %ju free sectors is available in %u segments " |
| 1877 | "(the largest is %s).", nsegments), |
| 1878 | free_sectors, nsegments, strsz); |
| 1879 | free(strsz); |
| 1880 | |
| 1881 | } else |
| 1882 | fdisk_warnx(cxt, |
| 1883 | P_("%d error detected.", "%d errors detected.", nerror), |
| 1884 | nerror); |
| 1885 | |
| 1886 | return 0; |
| 1887 | } |
| 1888 | |
| 1889 | /* Delete a single GPT partition, specified by partnum. */ |
| 1890 | static int gpt_delete_partition(struct fdisk_context *cxt, |
| 1891 | size_t partnum) |
| 1892 | { |
| 1893 | struct fdisk_gpt_label *gpt; |
| 1894 | |
| 1895 | assert(cxt); |
| 1896 | assert(cxt->label); |
| 1897 | assert(fdisk_is_label(cxt, GPT)); |
| 1898 | |
| 1899 | gpt = self_label(cxt); |
| 1900 | |
| 1901 | if (partnum >= cxt->label->nparts_max |
| 1902 | || partition_unused(&gpt->ents[partnum])) |
| 1903 | return -EINVAL; |
| 1904 | |
| 1905 | /* hasta la vista, baby! */ |
| 1906 | memset(&gpt->ents[partnum], 0, sizeof(struct gpt_entry)); |
| 1907 | if (!partition_unused(&gpt->ents[partnum])) |
| 1908 | return -EINVAL; |
| 1909 | else { |
| 1910 | gpt_recompute_crc(gpt->pheader, gpt->ents); |
| 1911 | gpt_recompute_crc(gpt->bheader, gpt->ents); |
| 1912 | cxt->label->nparts_cur--; |
| 1913 | fdisk_label_set_changed(cxt->label, 1); |
| 1914 | } |
| 1915 | |
| 1916 | return 0; |
| 1917 | } |
| 1918 | |
| 1919 | |
| 1920 | /* Performs logical checks to add a new partition entry */ |
| 1921 | static int gpt_add_partition( |
| 1922 | struct fdisk_context *cxt, |
| 1923 | struct fdisk_partition *pa, |
| 1924 | size_t *partno) |
| 1925 | { |
| 1926 | uint64_t user_f, user_l; /* user input ranges for first and last sectors */ |
| 1927 | uint64_t disk_f, disk_l; /* first and last available sector ranges on device*/ |
| 1928 | uint64_t dflt_f, dflt_l; /* largest segment (default) */ |
| 1929 | struct gpt_guid typeid; |
| 1930 | struct fdisk_gpt_label *gpt; |
| 1931 | struct gpt_header *pheader; |
| 1932 | struct gpt_entry *e, *ents; |
| 1933 | struct fdisk_ask *ask = NULL; |
| 1934 | size_t partnum; |
| 1935 | int rc; |
| 1936 | |
| 1937 | assert(cxt); |
| 1938 | assert(cxt->label); |
| 1939 | assert(fdisk_is_label(cxt, GPT)); |
| 1940 | |
| 1941 | gpt = self_label(cxt); |
| 1942 | pheader = gpt->pheader; |
| 1943 | ents = gpt->ents; |
| 1944 | |
| 1945 | rc = fdisk_partition_next_partno(pa, cxt, &partnum); |
| 1946 | if (rc) { |
| 1947 | DBG(LABEL, ul_debug("GPT failed to get next partno")); |
| 1948 | return rc; |
| 1949 | } |
| 1950 | if (!partition_unused(&ents[partnum])) { |
| 1951 | fdisk_warnx(cxt, _("Partition %zu is already defined. " |
| 1952 | "Delete it before re-adding it."), partnum +1); |
| 1953 | return -ERANGE; |
| 1954 | } |
| 1955 | if (le32_to_cpu(pheader->npartition_entries) == |
| 1956 | partitions_in_use(pheader, ents)) { |
| 1957 | fdisk_warnx(cxt, _("All partitions are already in use.")); |
| 1958 | return -ENOSPC; |
| 1959 | } |
| 1960 | if (!get_free_sectors(cxt, pheader, ents, NULL, NULL)) { |
| 1961 | fdisk_warnx(cxt, _("No free sectors available.")); |
| 1962 | return -ENOSPC; |
| 1963 | } |
| 1964 | |
| 1965 | string_to_guid(pa && pa->type && pa->type->typestr ? |
| 1966 | pa->type->typestr: |
| 1967 | GPT_DEFAULT_ENTRY_TYPE, &typeid); |
| 1968 | |
| 1969 | disk_f = find_first_available(pheader, ents, pheader->first_usable_lba); |
| 1970 | |
| 1971 | /* if first sector no explicitly defined then ignore small gaps before |
| 1972 | * the first partition */ |
| 1973 | if ((!pa || !fdisk_partition_has_start(pa)) |
| 1974 | && !partition_unused(&ents[0]) |
| 1975 | && disk_f < gpt_partition_start(&ents[0])) { |
| 1976 | |
| 1977 | do { |
| 1978 | uint64_t x; |
| 1979 | DBG(LABEL, ul_debug("testing first sector %ju", disk_f)); |
| 1980 | disk_f = find_first_available(pheader, ents, disk_f); |
| 1981 | if (!disk_f) |
| 1982 | break; |
| 1983 | x = find_last_free(pheader, ents, disk_f); |
| 1984 | if (x - disk_f >= cxt->grain / cxt->sector_size) |
| 1985 | break; |
| 1986 | DBG(LABEL, ul_debug("first sector %ju addresses to small space, continue...", disk_f)); |
| 1987 | disk_f = x + 1; |
| 1988 | } while(1); |
| 1989 | |
| 1990 | if (disk_f == 0) |
| 1991 | disk_f = find_first_available(pheader, ents, pheader->first_usable_lba); |
| 1992 | } |
| 1993 | |
| 1994 | disk_l = find_last_free_sector(pheader, ents); |
| 1995 | |
| 1996 | /* the default is the largest free space */ |
| 1997 | dflt_f = find_first_in_largest(pheader, ents); |
| 1998 | dflt_l = find_last_free(pheader, ents, dflt_f); |
| 1999 | |
| 2000 | /* align the default in range <dflt_f,dflt_l>*/ |
| 2001 | dflt_f = fdisk_align_lba_in_range(cxt, dflt_f, dflt_f, dflt_l); |
| 2002 | |
| 2003 | /* first sector */ |
| 2004 | if (pa && pa->start_follow_default) { |
| 2005 | user_f = dflt_f; |
| 2006 | |
| 2007 | } else if (pa && fdisk_partition_has_start(pa)) { |
| 2008 | DBG(LABEL, ul_debug("first sector defined: %ju", pa->start)); |
| 2009 | if (pa->start != find_first_available(pheader, ents, pa->start)) { |
| 2010 | fdisk_warnx(cxt, _("Sector %ju already used."), pa->start); |
| 2011 | return -ERANGE; |
| 2012 | } |
| 2013 | user_f = pa->start; |
| 2014 | } else { |
| 2015 | /* ask by dialog */ |
| 2016 | for (;;) { |
| 2017 | if (!ask) |
| 2018 | ask = fdisk_new_ask(); |
| 2019 | else |
| 2020 | fdisk_reset_ask(ask); |
| 2021 | |
| 2022 | /* First sector */ |
| 2023 | fdisk_ask_set_query(ask, _("First sector")); |
| 2024 | fdisk_ask_set_type(ask, FDISK_ASKTYPE_NUMBER); |
| 2025 | fdisk_ask_number_set_low(ask, disk_f); /* minimal */ |
| 2026 | fdisk_ask_number_set_default(ask, dflt_f); /* default */ |
| 2027 | fdisk_ask_number_set_high(ask, disk_l); /* maximal */ |
| 2028 | |
| 2029 | rc = fdisk_do_ask(cxt, ask); |
| 2030 | if (rc) |
| 2031 | goto done; |
| 2032 | |
| 2033 | user_f = fdisk_ask_number_get_result(ask); |
| 2034 | if (user_f != find_first_available(pheader, ents, user_f)) { |
| 2035 | fdisk_warnx(cxt, _("Sector %ju already used."), user_f); |
| 2036 | continue; |
| 2037 | } |
| 2038 | break; |
| 2039 | } |
| 2040 | } |
| 2041 | |
| 2042 | |
| 2043 | /* Last sector */ |
| 2044 | dflt_l = find_last_free(pheader, ents, user_f); |
| 2045 | |
| 2046 | if (pa && pa->end_follow_default) { |
| 2047 | user_l = dflt_l; |
| 2048 | |
| 2049 | } else if (pa && fdisk_partition_has_size(pa)) { |
| 2050 | user_l = user_f + pa->size - 1; |
| 2051 | DBG(LABEL, ul_debug("size defined: %ju, end: %ju (last possible: %ju)", |
| 2052 | pa->size, user_l, dflt_l)); |
| 2053 | if (user_l != dflt_l && !pa->size_explicit) |
| 2054 | user_l = fdisk_align_lba_in_range(cxt, user_l, user_f, dflt_l) - 1; |
| 2055 | |
| 2056 | } else { |
| 2057 | for (;;) { |
| 2058 | if (!ask) |
| 2059 | ask = fdisk_new_ask(); |
| 2060 | else |
| 2061 | fdisk_reset_ask(ask); |
| 2062 | |
| 2063 | fdisk_ask_set_query(ask, _("Last sector, +sectors or +size{K,M,G,T,P}")); |
| 2064 | fdisk_ask_set_type(ask, FDISK_ASKTYPE_OFFSET); |
| 2065 | fdisk_ask_number_set_low(ask, user_f); /* minimal */ |
| 2066 | fdisk_ask_number_set_default(ask, dflt_l); /* default */ |
| 2067 | fdisk_ask_number_set_high(ask, dflt_l); /* maximal */ |
| 2068 | fdisk_ask_number_set_base(ask, user_f); /* base for relative input */ |
| 2069 | fdisk_ask_number_set_unit(ask, cxt->sector_size); |
| 2070 | |
| 2071 | rc = fdisk_do_ask(cxt, ask); |
| 2072 | if (rc) |
| 2073 | goto done; |
| 2074 | |
| 2075 | user_l = fdisk_ask_number_get_result(ask); |
| 2076 | if (fdisk_ask_number_is_relative(ask)) { |
| 2077 | user_l = fdisk_align_lba_in_range(cxt, user_l, user_f, dflt_l) - 1; |
| 2078 | |
| 2079 | /* no space for anything useful, use all space |
| 2080 | if (user_l + (cxt->grain / cxt->sector_size) > dflt_l) |
| 2081 | user_l = dflt_l; |
| 2082 | */ |
| 2083 | } |
| 2084 | |
| 2085 | if (user_l > user_f && user_l <= disk_l) |
| 2086 | break; |
| 2087 | } |
| 2088 | } |
| 2089 | |
| 2090 | |
| 2091 | if (user_f > user_l || partnum >= cxt->label->nparts_max) { |
| 2092 | fdisk_warnx(cxt, _("Could not create partition %zu"), partnum + 1); |
| 2093 | rc = -EINVAL; |
| 2094 | goto done; |
| 2095 | } |
| 2096 | |
| 2097 | assert(!FDISK_IS_UNDEF(user_l)); |
| 2098 | assert(!FDISK_IS_UNDEF(user_f)); |
| 2099 | |
| 2100 | e = &ents[partnum]; |
| 2101 | e->lba_end = cpu_to_le64(user_l); |
| 2102 | e->lba_start = cpu_to_le64(user_f); |
| 2103 | |
| 2104 | gpt_entry_set_type(e, &typeid); |
| 2105 | |
| 2106 | if (pa && pa->uuid) { |
| 2107 | /* Sometimes it's necessary to create a copy of the PT and |
| 2108 | * reuse already defined UUID |
| 2109 | */ |
| 2110 | rc = gpt_entry_set_uuid(e, pa->uuid); |
| 2111 | if (rc) |
| 2112 | goto done; |
| 2113 | } else { |
| 2114 | /* Any time a new partition entry is created a new GUID must be |
| 2115 | * generated for that partition, and every partition is guaranteed |
| 2116 | * to have a unique GUID. |
| 2117 | */ |
| 2118 | uuid_generate_random((unsigned char *) &e->partition_guid); |
| 2119 | swap_efi_guid(&e->partition_guid); |
| 2120 | } |
| 2121 | |
| 2122 | if (pa && pa->name && *pa->name) |
| 2123 | gpt_entry_set_name(e, pa->name); |
| 2124 | if (pa && pa->attrs) |
| 2125 | gpt_entry_attrs_from_string(cxt, e, pa->attrs); |
| 2126 | |
| 2127 | DBG(LABEL, ul_debug("GPT new partition: partno=%zu, start=%ju, end=%ju, size=%ju", |
| 2128 | partnum, |
| 2129 | gpt_partition_start(e), |
| 2130 | gpt_partition_end(e), |
| 2131 | gpt_partition_size(e))); |
| 2132 | |
| 2133 | gpt_recompute_crc(gpt->pheader, ents); |
| 2134 | gpt_recompute_crc(gpt->bheader, ents); |
| 2135 | |
| 2136 | /* report result */ |
| 2137 | { |
| 2138 | struct fdisk_parttype *t; |
| 2139 | |
| 2140 | cxt->label->nparts_cur++; |
| 2141 | fdisk_label_set_changed(cxt->label, 1); |
| 2142 | |
| 2143 | t = gpt_partition_parttype(cxt, &ents[partnum]); |
| 2144 | fdisk_info_new_partition(cxt, partnum + 1, user_f, user_l, t); |
| 2145 | fdisk_unref_parttype(t); |
| 2146 | } |
| 2147 | |
| 2148 | rc = 0; |
| 2149 | if (partno) |
| 2150 | *partno = partnum; |
| 2151 | done: |
| 2152 | fdisk_unref_ask(ask); |
| 2153 | return rc; |
| 2154 | } |
| 2155 | |
| 2156 | /* |
| 2157 | * Create a new GPT disklabel - destroys any previous data. |
| 2158 | */ |
| 2159 | static int gpt_create_disklabel(struct fdisk_context *cxt) |
| 2160 | { |
| 2161 | int rc = 0; |
| 2162 | ssize_t esz = 0; |
| 2163 | char str[37]; |
| 2164 | struct fdisk_gpt_label *gpt; |
| 2165 | |
| 2166 | assert(cxt); |
| 2167 | assert(cxt->label); |
| 2168 | assert(fdisk_is_label(cxt, GPT)); |
| 2169 | |
| 2170 | gpt = self_label(cxt); |
| 2171 | |
| 2172 | /* label private stuff has to be empty, see gpt_deinit() */ |
| 2173 | assert(gpt->pheader == NULL); |
| 2174 | assert(gpt->bheader == NULL); |
| 2175 | |
| 2176 | /* |
| 2177 | * When no header, entries or pmbr is set, we're probably |
| 2178 | * dealing with a new, empty disk - so always allocate memory |
| 2179 | * to deal with the data structures whatever the case is. |
| 2180 | */ |
| 2181 | rc = gpt_mknew_pmbr(cxt); |
| 2182 | if (rc < 0) |
| 2183 | goto done; |
| 2184 | |
| 2185 | /* primary */ |
| 2186 | gpt->pheader = calloc(1, sizeof(*gpt->pheader)); |
| 2187 | if (!gpt->pheader) { |
| 2188 | rc = -ENOMEM; |
| 2189 | goto done; |
| 2190 | } |
| 2191 | rc = gpt_mknew_header(cxt, gpt->pheader, GPT_PRIMARY_PARTITION_TABLE_LBA); |
| 2192 | if (rc < 0) |
| 2193 | goto done; |
| 2194 | |
| 2195 | /* backup ("copy" primary) */ |
| 2196 | gpt->bheader = calloc(1, sizeof(*gpt->bheader)); |
| 2197 | if (!gpt->bheader) { |
| 2198 | rc = -ENOMEM; |
| 2199 | goto done; |
| 2200 | } |
| 2201 | rc = gpt_mknew_header_from_bkp(cxt, gpt->bheader, |
| 2202 | last_lba(cxt), gpt->pheader); |
| 2203 | if (rc < 0) |
| 2204 | goto done; |
| 2205 | |
| 2206 | esz = le32_to_cpu(gpt->pheader->npartition_entries) * |
| 2207 | le32_to_cpu(gpt->pheader->sizeof_partition_entry); |
| 2208 | gpt->ents = calloc(1, esz); |
| 2209 | if (!gpt->ents) { |
| 2210 | rc = -ENOMEM; |
| 2211 | goto done; |
| 2212 | } |
| 2213 | gpt_recompute_crc(gpt->pheader, gpt->ents); |
| 2214 | gpt_recompute_crc(gpt->bheader, gpt->ents); |
| 2215 | |
| 2216 | cxt->label->nparts_max = le32_to_cpu(gpt->pheader->npartition_entries); |
| 2217 | cxt->label->nparts_cur = 0; |
| 2218 | |
| 2219 | guid_to_string(&gpt->pheader->disk_guid, str); |
| 2220 | fdisk_label_set_changed(cxt->label, 1); |
| 2221 | fdisk_info(cxt, _("Created a new GPT disklabel (GUID: %s)."), str); |
| 2222 | done: |
| 2223 | return rc; |
| 2224 | } |
| 2225 | |
| 2226 | static int gpt_get_disklabel_id(struct fdisk_context *cxt, char **id) |
| 2227 | { |
| 2228 | struct fdisk_gpt_label *gpt; |
| 2229 | char str[37]; |
| 2230 | |
| 2231 | assert(cxt); |
| 2232 | assert(id); |
| 2233 | assert(cxt->label); |
| 2234 | assert(fdisk_is_label(cxt, GPT)); |
| 2235 | |
| 2236 | gpt = self_label(cxt); |
| 2237 | guid_to_string(&gpt->pheader->disk_guid, str); |
| 2238 | |
| 2239 | *id = strdup(str); |
| 2240 | if (!*id) |
| 2241 | return -ENOMEM; |
| 2242 | return 0; |
| 2243 | } |
| 2244 | |
| 2245 | static int gpt_set_disklabel_id(struct fdisk_context *cxt) |
| 2246 | { |
| 2247 | struct fdisk_gpt_label *gpt; |
| 2248 | struct gpt_guid uuid; |
| 2249 | char *str, *old, *new; |
| 2250 | int rc; |
| 2251 | |
| 2252 | assert(cxt); |
| 2253 | assert(cxt->label); |
| 2254 | assert(fdisk_is_label(cxt, GPT)); |
| 2255 | |
| 2256 | gpt = self_label(cxt); |
| 2257 | if (fdisk_ask_string(cxt, |
| 2258 | _("Enter new disk UUID (in 8-4-4-4-12 format)"), &str)) |
| 2259 | return -EINVAL; |
| 2260 | |
| 2261 | rc = string_to_guid(str, &uuid); |
| 2262 | free(str); |
| 2263 | |
| 2264 | if (rc) { |
| 2265 | fdisk_warnx(cxt, _("Failed to parse your UUID.")); |
| 2266 | return rc; |
| 2267 | } |
| 2268 | |
| 2269 | gpt_get_disklabel_id(cxt, &old); |
| 2270 | |
| 2271 | gpt->pheader->disk_guid = uuid; |
| 2272 | gpt->bheader->disk_guid = uuid; |
| 2273 | |
| 2274 | gpt_recompute_crc(gpt->pheader, gpt->ents); |
| 2275 | gpt_recompute_crc(gpt->bheader, gpt->ents); |
| 2276 | |
| 2277 | gpt_get_disklabel_id(cxt, &new); |
| 2278 | |
| 2279 | fdisk_info(cxt, _("Disk identifier changed from %s to %s."), old, new); |
| 2280 | |
| 2281 | free(old); |
| 2282 | free(new); |
| 2283 | fdisk_label_set_changed(cxt->label, 1); |
| 2284 | return 0; |
| 2285 | } |
| 2286 | |
| 2287 | static int gpt_part_is_used(struct fdisk_context *cxt, size_t i) |
| 2288 | { |
| 2289 | struct fdisk_gpt_label *gpt; |
| 2290 | struct gpt_entry *e; |
| 2291 | |
| 2292 | assert(cxt); |
| 2293 | assert(cxt->label); |
| 2294 | assert(fdisk_is_label(cxt, GPT)); |
| 2295 | |
| 2296 | gpt = self_label(cxt); |
| 2297 | |
| 2298 | if ((uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries)) |
| 2299 | return 0; |
| 2300 | e = &gpt->ents[i]; |
| 2301 | |
| 2302 | return !partition_unused(e) || gpt_partition_start(e); |
| 2303 | } |
| 2304 | |
| 2305 | /** |
| 2306 | * fdisk_gpt_is_hybrid: |
| 2307 | * @cxt: context |
| 2308 | * |
| 2309 | * The regular GPT contains PMBR (dummy protective MBR) where the protective |
| 2310 | * MBR does not address any partitions. |
| 2311 | * |
| 2312 | * Hybrid GPT contains regular MBR where this partition table addresses the |
| 2313 | * same partitions as GPT. It's recommended to not use hybrid GPT due to MBR |
| 2314 | * limits. |
| 2315 | * |
| 2316 | * The libfdisk does not provide functionality to sync GPT and MBR, you have to |
| 2317 | * directly access and modify (P)MBR (see fdisk_new_nested_context()). |
| 2318 | * |
| 2319 | * Returns: 1 if partition table detected as hybrid otherwise return 0 |
| 2320 | */ |
| 2321 | int fdisk_gpt_is_hybrid(struct fdisk_context *cxt) |
| 2322 | { |
| 2323 | assert(cxt); |
| 2324 | return valid_pmbr(cxt) == GPT_MBR_HYBRID; |
| 2325 | } |
| 2326 | |
| 2327 | static int gpt_toggle_partition_flag( |
| 2328 | struct fdisk_context *cxt, |
| 2329 | size_t i, |
| 2330 | unsigned long flag) |
| 2331 | { |
| 2332 | struct fdisk_gpt_label *gpt; |
| 2333 | uint64_t attrs, tmp; |
| 2334 | char *bits; |
| 2335 | const char *name = NULL; |
| 2336 | int bit = -1, rc; |
| 2337 | |
| 2338 | assert(cxt); |
| 2339 | assert(cxt->label); |
| 2340 | assert(fdisk_is_label(cxt, GPT)); |
| 2341 | |
| 2342 | DBG(LABEL, ul_debug("GPT entry attribute change requested partno=%zu", i)); |
| 2343 | gpt = self_label(cxt); |
| 2344 | |
| 2345 | if ((uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries)) |
| 2346 | return -EINVAL; |
| 2347 | |
| 2348 | attrs = le64_to_cpu(gpt->ents[i].attrs); |
| 2349 | bits = (char *) &attrs; |
| 2350 | |
| 2351 | switch (flag) { |
| 2352 | case GPT_FLAG_REQUIRED: |
| 2353 | bit = GPT_ATTRBIT_REQ; |
| 2354 | name = GPT_ATTRSTR_REQ; |
| 2355 | break; |
| 2356 | case GPT_FLAG_NOBLOCK: |
| 2357 | bit = GPT_ATTRBIT_NOBLOCK; |
| 2358 | name = GPT_ATTRSTR_NOBLOCK; |
| 2359 | break; |
| 2360 | case GPT_FLAG_LEGACYBOOT: |
| 2361 | bit = GPT_ATTRBIT_LEGACY; |
| 2362 | name = GPT_ATTRSTR_LEGACY; |
| 2363 | break; |
| 2364 | case GPT_FLAG_GUIDSPECIFIC: |
| 2365 | rc = fdisk_ask_number(cxt, 48, 48, 63, _("Enter GUID specific bit"), &tmp); |
| 2366 | if (rc) |
| 2367 | return rc; |
| 2368 | bit = tmp; |
| 2369 | break; |
| 2370 | default: |
| 2371 | /* already specified PT_FLAG_GUIDSPECIFIC bit */ |
| 2372 | if (flag >= 48 && flag <= 63) { |
| 2373 | bit = flag; |
| 2374 | flag = GPT_FLAG_GUIDSPECIFIC; |
| 2375 | } |
| 2376 | break; |
| 2377 | } |
| 2378 | |
| 2379 | if (bit < 0) { |
| 2380 | fdisk_warnx(cxt, _("failed to toggle unsupported bit %lu"), flag); |
| 2381 | return -EINVAL; |
| 2382 | } |
| 2383 | |
| 2384 | if (!isset(bits, bit)) |
| 2385 | setbit(bits, bit); |
| 2386 | else |
| 2387 | clrbit(bits, bit); |
| 2388 | |
| 2389 | gpt->ents[i].attrs = cpu_to_le64(attrs); |
| 2390 | |
| 2391 | if (flag == GPT_FLAG_GUIDSPECIFIC) |
| 2392 | fdisk_info(cxt, isset(bits, bit) ? |
| 2393 | _("The GUID specific bit %d on partition %zu is enabled now.") : |
| 2394 | _("The GUID specific bit %d on partition %zu is disabled now."), |
| 2395 | bit, i + 1); |
| 2396 | else |
| 2397 | fdisk_info(cxt, isset(bits, bit) ? |
| 2398 | _("The %s flag on partition %zu is enabled now.") : |
| 2399 | _("The %s flag on partition %zu is disabled now."), |
| 2400 | name, i + 1); |
| 2401 | |
| 2402 | gpt_recompute_crc(gpt->pheader, gpt->ents); |
| 2403 | gpt_recompute_crc(gpt->bheader, gpt->ents); |
| 2404 | fdisk_label_set_changed(cxt->label, 1); |
| 2405 | return 0; |
| 2406 | } |
| 2407 | |
| 2408 | static int gpt_entry_cmp_start(const void *a, const void *b) |
| 2409 | { |
| 2410 | struct gpt_entry *ae = (struct gpt_entry *) a, |
| 2411 | *be = (struct gpt_entry *) b; |
| 2412 | int au = partition_unused(ae), |
| 2413 | bu = partition_unused(be); |
| 2414 | |
| 2415 | if (au && bu) |
| 2416 | return 0; |
| 2417 | if (au) |
| 2418 | return 1; |
| 2419 | if (bu) |
| 2420 | return -1; |
| 2421 | |
| 2422 | return cmp_numbers(gpt_partition_start(ae), gpt_partition_start(be)); |
| 2423 | } |
| 2424 | |
| 2425 | /* sort partition by start sector */ |
| 2426 | static int gpt_reorder(struct fdisk_context *cxt) |
| 2427 | { |
| 2428 | struct fdisk_gpt_label *gpt; |
| 2429 | size_t nparts; |
| 2430 | |
| 2431 | assert(cxt); |
| 2432 | assert(cxt->label); |
| 2433 | assert(fdisk_is_label(cxt, GPT)); |
| 2434 | |
| 2435 | gpt = self_label(cxt); |
| 2436 | nparts = le32_to_cpu(gpt->pheader->npartition_entries); |
| 2437 | |
| 2438 | qsort(gpt->ents, nparts, sizeof(struct gpt_entry), |
| 2439 | gpt_entry_cmp_start); |
| 2440 | |
| 2441 | gpt_recompute_crc(gpt->pheader, gpt->ents); |
| 2442 | gpt_recompute_crc(gpt->bheader, gpt->ents); |
| 2443 | fdisk_label_set_changed(cxt->label, 1); |
| 2444 | |
| 2445 | fdisk_info(cxt, _("Done.")); |
| 2446 | return 0; |
| 2447 | } |
| 2448 | |
| 2449 | static int gpt_reset_alignment(struct fdisk_context *cxt) |
| 2450 | { |
| 2451 | struct fdisk_gpt_label *gpt; |
| 2452 | struct gpt_header *h; |
| 2453 | |
| 2454 | assert(cxt); |
| 2455 | assert(cxt->label); |
| 2456 | assert(fdisk_is_label(cxt, GPT)); |
| 2457 | |
| 2458 | gpt = self_label(cxt); |
| 2459 | h = gpt ? gpt->pheader : NULL; |
| 2460 | |
| 2461 | if (h) { |
| 2462 | /* always follow existing table */ |
| 2463 | cxt->first_lba = h->first_usable_lba; |
| 2464 | cxt->last_lba = h->last_usable_lba; |
| 2465 | } else { |
| 2466 | /* estimate ranges for GPT */ |
| 2467 | uint64_t first, last; |
| 2468 | |
| 2469 | count_first_last_lba(cxt, &first, &last); |
| 2470 | |
| 2471 | if (cxt->first_lba < first) |
| 2472 | cxt->first_lba = first; |
| 2473 | if (cxt->last_lba > last) |
| 2474 | cxt->last_lba = last; |
| 2475 | } |
| 2476 | |
| 2477 | return 0; |
| 2478 | } |
| 2479 | /* |
| 2480 | * Deinitialize fdisk-specific variables |
| 2481 | */ |
| 2482 | static void gpt_deinit(struct fdisk_label *lb) |
| 2483 | { |
| 2484 | struct fdisk_gpt_label *gpt = (struct fdisk_gpt_label *) lb; |
| 2485 | |
| 2486 | if (!gpt) |
| 2487 | return; |
| 2488 | |
| 2489 | free(gpt->ents); |
| 2490 | free(gpt->pheader); |
| 2491 | free(gpt->bheader); |
| 2492 | |
| 2493 | gpt->ents = NULL; |
| 2494 | gpt->pheader = NULL; |
| 2495 | gpt->bheader = NULL; |
| 2496 | } |
| 2497 | |
| 2498 | static const struct fdisk_label_operations gpt_operations = |
| 2499 | { |
| 2500 | .probe = gpt_probe_label, |
| 2501 | .write = gpt_write_disklabel, |
| 2502 | .verify = gpt_verify_disklabel, |
| 2503 | .create = gpt_create_disklabel, |
| 2504 | .list = gpt_list_disklabel, |
| 2505 | .locate = gpt_locate_disklabel, |
| 2506 | .reorder = gpt_reorder, |
| 2507 | .get_id = gpt_get_disklabel_id, |
| 2508 | .set_id = gpt_set_disklabel_id, |
| 2509 | |
| 2510 | .get_part = gpt_get_partition, |
| 2511 | .set_part = gpt_set_partition, |
| 2512 | .add_part = gpt_add_partition, |
| 2513 | .del_part = gpt_delete_partition, |
| 2514 | |
| 2515 | .part_is_used = gpt_part_is_used, |
| 2516 | .part_toggle_flag = gpt_toggle_partition_flag, |
| 2517 | |
| 2518 | .deinit = gpt_deinit, |
| 2519 | |
| 2520 | .reset_alignment = gpt_reset_alignment |
| 2521 | }; |
| 2522 | |
| 2523 | static const struct fdisk_field gpt_fields[] = |
| 2524 | { |
| 2525 | /* basic */ |
| 2526 | { FDISK_FIELD_DEVICE, N_("Device"), 10, 0 }, |
| 2527 | { FDISK_FIELD_START, N_("Start"), 5, FDISK_FIELDFL_NUMBER }, |
| 2528 | { FDISK_FIELD_END, N_("End"), 5, FDISK_FIELDFL_NUMBER }, |
| 2529 | { FDISK_FIELD_SECTORS, N_("Sectors"), 5, FDISK_FIELDFL_NUMBER }, |
| 2530 | { FDISK_FIELD_SIZE, N_("Size"), 5, FDISK_FIELDFL_NUMBER | FDISK_FIELDFL_EYECANDY }, |
| 2531 | { FDISK_FIELD_TYPE, N_("Type"), 0.1, FDISK_FIELDFL_EYECANDY }, |
| 2532 | /* expert */ |
| 2533 | { FDISK_FIELD_TYPEID, N_("Type-UUID"), 36, FDISK_FIELDFL_DETAIL }, |
| 2534 | { FDISK_FIELD_UUID, N_("UUID"), 36, FDISK_FIELDFL_DETAIL }, |
| 2535 | { FDISK_FIELD_NAME, N_("Name"), 0.2, FDISK_FIELDFL_DETAIL }, |
| 2536 | { FDISK_FIELD_ATTR, N_("Attrs"), 0, FDISK_FIELDFL_DETAIL } |
| 2537 | }; |
| 2538 | |
| 2539 | /* |
| 2540 | * allocates GPT in-memory stuff |
| 2541 | */ |
| 2542 | struct fdisk_label *fdisk_new_gpt_label(struct fdisk_context *cxt) |
| 2543 | { |
| 2544 | struct fdisk_label *lb; |
| 2545 | struct fdisk_gpt_label *gpt; |
| 2546 | |
| 2547 | assert(cxt); |
| 2548 | |
| 2549 | gpt = calloc(1, sizeof(*gpt)); |
| 2550 | if (!gpt) |
| 2551 | return NULL; |
| 2552 | |
| 2553 | /* initialize generic part of the driver */ |
| 2554 | lb = (struct fdisk_label *) gpt; |
| 2555 | lb->name = "gpt"; |
| 2556 | lb->id = FDISK_DISKLABEL_GPT; |
| 2557 | lb->op = &gpt_operations; |
| 2558 | lb->parttypes = gpt_parttypes; |
| 2559 | lb->nparttypes = ARRAY_SIZE(gpt_parttypes); |
| 2560 | |
| 2561 | lb->fields = gpt_fields; |
| 2562 | lb->nfields = ARRAY_SIZE(gpt_fields); |
| 2563 | |
| 2564 | return lb; |
| 2565 | } |