Update blkid to 2.25.0
Break libblkid into 4 libraries: libblkid, libuuid, libutil-linux and libfdisk.

This should help in later patch updates.

Change-Id: I680d9a7feb031e5c29a603e9c58aff4b65826262
diff --git a/libblkid/libfdisk/src/gpt.c b/libblkid/libfdisk/src/gpt.c
new file mode 100644
index 0000000..8c1c96c
--- /dev/null
+++ b/libblkid/libfdisk/src/gpt.c
@@ -0,0 +1,2565 @@
+/*
+ * Copyright (C) 2007 Karel Zak <kzak@redhat.com>
+ * Copyright (C) 2012 Davidlohr Bueso <dave@gnu.org>
+ *
+ * GUID Partition Table (GPT) support. Based on UEFI Specs 2.3.1
+ * Chapter 5: GUID Partition Table (GPT) Disk Layout (Jun 27th, 2012).
+ * Some ideas and inspiration from GNU parted and gptfdisk.
+ */
+#include <stdio.h>
+#include <string.h>
+#include <stdlib.h>
+#include <inttypes.h>
+#include <sys/stat.h>
+#include <sys/utsname.h>
+#include <sys/types.h>
+#include <fcntl.h>
+#include <unistd.h>
+#include <errno.h>
+#include <ctype.h>
+#include <uuid.h>
+
+#include "fdiskP.h"
+
+#include "nls.h"
+#include "crc32.h"
+#include "blkdev.h"
+#include "bitops.h"
+#include "strutils.h"
+#include "all-io.h"
+
+/**
+ * SECTION: gpt
+ * @title: UEFI GPT
+ * @short_description: specific functionality
+ */
+
+#define GPT_HEADER_SIGNATURE 0x5452415020494645LL /* EFI PART */
+#define GPT_HEADER_REVISION_V1_02 0x00010200
+#define GPT_HEADER_REVISION_V1_00 0x00010000
+#define GPT_HEADER_REVISION_V0_99 0x00009900
+#define GPT_HEADER_MINSZ          92 /* bytes */
+
+#define GPT_PMBR_LBA        0
+#define GPT_MBR_PROTECTIVE  1
+#define GPT_MBR_HYBRID      2
+
+#define GPT_PRIMARY_PARTITION_TABLE_LBA 0x00000001
+
+#define EFI_PMBR_OSTYPE     0xEE
+#define MSDOS_MBR_SIGNATURE 0xAA55
+#define GPT_PART_NAME_LEN   (72 / sizeof(uint16_t))
+#define GPT_NPARTITIONS     128
+
+/* Globally unique identifier */
+struct gpt_guid {
+	uint32_t   time_low;
+	uint16_t   time_mid;
+	uint16_t   time_hi_and_version;
+	uint8_t    clock_seq_hi;
+	uint8_t    clock_seq_low;
+	uint8_t    node[6];
+};
+
+
+/* only checking that the GUID is 0 is enough to verify an empty partition. */
+#define GPT_UNUSED_ENTRY_GUID						\
+	((struct gpt_guid) { 0x00000000, 0x0000, 0x0000, 0x00, 0x00,	\
+			     { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }})
+
+/* Linux native partition type */
+#define GPT_DEFAULT_ENTRY_TYPE "0FC63DAF-8483-4772-8E79-3D69D8477DE4"
+
+/*
+ * Attribute bits
+ */
+enum {
+	/* UEFI specific */
+	GPT_ATTRBIT_REQ      = 0,
+	GPT_ATTRBIT_NOBLOCK  = 1,
+	GPT_ATTRBIT_LEGACY   = 2,
+
+	/* GUID specific (range 48..64)*/
+	GPT_ATTRBIT_GUID_FIRST	= 48,
+	GPT_ATTRBIT_GUID_COUNT	= 16
+};
+
+#define GPT_ATTRSTR_REQ		"RequiredPartiton"
+#define GPT_ATTRSTR_NOBLOCK	"NoBlockIOProtocol"
+#define GPT_ATTRSTR_LEGACY	"LegacyBIOSBootable"
+
+/* The GPT Partition entry array contains an array of GPT entries. */
+struct gpt_entry {
+	struct gpt_guid     type; /* purpose and type of the partition */
+	struct gpt_guid     partition_guid;
+	uint64_t            lba_start;
+	uint64_t            lba_end;
+	uint64_t            attrs;
+	uint16_t            name[GPT_PART_NAME_LEN];
+}  __attribute__ ((packed));
+
+/* GPT header */
+struct gpt_header {
+	uint64_t            signature; /* header identification */
+	uint32_t            revision; /* header version */
+	uint32_t            size; /* in bytes */
+	uint32_t            crc32; /* header CRC checksum */
+	uint32_t            reserved1; /* must be 0 */
+	uint64_t            my_lba; /* LBA of block that contains this struct (LBA 1) */
+	uint64_t            alternative_lba; /* backup GPT header */
+	uint64_t            first_usable_lba; /* first usable logical block for partitions */
+	uint64_t            last_usable_lba; /* last usable logical block for partitions */
+	struct gpt_guid     disk_guid; /* unique disk identifier */
+	uint64_t            partition_entry_lba; /* LBA of start of partition entries array */
+	uint32_t            npartition_entries; /* total partition entries - normally 128 */
+	uint32_t            sizeof_partition_entry; /* bytes for each GUID pt */
+	uint32_t            partition_entry_array_crc32; /* partition CRC checksum */
+	uint8_t             reserved2[512 - 92]; /* must all be 0 */
+} __attribute__ ((packed));
+
+struct gpt_record {
+	uint8_t             boot_indicator; /* unused by EFI, set to 0x80 for bootable */
+	uint8_t             start_head; /* unused by EFI, pt start in CHS */
+	uint8_t             start_sector; /* unused by EFI, pt start in CHS */
+	uint8_t             start_track;
+	uint8_t             os_type; /* EFI and legacy non-EFI OS types */
+	uint8_t             end_head; /* unused by EFI, pt end in CHS */
+	uint8_t             end_sector; /* unused by EFI, pt end in CHS */
+	uint8_t             end_track; /* unused by EFI, pt end in CHS */
+	uint32_t            starting_lba; /* used by EFI - start addr of the on disk pt */
+	uint32_t            size_in_lba; /* used by EFI - size of pt in LBA */
+} __attribute__ ((packed));
+
+/* Protected MBR and legacy MBR share same structure */
+struct gpt_legacy_mbr {
+	uint8_t             boot_code[440];
+	uint32_t            unique_mbr_signature;
+	uint16_t            unknown;
+	struct gpt_record   partition_record[4];
+	uint16_t            signature;
+} __attribute__ ((packed));
+
+/*
+ * Here be dragons!
+ * See: http://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_type_GUIDs
+ */
+#define DEF_GUID(_u, _n) \
+	{ \
+		.typestr = (_u), \
+		.name = (_n),    \
+	}
+
+static struct fdisk_parttype gpt_parttypes[] =
+{
+	/* Generic OS */
+	DEF_GUID("C12A7328-F81F-11D2-BA4B-00A0C93EC93B", N_("EFI System")),
+
+	DEF_GUID("024DEE41-33E7-11D3-9D69-0008C781F39F", N_("MBR partition scheme")),
+	DEF_GUID("D3BFE2DE-3DAF-11DF-BA40-E3A556D89593", N_("Intel Fast Flash")),
+
+	/* Hah!IdontneedEFI */
+	DEF_GUID("21686148-6449-6E6F-744E-656564454649", N_("BIOS boot")),
+
+	/* Windows */
+	DEF_GUID("E3C9E316-0B5C-4DB8-817D-F92DF00215AE", N_("Microsoft reserved")),
+	DEF_GUID("EBD0A0A2-B9E5-4433-87C0-68B6B72699C7", N_("Microsoft basic data")),
+	DEF_GUID("5808C8AA-7E8F-42E0-85D2-E1E90434CFB3", N_("Microsoft LDM metadata")),
+	DEF_GUID("AF9B60A0-1431-4F62-BC68-3311714A69AD", N_("Microsoft LDM data")),
+	DEF_GUID("DE94BBA4-06D1-4D40-A16A-BFD50179D6AC", N_("Windows recovery environment")),
+	DEF_GUID("37AFFC90-EF7D-4E96-91C3-2D7AE055B174", N_("IBM General Parallel Fs")),
+	DEF_GUID("E75CAF8F-F680-4CEE-AFA3-B001E56EFC2D", N_("Microsoft Storage Spaces")),
+
+	/* HP-UX */
+	DEF_GUID("75894C1E-3AEB-11D3-B7C1-7B03A0000000", N_("HP-UX data")),
+	DEF_GUID("E2A1E728-32E3-11D6-A682-7B03A0000000", N_("HP-UX service")),
+
+	/* Linux (http://www.freedesktop.org/wiki/Specifications/DiscoverablePartitionsSpec) */
+	DEF_GUID("0657FD6D-A4AB-43C4-84E5-0933C84B4F4F", N_("Linux swap")),
+	DEF_GUID("0FC63DAF-8483-4772-8E79-3D69D8477DE4", N_("Linux filesystem")),
+	DEF_GUID("3B8F8425-20E0-4F3B-907F-1A25A76F98E8", N_("Linux server data")),
+	DEF_GUID("44479540-F297-41B2-9AF7-D131D5F0458A", N_("Linux root (x86)")),
+	DEF_GUID("4F68BCE3-E8CD-4DB1-96E7-FBCAF984B709", N_("Linux root (x86-64)")),
+	DEF_GUID("8DA63339-0007-60C0-C436-083AC8230908", N_("Linux reserved")),
+	DEF_GUID("933AC7E1-2EB4-4F13-B844-0E14E2AEF915", N_("Linux home")),
+	DEF_GUID("A19D880F-05FC-4D3B-A006-743F0F84911E", N_("Linux RAID")),
+	DEF_GUID("BC13C2FF-59E6-4262-A352-B275FD6F7172", N_("Linux extended boot")),
+	DEF_GUID("E6D6D379-F507-44C2-A23C-238F2A3DF928", N_("Linux LVM")),
+
+	/* FreeBSD */
+	DEF_GUID("516E7CB4-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD data")),
+	DEF_GUID("83BD6B9D-7F41-11DC-BE0B-001560B84F0F", N_("FreeBSD boot")),
+	DEF_GUID("516E7CB5-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD swap")),
+	DEF_GUID("516E7CB6-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD UFS")),
+	DEF_GUID("516E7CBA-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD ZFS")),
+	DEF_GUID("516E7CB8-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD Vinum")),
+
+	/* Apple OSX */
+	DEF_GUID("48465300-0000-11AA-AA11-00306543ECAC", N_("Apple HFS/HFS+")),
+	DEF_GUID("55465300-0000-11AA-AA11-00306543ECAC", N_("Apple UFS")),
+	DEF_GUID("52414944-0000-11AA-AA11-00306543ECAC", N_("Apple RAID")),
+	DEF_GUID("52414944-5F4F-11AA-AA11-00306543ECAC", N_("Apple RAID offline")),
+	DEF_GUID("426F6F74-0000-11AA-AA11-00306543ECAC", N_("Apple boot")),
+	DEF_GUID("4C616265-6C00-11AA-AA11-00306543ECAC", N_("Apple label")),
+	DEF_GUID("5265636F-7665-11AA-AA11-00306543ECAC", N_("Apple TV recovery")),
+	DEF_GUID("53746F72-6167-11AA-AA11-00306543ECAC", N_("Apple Core storage")),
+
+	/* Solaris */
+	DEF_GUID("6A82CB45-1DD2-11B2-99A6-080020736631", N_("Solaris boot")),
+	DEF_GUID("6A85CF4D-1DD2-11B2-99A6-080020736631", N_("Solaris root")),
+	/* same as Apple ZFS */
+	DEF_GUID("6A898CC3-1DD2-11B2-99A6-080020736631", N_("Solaris /usr & Apple ZFS")),
+	DEF_GUID("6A87C46F-1DD2-11B2-99A6-080020736631", N_("Solaris swap")),
+	DEF_GUID("6A8B642B-1DD2-11B2-99A6-080020736631", N_("Solaris backup")),
+	DEF_GUID("6A8EF2E9-1DD2-11B2-99A6-080020736631", N_("Solaris /var")),
+	DEF_GUID("6A90BA39-1DD2-11B2-99A6-080020736631", N_("Solaris /home")),
+	DEF_GUID("6A9283A5-1DD2-11B2-99A6-080020736631", N_("Solaris alternate sector")),
+	DEF_GUID("6A945A3B-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 1")),
+	DEF_GUID("6A9630D1-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 2")),
+	DEF_GUID("6A980767-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 3")),
+	DEF_GUID("6A96237F-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 4")),
+	DEF_GUID("6A8D2AC7-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 5")),
+
+	/* NetBSD */
+	DEF_GUID("49F48D32-B10E-11DC-B99B-0019D1879648", N_("NetBSD swap")),
+	DEF_GUID("49F48D5A-B10E-11DC-B99B-0019D1879648", N_("NetBSD FFS")),
+	DEF_GUID("49F48D82-B10E-11DC-B99B-0019D1879648", N_("NetBSD LFS")),
+	DEF_GUID("2DB519C4-B10E-11DC-B99B-0019D1879648", N_("NetBSD concatenated")),
+	DEF_GUID("2DB519EC-B10E-11DC-B99B-0019D1879648", N_("NetBSD encrypted")),
+	DEF_GUID("49F48DAA-B10E-11DC-B99B-0019D1879648", N_("NetBSD RAID")),
+
+	/* ChromeOS */
+	DEF_GUID("FE3A2A5D-4F32-41A7-B725-ACCC3285A309", N_("ChromeOS kernel")),
+	DEF_GUID("3CB8E202-3B7E-47DD-8A3C-7FF2A13CFCEC", N_("ChromeOS root fs")),
+	DEF_GUID("2E0A753D-9E48-43B0-8337-B15192CB1B5E", N_("ChromeOS reserved")),
+
+	/* MidnightBSD */
+	DEF_GUID("85D5E45A-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD data")),
+	DEF_GUID("85D5E45E-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD boot")),
+	DEF_GUID("85D5E45B-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD swap")),
+	DEF_GUID("0394Ef8B-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD UFS")),
+	DEF_GUID("85D5E45D-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD ZFS")),
+	DEF_GUID("85D5E45C-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD Vinum")),
+};
+
+/* gpt_entry macros */
+#define gpt_partition_start(_e)		le64_to_cpu((_e)->lba_start)
+#define gpt_partition_end(_e)		le64_to_cpu((_e)->lba_end)
+
+/*
+ * in-memory fdisk GPT stuff
+ */
+struct fdisk_gpt_label {
+	struct fdisk_label	head;		/* generic part */
+
+	/* gpt specific part */
+	struct gpt_header	*pheader;	/* primary header */
+	struct gpt_header	*bheader;	/* backup header */
+	struct gpt_entry	*ents;		/* entries (partitions) */
+};
+
+static void gpt_deinit(struct fdisk_label *lb);
+
+static inline struct fdisk_gpt_label *self_label(struct fdisk_context *cxt)
+{
+	return (struct fdisk_gpt_label *) cxt->label;
+}
+
+/*
+ * Returns the partition length, or 0 if end is before beginning.
+ */
+static uint64_t gpt_partition_size(const struct gpt_entry *e)
+{
+	uint64_t start = gpt_partition_start(e);
+	uint64_t end = gpt_partition_end(e);
+
+	return start > end ? 0 : end - start + 1ULL;
+}
+
+/* prints UUID in the real byte order! */
+static void gpt_debug_uuid(const char *mesg, struct gpt_guid *guid)
+{
+	const unsigned char *uuid = (unsigned char *) guid;
+
+	fprintf(stderr, "%s: "
+		"%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x\n",
+		mesg,
+		uuid[0], uuid[1], uuid[2], uuid[3],
+		uuid[4], uuid[5],
+		uuid[6], uuid[7],
+		uuid[8], uuid[9],
+		uuid[10], uuid[11], uuid[12], uuid[13], uuid[14],uuid[15]);
+}
+
+/*
+ * UUID is traditionally 16 byte big-endian array, except Intel EFI
+ * specification where the UUID is a structure of little-endian fields.
+ */
+static void swap_efi_guid(struct gpt_guid *uid)
+{
+	uid->time_low = swab32(uid->time_low);
+	uid->time_mid = swab16(uid->time_mid);
+	uid->time_hi_and_version = swab16(uid->time_hi_and_version);
+}
+
+static int string_to_guid(const char *in, struct gpt_guid *guid)
+{
+	if (uuid_parse(in, (unsigned char *) guid))	/* BE */
+		return -1;
+	swap_efi_guid(guid);				/* LE */
+	return 0;
+}
+
+static char *guid_to_string(const struct gpt_guid *guid, char *out)
+{
+	struct gpt_guid u = *guid;	/* LE */
+
+	swap_efi_guid(&u);		/* BE */
+	uuid_unparse_upper((unsigned char *) &u, out);
+
+	return out;
+}
+
+static struct fdisk_parttype *gpt_partition_parttype(
+		struct fdisk_context *cxt,
+		const struct gpt_entry *e)
+{
+	struct fdisk_parttype *t;
+	char str[37];
+
+	guid_to_string(&e->type, str);
+	t = fdisk_label_get_parttype_from_string(cxt->label, str);
+	return t ? : fdisk_new_unknown_parttype(0, str);
+}
+
+static void gpt_entry_set_type(struct gpt_entry *e, struct gpt_guid *uuid)
+{
+	e->type = *uuid;
+	DBG(LABEL, gpt_debug_uuid("new type", &(e->type)));
+}
+
+static void gpt_entry_set_name(struct gpt_entry *e, char *str)
+{
+	char name[GPT_PART_NAME_LEN] = { 0 };
+	size_t i, sz = strlen(str);
+
+	if (sz) {
+		if (sz > GPT_PART_NAME_LEN)
+			sz = GPT_PART_NAME_LEN;
+		memcpy(name, str, sz);
+	}
+
+	for (i = 0; i < GPT_PART_NAME_LEN; i++)
+		e->name[i] = cpu_to_le16((uint16_t) name[i]);
+}
+
+static int gpt_entry_set_uuid(struct gpt_entry *e, char *str)
+{
+	struct gpt_guid uuid;
+	int rc;
+
+	rc = string_to_guid(str, &uuid);
+	if (rc)
+		return rc;
+
+	e->partition_guid = uuid;
+	return 0;
+}
+
+
+static const char *gpt_get_header_revstr(struct gpt_header *header)
+{
+	if (!header)
+		goto unknown;
+
+	switch (header->revision) {
+	case GPT_HEADER_REVISION_V1_02:
+		return "1.2";
+	case GPT_HEADER_REVISION_V1_00:
+		return "1.0";
+	case GPT_HEADER_REVISION_V0_99:
+		return "0.99";
+	default:
+		goto unknown;
+	}
+
+unknown:
+	return "unknown";
+}
+
+static inline int partition_unused(const struct gpt_entry *e)
+{
+	return !memcmp(&e->type, &GPT_UNUSED_ENTRY_GUID,
+			sizeof(struct gpt_guid));
+}
+
+/*
+ * Builds a clean new valid protective MBR - will wipe out any existing data.
+ * Returns 0 on success, otherwise < 0 on error.
+ */
+static int gpt_mknew_pmbr(struct fdisk_context *cxt)
+{
+	struct gpt_legacy_mbr *pmbr = NULL;
+	int rc;
+
+	if (!cxt || !cxt->firstsector)
+		return -ENOSYS;
+
+	rc = fdisk_init_firstsector_buffer(cxt);
+	if (rc)
+		return rc;
+
+	pmbr = (struct gpt_legacy_mbr *) cxt->firstsector;
+
+	pmbr->signature = cpu_to_le16(MSDOS_MBR_SIGNATURE);
+	pmbr->partition_record[0].os_type      = EFI_PMBR_OSTYPE;
+	pmbr->partition_record[0].start_sector = 1;
+	pmbr->partition_record[0].end_head     = 0xFE;
+	pmbr->partition_record[0].end_sector   = 0xFF;
+	pmbr->partition_record[0].end_track    = 0xFF;
+	pmbr->partition_record[0].starting_lba = cpu_to_le32(1);
+	pmbr->partition_record[0].size_in_lba  =
+		cpu_to_le32(min((uint32_t) cxt->total_sectors - 1, 0xFFFFFFFF));
+
+	return 0;
+}
+
+/* some universal differences between the headers */
+static void gpt_mknew_header_common(struct fdisk_context *cxt,
+				    struct gpt_header *header, uint64_t lba)
+{
+	if (!cxt || !header)
+		return;
+
+	header->my_lba = cpu_to_le64(lba);
+
+	if (lba == GPT_PRIMARY_PARTITION_TABLE_LBA) { /* primary */
+		header->alternative_lba = cpu_to_le64(cxt->total_sectors - 1);
+		header->partition_entry_lba = cpu_to_le64(2);
+	} else { /* backup */
+		uint64_t esz = le32_to_cpu(header->npartition_entries) * sizeof(struct gpt_entry);
+		uint64_t esects = (esz + cxt->sector_size - 1) / cxt->sector_size;
+
+		header->alternative_lba = cpu_to_le64(GPT_PRIMARY_PARTITION_TABLE_LBA);
+		header->partition_entry_lba = cpu_to_le64(cxt->total_sectors - 1 - esects);
+	}
+}
+
+/*
+ * Builds a new GPT header (at sector lba) from a backup header2.
+ * If building a primary header, then backup is the secondary, and vice versa.
+ *
+ * Always pass a new (zeroized) header to build upon as we don't
+ * explicitly zero-set some values such as CRCs and reserved.
+ *
+ * Returns 0 on success, otherwise < 0 on error.
+ */
+static int gpt_mknew_header_from_bkp(struct fdisk_context *cxt,
+				     struct gpt_header *header,
+				     uint64_t lba,
+				     struct gpt_header *header2)
+{
+	if (!cxt || !header || !header2)
+		return -ENOSYS;
+
+	header->signature              = header2->signature;
+	header->revision               = header2->revision;
+	header->size                   = header2->size;
+	header->npartition_entries     = header2->npartition_entries;
+	header->sizeof_partition_entry = header2->sizeof_partition_entry;
+	header->first_usable_lba       = header2->first_usable_lba;
+	header->last_usable_lba        = header2->last_usable_lba;
+
+	memcpy(&header->disk_guid,
+	       &header2->disk_guid, sizeof(header2->disk_guid));
+	gpt_mknew_header_common(cxt, header, lba);
+
+	return 0;
+}
+
+static struct gpt_header *gpt_copy_header(struct fdisk_context *cxt,
+			   struct gpt_header *src)
+{
+	struct gpt_header *res;
+
+	if (!cxt || !src)
+		return NULL;
+
+	res = calloc(1, sizeof(*res));
+	if (!res) {
+		fdisk_warn(cxt, _("failed to allocate GPT header"));
+		return NULL;
+	}
+
+	res->my_lba                 = src->alternative_lba;
+	res->alternative_lba        = src->my_lba;
+
+	res->signature              = src->signature;
+	res->revision               = src->revision;
+	res->size                   = src->size;
+	res->npartition_entries     = src->npartition_entries;
+	res->sizeof_partition_entry = src->sizeof_partition_entry;
+	res->first_usable_lba       = src->first_usable_lba;
+	res->last_usable_lba        = src->last_usable_lba;
+
+	memcpy(&res->disk_guid, &src->disk_guid, sizeof(src->disk_guid));
+
+
+	if (res->my_lba == GPT_PRIMARY_PARTITION_TABLE_LBA)
+		res->partition_entry_lba = cpu_to_le64(2);
+	else {
+		uint64_t esz = le32_to_cpu(src->npartition_entries) * sizeof(struct gpt_entry);
+		uint64_t esects = (esz + cxt->sector_size - 1) / cxt->sector_size;
+
+		res->partition_entry_lba = cpu_to_le64(cxt->total_sectors - 1 - esects);
+	}
+
+	return res;
+}
+
+static void count_first_last_lba(struct fdisk_context *cxt,
+				 uint64_t *first, uint64_t *last)
+{
+	uint64_t esz = 0;
+
+	assert(cxt);
+
+	esz = sizeof(struct gpt_entry) * GPT_NPARTITIONS / cxt->sector_size;
+	*last = cxt->total_sectors - 2 - esz;
+	*first = esz + 2;
+
+	if (*first < cxt->first_lba && cxt->first_lba < *last)
+		/* Align according to topology */
+		*first = cxt->first_lba;
+}
+
+/*
+ * Builds a clean new GPT header (currently under revision 1.0).
+ *
+ * Always pass a new (zeroized) header to build upon as we don't
+ * explicitly zero-set some values such as CRCs and reserved.
+ *
+ * Returns 0 on success, otherwise < 0 on error.
+ */
+static int gpt_mknew_header(struct fdisk_context *cxt,
+			    struct gpt_header *header, uint64_t lba)
+{
+	uint64_t first, last;
+	int has_id = 0;
+
+	if (!cxt || !header)
+		return -ENOSYS;
+
+	header->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
+	header->revision  = cpu_to_le32(GPT_HEADER_REVISION_V1_00);
+	header->size      = cpu_to_le32(sizeof(struct gpt_header));
+
+	/*
+	 * 128 partitions are the default. It can go beyond that, but
+	 * we're creating a de facto header here, so no funny business.
+	 */
+	header->npartition_entries     = cpu_to_le32(GPT_NPARTITIONS);
+	header->sizeof_partition_entry = cpu_to_le32(sizeof(struct gpt_entry));
+
+	count_first_last_lba(cxt, &first, &last);
+	header->first_usable_lba = cpu_to_le64(first);
+	header->last_usable_lba  = cpu_to_le64(last);
+
+	gpt_mknew_header_common(cxt, header, lba);
+
+	if (cxt->script) {
+		const char *id = fdisk_script_get_header(cxt->script, "label-id");
+		if (id && string_to_guid(id, &header->disk_guid) == 0)
+			has_id = 1;
+	}
+
+	if (!has_id) {
+		uuid_generate_random((unsigned char *) &header->disk_guid);
+		swap_efi_guid(&header->disk_guid);
+	}
+	return 0;
+}
+
+/*
+ * Checks if there is a valid protective MBR partition table.
+ * Returns 0 if it is invalid or failure. Otherwise, return
+ * GPT_MBR_PROTECTIVE or GPT_MBR_HYBRID, depeding on the detection.
+ */
+static int valid_pmbr(struct fdisk_context *cxt)
+{
+	int i, part = 0, ret = 0; /* invalid by default */
+	struct gpt_legacy_mbr *pmbr = NULL;
+	uint32_t sz_lba = 0;
+
+	if (!cxt->firstsector)
+		goto done;
+
+	pmbr = (struct gpt_legacy_mbr *) cxt->firstsector;
+
+	if (le16_to_cpu(pmbr->signature) != MSDOS_MBR_SIGNATURE)
+		goto done;
+
+	/* LBA of the GPT partition header */
+	if (pmbr->partition_record[0].starting_lba !=
+	    cpu_to_le32(GPT_PRIMARY_PARTITION_TABLE_LBA))
+		goto done;
+
+	/* seems like a valid MBR was found, check DOS primary partitions */
+	for (i = 0; i < 4; i++) {
+		if (pmbr->partition_record[i].os_type == EFI_PMBR_OSTYPE) {
+			/*
+			 * Ok, we at least know that there's a protective MBR,
+			 * now check if there are other partition types for
+			 * hybrid MBR.
+			 */
+			part = i;
+			ret = GPT_MBR_PROTECTIVE;
+			goto check_hybrid;
+		}
+	}
+
+	if (ret != GPT_MBR_PROTECTIVE)
+		goto done;
+check_hybrid:
+	for (i = 0 ; i < 4; i++) {
+		if ((pmbr->partition_record[i].os_type != EFI_PMBR_OSTYPE) &&
+		    (pmbr->partition_record[i].os_type != 0x00))
+			ret = GPT_MBR_HYBRID;
+	}
+
+	/*
+	 * Protective MBRs take up the lesser of the whole disk
+	 * or 2 TiB (32bit LBA), ignoring the rest of the disk.
+	 * Some partitioning programs, nonetheless, choose to set
+	 * the size to the maximum 32-bit limitation, disregarding
+	 * the disk size.
+	 *
+	 * Hybrid MBRs do not necessarily comply with this.
+	 *
+	 * Consider a bad value here to be a warning to support dd-ing
+	 * an image from a smaller disk to a bigger disk.
+	 */
+	if (ret == GPT_MBR_PROTECTIVE) {
+		sz_lba = le32_to_cpu(pmbr->partition_record[part].size_in_lba);
+		if (sz_lba != (uint32_t) cxt->total_sectors - 1 && sz_lba != 0xFFFFFFFF) {
+			fdisk_warnx(cxt, _("GPT PMBR size mismatch (%u != %u) "
+					   "will be corrected by w(rite)."),
+					sz_lba,
+					(uint32_t) cxt->total_sectors - 1);
+			fdisk_label_set_changed(cxt->label, 1);
+		}
+	}
+done:
+	return ret;
+}
+
+static uint64_t last_lba(struct fdisk_context *cxt)
+{
+	struct stat s;
+	uint64_t sectors = 0;
+
+	memset(&s, 0, sizeof(s));
+	if (fstat(cxt->dev_fd, &s) == -1) {
+		fdisk_warn(cxt, _("gpt: stat() failed"));
+		return 0;
+	}
+
+	if (S_ISBLK(s.st_mode))
+		sectors = cxt->total_sectors - 1;
+	else if (S_ISREG(s.st_mode))
+		sectors = ((uint64_t) s.st_size /
+			   (uint64_t) cxt->sector_size) - 1ULL;
+	else
+		fdisk_warnx(cxt, _("gpt: cannot handle files with mode %o"), s.st_mode);
+
+	DBG(LABEL, ul_debug("GPT last LBA: %ju", sectors));
+	return sectors;
+}
+
+static ssize_t read_lba(struct fdisk_context *cxt, uint64_t lba,
+			void *buffer, const size_t bytes)
+{
+	off_t offset = lba * cxt->sector_size;
+
+	if (lseek(cxt->dev_fd, offset, SEEK_SET) == (off_t) -1)
+		return -1;
+	return read(cxt->dev_fd, buffer, bytes) != bytes;
+}
+
+
+/* Returns the GPT entry array */
+static struct gpt_entry *gpt_read_entries(struct fdisk_context *cxt,
+					 struct gpt_header *header)
+{
+	ssize_t sz;
+	struct gpt_entry *ret = NULL;
+	off_t offset;
+
+	assert(cxt);
+	assert(header);
+
+	sz = le32_to_cpu(header->npartition_entries) *
+	     le32_to_cpu(header->sizeof_partition_entry);
+
+	ret = calloc(1, sz);
+	if (!ret)
+		return NULL;
+	offset = le64_to_cpu(header->partition_entry_lba) *
+		       cxt->sector_size;
+
+	if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
+		goto fail;
+	if (sz != read(cxt->dev_fd, ret, sz))
+		goto fail;
+
+	return ret;
+
+fail:
+	free(ret);
+	return NULL;
+}
+
+static inline uint32_t count_crc32(const unsigned char *buf, size_t len)
+{
+	return (crc32(~0L, buf, len) ^ ~0L);
+}
+
+/*
+ * Recompute header and partition array 32bit CRC checksums.
+ * This function does not fail - if there's corruption, then it
+ * will be reported when checksuming it again (ie: probing or verify).
+ */
+static void gpt_recompute_crc(struct gpt_header *header, struct gpt_entry *ents)
+{
+	uint32_t crc = 0;
+	size_t entry_sz = 0;
+
+	if (!header)
+		return;
+
+	/* header CRC */
+	header->crc32 = 0;
+	crc = count_crc32((unsigned char *) header, le32_to_cpu(header->size));
+	header->crc32 = cpu_to_le32(crc);
+
+	/* partition entry array CRC */
+	header->partition_entry_array_crc32 = 0;
+	entry_sz = le32_to_cpu(header->npartition_entries) *
+		le32_to_cpu(header->sizeof_partition_entry);
+
+	crc = count_crc32((unsigned char *) ents, entry_sz);
+	header->partition_entry_array_crc32 = cpu_to_le32(crc);
+}
+
+/*
+ * Compute the 32bit CRC checksum of the partition table header.
+ * Returns 1 if it is valid, otherwise 0.
+ */
+static int gpt_check_header_crc(struct gpt_header *header, struct gpt_entry *ents)
+{
+	uint32_t crc, orgcrc = le32_to_cpu(header->crc32);
+
+	header->crc32 = 0;
+	crc = count_crc32((unsigned char *) header, le32_to_cpu(header->size));
+	header->crc32 = cpu_to_le32(orgcrc);
+
+	if (crc == le32_to_cpu(header->crc32))
+		return 1;
+
+	/*
+	 * If we have checksum mismatch it may be due to stale data,
+	 * like a partition being added or deleted. Recompute the CRC again
+	 * and make sure this is not the case.
+	 */
+	if (ents) {
+		gpt_recompute_crc(header, ents);
+		orgcrc = le32_to_cpu(header->crc32);
+		header->crc32 = 0;
+		crc = count_crc32((unsigned char *) header, le32_to_cpu(header->size));
+		header->crc32 = cpu_to_le32(orgcrc);
+
+		return crc == le32_to_cpu(header->crc32);
+	}
+
+	return 0;
+}
+
+/*
+ * It initializes the partition entry array.
+ * Returns 1 if the checksum is valid, otherwise 0.
+ */
+static int gpt_check_entryarr_crc(struct gpt_header *header,
+				  struct gpt_entry *ents)
+{
+	int ret = 0;
+	ssize_t entry_sz;
+	uint32_t crc;
+
+	if (!header || !ents)
+		goto done;
+
+	entry_sz = le32_to_cpu(header->npartition_entries) *
+		   le32_to_cpu(header->sizeof_partition_entry);
+
+	if (!entry_sz)
+		goto done;
+
+	crc = count_crc32((unsigned char *) ents, entry_sz);
+	ret = (crc == le32_to_cpu(header->partition_entry_array_crc32));
+done:
+	return ret;
+}
+
+static int gpt_check_lba_sanity(struct fdisk_context *cxt, struct gpt_header *header)
+{
+	int ret = 0;
+	uint64_t lu, fu, lastlba = last_lba(cxt);
+
+	fu = le64_to_cpu(header->first_usable_lba);
+	lu = le64_to_cpu(header->last_usable_lba);
+
+	/* check if first and last usable LBA make sense */
+	if (lu < fu) {
+		DBG(LABEL, ul_debug("error: header last LBA is before first LBA"));
+		goto done;
+	}
+
+	/* check if first and last usable LBAs with the disk's last LBA */
+	if (fu > lastlba || lu > lastlba) {
+		DBG(LABEL, ul_debug("error: header LBAs are after the disk's last LBA"));
+		goto done;
+	}
+
+	/* the header has to be outside usable range */
+	if (fu < GPT_PRIMARY_PARTITION_TABLE_LBA &&
+	    GPT_PRIMARY_PARTITION_TABLE_LBA < lu) {
+		DBG(LABEL, ul_debug("error: header outside of usable range"));
+		goto done;
+	}
+
+	ret = 1; /* sane */
+done:
+	return ret;
+}
+
+/* Check if there is a valid header signature */
+static int gpt_check_signature(struct gpt_header *header)
+{
+	return header->signature == cpu_to_le64(GPT_HEADER_SIGNATURE);
+}
+
+/*
+ * Return the specified GPT Header, or NULL upon failure/invalid.
+ * Note that all tests must pass to ensure a valid header,
+ * we do not rely on only testing the signature for a valid probe.
+ */
+static struct gpt_header *gpt_read_header(struct fdisk_context *cxt,
+					  uint64_t lba,
+					  struct gpt_entry **_ents)
+{
+	struct gpt_header *header = NULL;
+	struct gpt_entry *ents = NULL;
+	uint32_t hsz;
+
+	if (!cxt)
+		return NULL;
+
+	header = calloc(1, sizeof(*header));
+	if (!header)
+		return NULL;
+
+	/* read and verify header */
+	if (read_lba(cxt, lba, header, sizeof(struct gpt_header)) != 0)
+		goto invalid;
+
+	if (!gpt_check_signature(header))
+		goto invalid;
+
+	if (!gpt_check_header_crc(header, NULL))
+		goto invalid;
+
+	/* read and verify entries */
+	ents = gpt_read_entries(cxt, header);
+	if (!ents)
+		goto invalid;
+
+	if (!gpt_check_entryarr_crc(header, ents))
+		goto invalid;
+
+	if (!gpt_check_lba_sanity(cxt, header))
+		goto invalid;
+
+	/* valid header must be at MyLBA */
+	if (le64_to_cpu(header->my_lba) != lba)
+		goto invalid;
+
+	/* make sure header size is between 92 and sector size bytes */
+	hsz = le32_to_cpu(header->size);
+	if (hsz < GPT_HEADER_MINSZ || hsz > cxt->sector_size)
+		goto invalid;
+
+	if (_ents)
+		*_ents = ents;
+	else
+		free(ents);
+
+	DBG(LABEL, ul_debug("found valid GPT Header on LBA %ju", lba));
+	return header;
+invalid:
+	free(header);
+	free(ents);
+
+	DBG(LABEL, ul_debug("read GPT Header on LBA %ju failed", lba));
+	return NULL;
+}
+
+
+static int gpt_locate_disklabel(struct fdisk_context *cxt, int n,
+		const char **name, off_t *offset, size_t *size)
+{
+	struct fdisk_gpt_label *gpt;
+
+	assert(cxt);
+
+	*name = NULL;
+	*offset = 0;
+	*size = 0;
+
+	switch (n) {
+	case 0:
+		*name = "PMBR";
+		*offset = 0;
+		*size = 512;
+		break;
+	case 1:
+		*name = _("GPT Header");
+		*offset = GPT_PRIMARY_PARTITION_TABLE_LBA * cxt->sector_size;
+		*size = sizeof(struct gpt_header);
+		break;
+	case 2:
+		*name = _("GPT Entries");
+		gpt = self_label(cxt);
+		*offset = le64_to_cpu(gpt->pheader->partition_entry_lba) * cxt->sector_size;
+		*size = le32_to_cpu(gpt->pheader->npartition_entries) *
+			 le32_to_cpu(gpt->pheader->sizeof_partition_entry);
+		break;
+	default:
+		return 1;			/* no more chunks */
+	}
+
+	return 0;
+}
+
+
+
+/*
+ * Returns the number of partitions that are in use.
+ */
+static unsigned partitions_in_use(struct gpt_header *header,
+				  struct gpt_entry *ents)
+{
+	uint32_t i, used = 0;
+
+	if (!header || ! ents)
+		return 0;
+
+	for (i = 0; i < le32_to_cpu(header->npartition_entries); i++)
+		if (!partition_unused(&ents[i]))
+			used++;
+	return used;
+}
+
+
+/*
+ * Check if a partition is too big for the disk (sectors).
+ * Returns the faulting partition number, otherwise 0.
+ */
+static uint32_t check_too_big_partitions(struct gpt_header *header,
+				   struct gpt_entry *ents, uint64_t sectors)
+{
+	uint32_t i;
+
+	for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
+		if (partition_unused(&ents[i]))
+			continue;
+		if (gpt_partition_end(&ents[i]) >= sectors)
+			return i + 1;
+	}
+
+	return 0;
+}
+
+/*
+ * Check if a partition ends before it begins
+ * Returns the faulting partition number, otherwise 0.
+ */
+static uint32_t check_start_after_end_paritions(struct gpt_header *header,
+						struct gpt_entry *ents)
+{
+	uint32_t i;
+
+	for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
+		if (partition_unused(&ents[i]))
+			continue;
+		if (gpt_partition_start(&ents[i]) > gpt_partition_end(&ents[i]))
+			return i + 1;
+	}
+
+	return 0;
+}
+
+/*
+ * Check if partition e1 overlaps with partition e2.
+ */
+static inline int partition_overlap(struct gpt_entry *e1, struct gpt_entry *e2)
+{
+	uint64_t start1 = gpt_partition_start(e1);
+	uint64_t end1   = gpt_partition_end(e1);
+	uint64_t start2 = gpt_partition_start(e2);
+	uint64_t end2   = gpt_partition_end(e2);
+
+	return (start1 && start2 && (start1 <= end2) != (end1 < start2));
+}
+
+/*
+ * Find any partitions that overlap.
+ */
+static uint32_t check_overlap_partitions(struct gpt_header *header,
+					 struct gpt_entry *ents)
+{
+	uint32_t i, j;
+
+	for (i = 0; i < le32_to_cpu(header->npartition_entries); i++)
+		for (j = 0; j < i; j++) {
+			if (partition_unused(&ents[i]) ||
+			    partition_unused(&ents[j]))
+				continue;
+			if (partition_overlap(&ents[i], &ents[j])) {
+				DBG(LABEL, ul_debug("GPT partitions overlap detected [%u vs. %u]", i, j));
+				return i + 1;
+			}
+		}
+
+	return 0;
+}
+
+/*
+ * Find the first available block after the starting point; returns 0 if
+ * there are no available blocks left, or error. From gdisk.
+ */
+static uint64_t find_first_available(struct gpt_header *header,
+				     struct gpt_entry *ents, uint64_t start)
+{
+	uint64_t first;
+	uint32_t i, first_moved = 0;
+
+	uint64_t fu, lu;
+
+	if (!header || !ents)
+		return 0;
+
+	fu = le64_to_cpu(header->first_usable_lba);
+	lu = le64_to_cpu(header->last_usable_lba);
+
+	/*
+	 * Begin from the specified starting point or from the first usable
+	 * LBA, whichever is greater...
+	 */
+	first = start < fu ? fu : start;
+
+	/*
+	 * Now search through all partitions; if first is within an
+	 * existing partition, move it to the next sector after that
+	 * partition and repeat. If first was moved, set firstMoved
+	 * flag; repeat until firstMoved is not set, so as to catch
+	 * cases where partitions are out of sequential order....
+	 */
+	do {
+		first_moved = 0;
+		for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
+			if (partition_unused(&ents[i]))
+				continue;
+			if (first < gpt_partition_start(&ents[i]))
+				continue;
+			if (first <= gpt_partition_end(&ents[i])) {
+				first = gpt_partition_end(&ents[i]) + 1;
+				first_moved = 1;
+			}
+		}
+	} while (first_moved == 1);
+
+	if (first > lu)
+		first = 0;
+
+	return first;
+}
+
+
+/* Returns last available sector in the free space pointed to by start. From gdisk. */
+static uint64_t find_last_free(struct gpt_header *header,
+			       struct gpt_entry *ents, uint64_t start)
+{
+	uint32_t i;
+	uint64_t nearest_start;
+
+	if (!header || !ents)
+		return 0;
+
+	nearest_start = le64_to_cpu(header->last_usable_lba);
+
+	for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
+		uint64_t ps = gpt_partition_start(&ents[i]);
+
+		if (nearest_start > ps && ps > start)
+			nearest_start = ps - 1;
+	}
+
+	return nearest_start;
+}
+
+/* Returns the last free sector on the disk. From gdisk. */
+static uint64_t find_last_free_sector(struct gpt_header *header,
+				      struct gpt_entry *ents)
+{
+	uint32_t i, last_moved;
+	uint64_t last = 0;
+
+	if (!header || !ents)
+		goto done;
+
+	/* start by assuming the last usable LBA is available */
+	last = le64_to_cpu(header->last_usable_lba);
+	do {
+		last_moved = 0;
+		for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
+			if ((last >= gpt_partition_start(&ents[i])) &&
+			    (last <= gpt_partition_end(&ents[i]))) {
+				last = gpt_partition_start(&ents[i]) - 1;
+				last_moved = 1;
+			}
+		}
+	} while (last_moved == 1);
+done:
+	return last;
+}
+
+/*
+ * Finds the first available sector in the largest block of unallocated
+ * space on the disk. Returns 0 if there are no available blocks left.
+ * From gdisk.
+ */
+static uint64_t find_first_in_largest(struct gpt_header *header,
+				      struct gpt_entry *ents)
+{
+	uint64_t start = 0, first_sect, last_sect;
+	uint64_t segment_size, selected_size = 0, selected_segment = 0;
+
+	if (!header || !ents)
+		goto done;
+
+	do {
+		first_sect =  find_first_available(header, ents, start);
+		if (first_sect != 0) {
+			last_sect = find_last_free(header, ents, first_sect);
+			segment_size = last_sect - first_sect + 1;
+
+			if (segment_size > selected_size) {
+				selected_size = segment_size;
+				selected_segment = first_sect;
+			}
+			start = last_sect + 1;
+		}
+	} while (first_sect != 0);
+
+done:
+	return selected_segment;
+}
+
+/*
+ * Find the total number of free sectors, the number of segments in which
+ * they reside, and the size of the largest of those segments. From gdisk.
+ */
+static uint64_t get_free_sectors(struct fdisk_context *cxt, struct gpt_header *header,
+				 struct gpt_entry *ents, uint32_t *nsegments,
+				 uint64_t *largest_segment)
+{
+	uint32_t num = 0;
+	uint64_t first_sect, last_sect;
+	uint64_t largest_seg = 0, segment_sz;
+	uint64_t totfound = 0, start = 0; /* starting point for each search */
+
+	if (!cxt->total_sectors)
+		goto done;
+
+	do {
+		first_sect = find_first_available(header, ents, start);
+		if (first_sect) {
+			last_sect = find_last_free(header, ents, first_sect);
+			segment_sz = last_sect - first_sect + 1;
+
+			if (segment_sz > largest_seg)
+				largest_seg = segment_sz;
+			totfound += segment_sz;
+			num++;
+			start = last_sect + 1;
+		}
+	} while (first_sect);
+
+done:
+	if (nsegments)
+		*nsegments = num;
+	if (largest_segment)
+		*largest_segment = largest_seg;
+
+	return totfound;
+}
+
+static int gpt_probe_label(struct fdisk_context *cxt)
+{
+	int mbr_type;
+	struct fdisk_gpt_label *gpt;
+
+	assert(cxt);
+	assert(cxt->label);
+	assert(fdisk_is_label(cxt, GPT));
+
+	gpt = self_label(cxt);
+
+	/* TODO: it would be nice to support scenario when GPT headers are OK,
+	 *       but PMBR is corrupt */
+	mbr_type = valid_pmbr(cxt);
+	if (!mbr_type)
+		goto failed;
+
+	DBG(LABEL, ul_debug("found a %s MBR", mbr_type == GPT_MBR_PROTECTIVE ?
+			    "protective" : "hybrid"));
+
+	/* primary header */
+	gpt->pheader = gpt_read_header(cxt, GPT_PRIMARY_PARTITION_TABLE_LBA,
+				       &gpt->ents);
+
+	if (gpt->pheader)
+		/* primary OK, try backup from alternative LBA */
+		gpt->bheader = gpt_read_header(cxt,
+					le64_to_cpu(gpt->pheader->alternative_lba),
+					NULL);
+	else
+		/* primary corrupted -- try last LBA */
+		gpt->bheader = gpt_read_header(cxt, last_lba(cxt), &gpt->ents);
+
+	if (!gpt->pheader && !gpt->bheader)
+		goto failed;
+
+	/* primary OK, backup corrupted -- recovery */
+	if (gpt->pheader && !gpt->bheader) {
+		fdisk_warnx(cxt, _("The backup GPT table is corrupt, but the "
+				  "primary appears OK, so that will be used."));
+		gpt->bheader = gpt_copy_header(cxt, gpt->pheader);
+		if (!gpt->bheader)
+			goto failed;
+		gpt_recompute_crc(gpt->bheader, gpt->ents);
+
+	/* primary corrupted, backup OK -- recovery */
+	} else if (!gpt->pheader && gpt->bheader) {
+		fdisk_warnx(cxt, _("The primary GPT table is corrupt, but the "
+				  "backup appears OK, so that will be used."));
+		gpt->pheader = gpt_copy_header(cxt, gpt->bheader);
+		if (!gpt->pheader)
+			goto failed;
+		gpt_recompute_crc(gpt->pheader, gpt->ents);
+	}
+
+	cxt->label->nparts_max = le32_to_cpu(gpt->pheader->npartition_entries);
+	cxt->label->nparts_cur = partitions_in_use(gpt->pheader, gpt->ents);
+	return 1;
+failed:
+	DBG(LABEL, ul_debug("GPT probe failed"));
+	gpt_deinit(cxt->label);
+	return 0;
+}
+
+/*
+ * Stolen from libblkid - can be removed once partition semantics
+ * are added to the fdisk API.
+ */
+static char *encode_to_utf8(unsigned char *src, size_t count)
+{
+	uint16_t c;
+	char *dest;
+	size_t i, j, len = count;
+
+	dest = calloc(1, count);
+	if (!dest)
+		return NULL;
+
+	for (j = i = 0; i + 2 <= count; i += 2) {
+		/* always little endian */
+		c = (src[i+1] << 8) | src[i];
+		if (c == 0) {
+			dest[j] = '\0';
+			break;
+		} else if (c < 0x80) {
+			if (j+1 >= len)
+				break;
+			dest[j++] = (uint8_t) c;
+		} else if (c < 0x800) {
+			if (j+2 >= len)
+				break;
+			dest[j++] = (uint8_t) (0xc0 | (c >> 6));
+			dest[j++] = (uint8_t) (0x80 | (c & 0x3f));
+		} else {
+			if (j+3 >= len)
+				break;
+			dest[j++] = (uint8_t) (0xe0 | (c >> 12));
+			dest[j++] = (uint8_t) (0x80 | ((c >> 6) & 0x3f));
+			dest[j++] = (uint8_t) (0x80 | (c & 0x3f));
+		}
+	}
+	dest[j] = '\0';
+
+	return dest;
+}
+
+static int gpt_entry_attrs_to_string(struct gpt_entry *e, char **res)
+{
+	unsigned int n, count = 0;
+	size_t l;
+	char *bits, *p;
+	uint64_t attrs;
+
+	assert(e);
+	assert(res);
+
+	*res = NULL;
+	attrs = le64_to_cpu(e->attrs);
+	if (!attrs)
+		return 0;	/* no attributes at all */
+
+	bits = (char *) &attrs;
+
+	/* Note that sizeof() is correct here, we need separators between
+	 * the strings so also count \0 is correct */
+	*res = calloc(1, sizeof(GPT_ATTRSTR_NOBLOCK) +
+			 sizeof(GPT_ATTRSTR_REQ) +
+			 sizeof(GPT_ATTRSTR_LEGACY) +
+			 sizeof("GUID:") + (GPT_ATTRBIT_GUID_COUNT * 3));
+	if (!*res)
+		return -errno;
+
+	p = *res;
+	if (isset(bits, GPT_ATTRBIT_REQ)) {
+		memcpy(p, GPT_ATTRSTR_REQ, (l = sizeof(GPT_ATTRSTR_REQ)));
+		p += l - 1;
+	}
+	if (isset(bits, GPT_ATTRBIT_NOBLOCK)) {
+		if (p > *res)
+			*p++ = ' ';
+		memcpy(p, GPT_ATTRSTR_NOBLOCK, (l = sizeof(GPT_ATTRSTR_NOBLOCK)));
+		p += l - 1;
+	}
+	if (isset(bits, GPT_ATTRBIT_LEGACY)) {
+		if (p > *res)
+			*p++ = ' ';
+		memcpy(p, GPT_ATTRSTR_LEGACY, (l = sizeof(GPT_ATTRSTR_LEGACY)));
+		p += l - 1;
+	}
+
+	for (n = GPT_ATTRBIT_GUID_FIRST;
+	     n < GPT_ATTRBIT_GUID_FIRST + GPT_ATTRBIT_GUID_COUNT; n++) {
+
+		if (!isset(bits, n))
+			continue;
+		if (!count) {
+			if (p > *res)
+				*p++ = ' ';
+			p += sprintf(p, "GUID:%u", n);
+		} else
+			p += sprintf(p, ",%u", n);
+		count++;
+	}
+
+	return 0;
+}
+
+static int gpt_entry_attrs_from_string(
+			struct fdisk_context *cxt,
+			struct gpt_entry *e,
+			const char *str)
+{
+	const char *p = str;
+	uint64_t attrs = 0;
+	char *bits;
+
+	assert(e);
+	assert(p);
+
+	DBG(LABEL, ul_debug("GPT: parsing string attributes '%s'", p));
+
+	bits = (char *) &attrs;
+
+	while (p && *p) {
+		int bit = -1;
+
+		while (isblank(*p)) p++;
+		if (!*p)
+			break;
+
+		DBG(LABEL, ul_debug(" parsing item '%s'", p));
+
+		if (strncmp(p, "GUID:", 5) == 0) {
+			p += 5;
+			continue;
+		} else if (strncmp(p, GPT_ATTRSTR_REQ,
+					sizeof(GPT_ATTRSTR_REQ) - 1) == 0) {
+			bit = GPT_ATTRBIT_REQ;
+			p += sizeof(GPT_ATTRSTR_REQ) - 1;
+		} else if (strncmp(p, GPT_ATTRSTR_LEGACY,
+					sizeof(GPT_ATTRSTR_LEGACY) - 1) == 0) {
+			bit = GPT_ATTRBIT_LEGACY;
+			p += sizeof(GPT_ATTRSTR_LEGACY) - 1;
+		} else if (strncmp(p, GPT_ATTRSTR_NOBLOCK,
+					sizeof(GPT_ATTRSTR_NOBLOCK) - 1) == 0) {
+			bit = GPT_ATTRBIT_NOBLOCK;
+			p += sizeof(GPT_ATTRSTR_NOBLOCK) - 1;
+		} else if (isdigit((unsigned int) *p)) {
+			char *end = NULL;
+
+			errno = 0;
+			bit = strtol(p, &end, 0);
+			if (errno || !end || end == str
+			    || bit < GPT_ATTRBIT_GUID_FIRST
+			    || bit >= GPT_ATTRBIT_GUID_FIRST + GPT_ATTRBIT_GUID_COUNT)
+				bit = -1;
+			else
+				p = end;
+		}
+
+		if (bit < 0) {
+			fdisk_warnx(cxt, _("unssuported GPT attribute bit '%s'"), p);
+			return -EINVAL;
+		}
+
+		setbit(bits, bit);
+
+		while (isblank(*p)) p++;
+		if (*p == ',')
+			p++;
+	}
+
+	e->attrs = cpu_to_le64(attrs);
+	return 0;
+}
+
+static int gpt_get_partition(struct fdisk_context *cxt, size_t n,
+			     struct fdisk_partition *pa)
+{
+	struct fdisk_gpt_label *gpt;
+	struct gpt_entry *e;
+	char u_str[37];
+	int rc = 0;
+
+	assert(cxt);
+	assert(cxt->label);
+	assert(fdisk_is_label(cxt, GPT));
+
+	gpt = self_label(cxt);
+
+	if ((uint32_t) n >= le32_to_cpu(gpt->pheader->npartition_entries))
+		return -EINVAL;
+
+	gpt = self_label(cxt);
+	e = &gpt->ents[n];
+
+	pa->used = !partition_unused(e) || gpt_partition_start(e);
+	if (!pa->used)
+		return 0;
+
+	pa->start = gpt_partition_start(e);
+	pa->size = gpt_partition_size(e);
+	pa->type = gpt_partition_parttype(cxt, e);
+
+	if (guid_to_string(&e->partition_guid, u_str)) {
+		pa->uuid = strdup(u_str);
+		if (!pa->uuid) {
+			rc = -errno;
+			goto done;
+		}
+	} else
+		pa->uuid = NULL;
+
+	rc = gpt_entry_attrs_to_string(e, &pa->attrs);
+	if (rc)
+		goto done;
+
+	pa->name = encode_to_utf8((unsigned char *)e->name, sizeof(e->name));
+	return 0;
+done:
+	fdisk_reset_partition(pa);
+	return rc;
+}
+
+
+static int gpt_set_partition(struct fdisk_context *cxt, size_t n,
+			     struct fdisk_partition *pa)
+{
+	struct fdisk_gpt_label *gpt;
+	struct gpt_entry *e;
+	int rc = 0;
+	uint64_t start, end;
+
+	assert(cxt);
+	assert(cxt->label);
+	assert(fdisk_is_label(cxt, GPT));
+
+	gpt = self_label(cxt);
+
+	if ((uint32_t) n >= le32_to_cpu(gpt->pheader->npartition_entries))
+		return -EINVAL;
+
+	FDISK_INIT_UNDEF(start);
+	FDISK_INIT_UNDEF(end);
+
+	gpt = self_label(cxt);
+	e = &gpt->ents[n];
+
+	if (pa->uuid) {
+		char new_u[37], old_u[37];
+
+		guid_to_string(&e->partition_guid, old_u);
+		rc = gpt_entry_set_uuid(e, pa->uuid);
+		if (rc)
+			return rc;
+		guid_to_string(&e->partition_guid, new_u);
+		fdisk_info(cxt, _("Partition UUID changed from %s to %s."),
+			old_u, new_u);
+	}
+
+	if (pa->name) {
+		char *old = encode_to_utf8((unsigned char *)e->name, sizeof(e->name));
+		gpt_entry_set_name(e, pa->name);
+
+		fdisk_info(cxt, _("Partition name changed from '%s' to '%.*s'."),
+			old, (int) GPT_PART_NAME_LEN, pa->name);
+		free(old);
+	}
+
+	if (pa->type && pa->type->typestr) {
+		struct gpt_guid typeid;
+
+		rc = string_to_guid(pa->type->typestr, &typeid);
+		if (rc)
+			return rc;
+		gpt_entry_set_type(e, &typeid);
+	}
+	if (pa->attrs) {
+		rc = gpt_entry_attrs_from_string(cxt, e, pa->attrs);
+		if (rc)
+			return rc;
+	}
+
+	if (fdisk_partition_has_start(pa))
+		start = pa->start;
+	if (fdisk_partition_has_size(pa))
+		end = gpt_partition_start(e) + pa->size - 1ULL;
+
+	if (pa->end_follow_default) {
+		/* enlarge */
+		if (!FDISK_IS_UNDEF(start))
+			start = gpt_partition_start(e);
+		end = find_last_free(gpt->bheader, gpt->ents, start);
+		if (!end)
+			FDISK_INIT_UNDEF(end);
+	}
+
+	if (!FDISK_IS_UNDEF(start))
+		e->lba_start = cpu_to_le64(start);
+	if (!FDISK_IS_UNDEF(end))
+		e->lba_end = cpu_to_le64(end);
+
+	gpt_recompute_crc(gpt->pheader, gpt->ents);
+	gpt_recompute_crc(gpt->bheader, gpt->ents);
+
+	fdisk_label_set_changed(cxt->label, 1);
+	return rc;
+}
+
+
+/*
+ * List label partitions.
+ */
+static int gpt_list_disklabel(struct fdisk_context *cxt)
+{
+	assert(cxt);
+	assert(cxt->label);
+	assert(fdisk_is_label(cxt, GPT));
+
+	if (fdisk_is_details(cxt)) {
+		struct gpt_header *h = self_label(cxt)->pheader;
+
+		fdisk_info(cxt, _("First LBA: %ju"), h->first_usable_lba);
+		fdisk_info(cxt, _("Last LBA: %ju"), h->last_usable_lba);
+		/* TRANSLATORS: The LBA (Logical Block Address) of the backup GPT header. */
+		fdisk_info(cxt, _("Alternative LBA: %ju"), h->alternative_lba);
+		/* TRANSLATORS: The start of the array of partition entries. */
+		fdisk_info(cxt, _("Partition entries LBA: %ju"), h->partition_entry_lba);
+		fdisk_info(cxt, _("Allocated partition entries: %u"), h->npartition_entries);
+	}
+
+	return 0;
+}
+
+/*
+ * Write partitions.
+ * Returns 0 on success, or corresponding error otherwise.
+ */
+static int gpt_write_partitions(struct fdisk_context *cxt,
+				struct gpt_header *header, struct gpt_entry *ents)
+{
+	off_t offset = le64_to_cpu(header->partition_entry_lba) * cxt->sector_size;
+	uint32_t nparts = le32_to_cpu(header->npartition_entries);
+	uint32_t totwrite = nparts * le32_to_cpu(header->sizeof_partition_entry);
+	ssize_t rc;
+
+	if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
+		goto fail;
+
+	rc = write(cxt->dev_fd, ents, totwrite);
+	if (rc > 0 && totwrite == (uint32_t) rc)
+		return 0;
+fail:
+	return -errno;
+}
+
+/*
+ * Write a GPT header to a specified LBA
+ * Returns 0 on success, or corresponding error otherwise.
+ */
+static int gpt_write_header(struct fdisk_context *cxt,
+			    struct gpt_header *header, uint64_t lba)
+{
+	off_t offset = lba * cxt->sector_size;
+
+	if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
+		goto fail;
+	if (cxt->sector_size ==
+	    (size_t) write(cxt->dev_fd, header, cxt->sector_size))
+		return 0;
+fail:
+	return -errno;
+}
+
+/*
+ * Write the protective MBR.
+ * Returns 0 on success, or corresponding error otherwise.
+ */
+static int gpt_write_pmbr(struct fdisk_context *cxt)
+{
+	off_t offset;
+	struct gpt_legacy_mbr *pmbr = NULL;
+
+	assert(cxt);
+	assert(cxt->firstsector);
+
+	pmbr = (struct gpt_legacy_mbr *) cxt->firstsector;
+
+	/* zero out the legacy partitions */
+	memset(pmbr->partition_record, 0, sizeof(pmbr->partition_record));
+
+	pmbr->signature = cpu_to_le16(MSDOS_MBR_SIGNATURE);
+	pmbr->partition_record[0].os_type      = EFI_PMBR_OSTYPE;
+	pmbr->partition_record[0].start_sector = 1;
+	pmbr->partition_record[0].end_head     = 0xFE;
+	pmbr->partition_record[0].end_sector   = 0xFF;
+	pmbr->partition_record[0].end_track    = 0xFF;
+	pmbr->partition_record[0].starting_lba = cpu_to_le32(1);
+
+	/*
+	 * Set size_in_lba to the size of the disk minus one. If the size of the disk
+	 * is too large to be represented by a 32bit LBA (2Tb), set it to 0xFFFFFFFF.
+	 */
+	if (cxt->total_sectors - 1 > 0xFFFFFFFFULL)
+		pmbr->partition_record[0].size_in_lba = cpu_to_le32(0xFFFFFFFF);
+	else
+		pmbr->partition_record[0].size_in_lba =
+			cpu_to_le32(cxt->total_sectors - 1UL);
+
+	offset = GPT_PMBR_LBA * cxt->sector_size;
+	if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
+		goto fail;
+
+	/* pMBR covers the first sector (LBA) of the disk */
+	if (write_all(cxt->dev_fd, pmbr, cxt->sector_size))
+		goto fail;
+	return 0;
+fail:
+	return -errno;
+}
+
+/*
+ * Writes in-memory GPT and pMBR data to disk.
+ * Returns 0 if successful write, otherwise, a corresponding error.
+ * Any indication of error will abort the operation.
+ */
+static int gpt_write_disklabel(struct fdisk_context *cxt)
+{
+	struct fdisk_gpt_label *gpt;
+	int mbr_type;
+
+	assert(cxt);
+	assert(cxt->label);
+	assert(fdisk_is_label(cxt, GPT));
+
+	gpt = self_label(cxt);
+	mbr_type = valid_pmbr(cxt);
+
+	/* check that disk is big enough to handle the backup header */
+	if (le64_to_cpu(gpt->pheader->alternative_lba) > cxt->total_sectors)
+		goto err0;
+
+	/* check that the backup header is properly placed */
+	if (le64_to_cpu(gpt->pheader->alternative_lba) < cxt->total_sectors - 1)
+		/* TODO: correct this (with user authorization) and write */
+		goto err0;
+
+	if (check_overlap_partitions(gpt->pheader, gpt->ents))
+		goto err0;
+
+	/* recompute CRCs for both headers */
+	gpt_recompute_crc(gpt->pheader, gpt->ents);
+	gpt_recompute_crc(gpt->bheader, gpt->ents);
+
+	/*
+	 * UEFI requires writing in this specific order:
+	 *   1) backup partition tables
+	 *   2) backup GPT header
+	 *   3) primary partition tables
+	 *   4) primary GPT header
+	 *   5) protective MBR
+	 *
+	 * If any write fails, we abort the rest.
+	 */
+	if (gpt_write_partitions(cxt, gpt->bheader, gpt->ents) != 0)
+		goto err1;
+	if (gpt_write_header(cxt, gpt->bheader,
+			     le64_to_cpu(gpt->pheader->alternative_lba)) != 0)
+		goto err1;
+	if (gpt_write_partitions(cxt, gpt->pheader, gpt->ents) != 0)
+		goto err1;
+	if (gpt_write_header(cxt, gpt->pheader, GPT_PRIMARY_PARTITION_TABLE_LBA) != 0)
+		goto err1;
+
+	if (mbr_type == GPT_MBR_HYBRID)
+		fdisk_warnx(cxt, _("The device contains hybrid MBR -- writing GPT only. "
+				   "You have to sync the MBR manually."));
+	else if (gpt_write_pmbr(cxt) != 0)
+		goto err1;
+
+	DBG(LABEL, ul_debug("GPT write success"));
+	return 0;
+err0:
+	DBG(LABEL, ul_debug("GPT write failed: incorrect input"));
+	errno = EINVAL;
+	return -EINVAL;
+err1:
+	DBG(LABEL, ul_debug("GPT write failed: %m"));
+	return -errno;
+}
+
+/*
+ * Verify data integrity and report any found problems for:
+ *   - primary and backup header validations
+ *   - paritition validations
+ */
+static int gpt_verify_disklabel(struct fdisk_context *cxt)
+{
+	int nerror = 0;
+	unsigned int ptnum;
+	struct fdisk_gpt_label *gpt;
+
+	assert(cxt);
+	assert(cxt->label);
+	assert(fdisk_is_label(cxt, GPT));
+
+	gpt = self_label(cxt);
+
+	if (!gpt || !gpt->bheader) {
+		nerror++;
+		fdisk_warnx(cxt, _("Disk does not contain a valid backup header."));
+	}
+
+	if (!gpt_check_header_crc(gpt->pheader, gpt->ents)) {
+		nerror++;
+		fdisk_warnx(cxt, _("Invalid primary header CRC checksum."));
+	}
+	if (gpt->bheader && !gpt_check_header_crc(gpt->bheader, gpt->ents)) {
+		nerror++;
+		fdisk_warnx(cxt, _("Invalid backup header CRC checksum."));
+	}
+
+	if (!gpt_check_entryarr_crc(gpt->pheader, gpt->ents)) {
+		nerror++;
+		fdisk_warnx(cxt, _("Invalid partition entry checksum."));
+	}
+
+	if (!gpt_check_lba_sanity(cxt, gpt->pheader)) {
+		nerror++;
+		fdisk_warnx(cxt, _("Invalid primary header LBA sanity checks."));
+	}
+	if (gpt->bheader && !gpt_check_lba_sanity(cxt, gpt->bheader)) {
+		nerror++;
+		fdisk_warnx(cxt, _("Invalid backup header LBA sanity checks."));
+	}
+
+	if (le64_to_cpu(gpt->pheader->my_lba) != GPT_PRIMARY_PARTITION_TABLE_LBA) {
+		nerror++;
+		fdisk_warnx(cxt, _("MyLBA mismatch with real position at primary header."));
+	}
+	if (gpt->bheader && le64_to_cpu(gpt->bheader->my_lba) != last_lba(cxt)) {
+		nerror++;
+		fdisk_warnx(cxt, _("MyLBA mismatch with real position at backup header."));
+
+	}
+	if (le64_to_cpu(gpt->pheader->alternative_lba) >= cxt->total_sectors) {
+		nerror++;
+		fdisk_warnx(cxt, _("Disk is too small to hold all data."));
+	}
+
+	/*
+	 * if the GPT is the primary table, check the alternateLBA
+	 * to see if it is a valid GPT
+	 */
+	if (gpt->bheader && (le64_to_cpu(gpt->pheader->my_lba) !=
+			     le64_to_cpu(gpt->bheader->alternative_lba))) {
+		nerror++;
+		fdisk_warnx(cxt, _("Primary and backup header mismatch."));
+	}
+
+	ptnum = check_overlap_partitions(gpt->pheader, gpt->ents);
+	if (ptnum) {
+		nerror++;
+		fdisk_warnx(cxt, _("Partition %u overlaps with partition %u."),
+				ptnum, ptnum+1);
+	}
+
+	ptnum = check_too_big_partitions(gpt->pheader, gpt->ents, cxt->total_sectors);
+	if (ptnum) {
+		nerror++;
+		fdisk_warnx(cxt, _("Partition %u is too big for the disk."),
+				ptnum);
+	}
+
+	ptnum = check_start_after_end_paritions(gpt->pheader, gpt->ents);
+	if (ptnum) {
+		nerror++;
+		fdisk_warnx(cxt, _("Partition %u ends before it starts."),
+				ptnum);
+	}
+
+	if (!nerror) { /* yay :-) */
+		uint32_t nsegments = 0;
+		uint64_t free_sectors = 0, largest_segment = 0;
+		char *strsz = NULL;
+
+		fdisk_info(cxt, _("No errors detected."));
+		fdisk_info(cxt, _("Header version: %s"), gpt_get_header_revstr(gpt->pheader));
+		fdisk_info(cxt, _("Using %u out of %d partitions."),
+		       partitions_in_use(gpt->pheader, gpt->ents),
+		       le32_to_cpu(gpt->pheader->npartition_entries));
+
+		free_sectors = get_free_sectors(cxt, gpt->pheader, gpt->ents,
+						&nsegments, &largest_segment);
+		if (largest_segment)
+			strsz = size_to_human_string(SIZE_SUFFIX_SPACE | SIZE_SUFFIX_3LETTER,
+					largest_segment * cxt->sector_size);
+
+		fdisk_info(cxt,
+			   P_("A total of %ju free sectors is available in %u segment.",
+			      "A total of %ju free sectors is available in %u segments "
+			      "(the largest is %s).", nsegments),
+			   free_sectors, nsegments, strsz);
+		free(strsz);
+
+	} else
+		fdisk_warnx(cxt,
+			P_("%d error detected.", "%d errors detected.", nerror),
+			nerror);
+
+	return 0;
+}
+
+/* Delete a single GPT partition, specified by partnum. */
+static int gpt_delete_partition(struct fdisk_context *cxt,
+				size_t partnum)
+{
+	struct fdisk_gpt_label *gpt;
+
+	assert(cxt);
+	assert(cxt->label);
+	assert(fdisk_is_label(cxt, GPT));
+
+	gpt = self_label(cxt);
+
+	if (partnum >= cxt->label->nparts_max
+	    ||  partition_unused(&gpt->ents[partnum]))
+		return -EINVAL;
+
+	/* hasta la vista, baby! */
+	memset(&gpt->ents[partnum], 0, sizeof(struct gpt_entry));
+	if (!partition_unused(&gpt->ents[partnum]))
+		return -EINVAL;
+	else {
+		gpt_recompute_crc(gpt->pheader, gpt->ents);
+		gpt_recompute_crc(gpt->bheader, gpt->ents);
+		cxt->label->nparts_cur--;
+		fdisk_label_set_changed(cxt->label, 1);
+	}
+
+	return 0;
+}
+
+
+/* Performs logical checks to add a new partition entry */
+static int gpt_add_partition(
+		struct fdisk_context *cxt,
+		struct fdisk_partition *pa,
+		size_t *partno)
+{
+	uint64_t user_f, user_l;	/* user input ranges for first and last sectors */
+	uint64_t disk_f, disk_l;	/* first and last available sector ranges on device*/
+	uint64_t dflt_f, dflt_l;	/* largest segment (default) */
+	struct gpt_guid typeid;
+	struct fdisk_gpt_label *gpt;
+	struct gpt_header *pheader;
+	struct gpt_entry *e, *ents;
+	struct fdisk_ask *ask = NULL;
+	size_t partnum;
+	int rc;
+
+	assert(cxt);
+	assert(cxt->label);
+	assert(fdisk_is_label(cxt, GPT));
+
+	gpt = self_label(cxt);
+	pheader = gpt->pheader;
+	ents = gpt->ents;
+
+	rc = fdisk_partition_next_partno(pa, cxt, &partnum);
+	if (rc) {
+		DBG(LABEL, ul_debug("GPT failed to get next partno"));
+		return rc;
+	}
+	if (!partition_unused(&ents[partnum])) {
+		fdisk_warnx(cxt, _("Partition %zu is already defined.  "
+			           "Delete it before re-adding it."), partnum +1);
+		return -ERANGE;
+	}
+	if (le32_to_cpu(pheader->npartition_entries) ==
+			partitions_in_use(pheader, ents)) {
+		fdisk_warnx(cxt, _("All partitions are already in use."));
+		return -ENOSPC;
+	}
+	if (!get_free_sectors(cxt, pheader, ents, NULL, NULL)) {
+		fdisk_warnx(cxt, _("No free sectors available."));
+		return -ENOSPC;
+	}
+
+	string_to_guid(pa && pa->type && pa->type->typestr ?
+				pa->type->typestr:
+				GPT_DEFAULT_ENTRY_TYPE, &typeid);
+
+	disk_f = find_first_available(pheader, ents, pheader->first_usable_lba);
+
+	/* if first sector no explicitly defined then ignore small gaps before
+	 * the first partition */
+	if ((!pa || !fdisk_partition_has_start(pa))
+	    && !partition_unused(&ents[0])
+	    && disk_f < gpt_partition_start(&ents[0])) {
+
+		do {
+			uint64_t x;
+			DBG(LABEL, ul_debug("testing first sector %ju", disk_f));
+			disk_f = find_first_available(pheader, ents, disk_f);
+			if (!disk_f)
+				break;
+			x = find_last_free(pheader, ents, disk_f);
+			if (x - disk_f >= cxt->grain / cxt->sector_size)
+				break;
+			DBG(LABEL, ul_debug("first sector %ju addresses to small space, continue...", disk_f));
+			disk_f = x + 1;
+		} while(1);
+
+		if (disk_f == 0)
+			disk_f = find_first_available(pheader, ents, pheader->first_usable_lba);
+	}
+
+	disk_l = find_last_free_sector(pheader, ents);
+
+	/* the default is the largest free space */
+	dflt_f = find_first_in_largest(pheader, ents);
+	dflt_l = find_last_free(pheader, ents, dflt_f);
+
+	/* align the default in range <dflt_f,dflt_l>*/
+	dflt_f = fdisk_align_lba_in_range(cxt, dflt_f, dflt_f, dflt_l);
+
+	/* first sector */
+	if (pa && pa->start_follow_default) {
+		user_f = dflt_f;
+
+	} else if (pa && fdisk_partition_has_start(pa)) {
+		DBG(LABEL, ul_debug("first sector defined: %ju", pa->start));
+		if (pa->start != find_first_available(pheader, ents, pa->start)) {
+			fdisk_warnx(cxt, _("Sector %ju already used."), pa->start);
+			return -ERANGE;
+		}
+		user_f = pa->start;
+	} else {
+		/*  ask by dialog */
+		for (;;) {
+			if (!ask)
+				ask = fdisk_new_ask();
+			else
+				fdisk_reset_ask(ask);
+
+			/* First sector */
+			fdisk_ask_set_query(ask, _("First sector"));
+			fdisk_ask_set_type(ask, FDISK_ASKTYPE_NUMBER);
+			fdisk_ask_number_set_low(ask,     disk_f);	/* minimal */
+			fdisk_ask_number_set_default(ask, dflt_f);	/* default */
+			fdisk_ask_number_set_high(ask,    disk_l);	/* maximal */
+
+			rc = fdisk_do_ask(cxt, ask);
+			if (rc)
+				goto done;
+
+			user_f = fdisk_ask_number_get_result(ask);
+			if (user_f != find_first_available(pheader, ents, user_f)) {
+				fdisk_warnx(cxt, _("Sector %ju already used."), user_f);
+				continue;
+			}
+			break;
+		}
+	}
+
+
+	/* Last sector */
+	dflt_l = find_last_free(pheader, ents, user_f);
+
+	if (pa && pa->end_follow_default) {
+		user_l = dflt_l;
+
+	} else if (pa && fdisk_partition_has_size(pa)) {
+		user_l = user_f + pa->size - 1;
+		DBG(LABEL, ul_debug("size defined: %ju, end: %ju (last possible: %ju)",
+					pa->size, user_l, dflt_l));
+		if (user_l != dflt_l && !pa->size_explicit)
+			user_l = fdisk_align_lba_in_range(cxt, user_l, user_f, dflt_l) - 1;
+
+	} else {
+		for (;;) {
+			if (!ask)
+				ask = fdisk_new_ask();
+			else
+				fdisk_reset_ask(ask);
+
+			fdisk_ask_set_query(ask, _("Last sector, +sectors or +size{K,M,G,T,P}"));
+			fdisk_ask_set_type(ask, FDISK_ASKTYPE_OFFSET);
+			fdisk_ask_number_set_low(ask,     user_f);	/* minimal */
+			fdisk_ask_number_set_default(ask, dflt_l);	/* default */
+			fdisk_ask_number_set_high(ask,    dflt_l);	/* maximal */
+			fdisk_ask_number_set_base(ask,    user_f);	/* base for relative input */
+			fdisk_ask_number_set_unit(ask,    cxt->sector_size);
+
+			rc = fdisk_do_ask(cxt, ask);
+			if (rc)
+				goto done;
+
+			user_l = fdisk_ask_number_get_result(ask);
+			if (fdisk_ask_number_is_relative(ask)) {
+				user_l = fdisk_align_lba_in_range(cxt, user_l, user_f, dflt_l) - 1;
+
+				/* no space for anything useful, use all space
+				if (user_l + (cxt->grain / cxt->sector_size) > dflt_l)
+					user_l = dflt_l;
+				*/
+			}
+
+			if (user_l > user_f && user_l <= disk_l)
+				break;
+		}
+	}
+
+
+	if (user_f > user_l || partnum >= cxt->label->nparts_max) {
+		fdisk_warnx(cxt, _("Could not create partition %zu"), partnum + 1);
+		rc = -EINVAL;
+		goto done;
+	}
+
+	assert(!FDISK_IS_UNDEF(user_l));
+	assert(!FDISK_IS_UNDEF(user_f));
+
+	e = &ents[partnum];
+	e->lba_end = cpu_to_le64(user_l);
+	e->lba_start = cpu_to_le64(user_f);
+
+	gpt_entry_set_type(e, &typeid);
+
+	if (pa && pa->uuid) {
+		/* Sometimes it's necessary to create a copy of the PT and
+		 * reuse already defined UUID
+		 */
+		rc = gpt_entry_set_uuid(e, pa->uuid);
+		if (rc)
+			goto done;
+	} else {
+		/* Any time a new partition entry is created a new GUID must be
+		 * generated for that partition, and every partition is guaranteed
+		 * to have a unique GUID.
+		 */
+		uuid_generate_random((unsigned char *) &e->partition_guid);
+		swap_efi_guid(&e->partition_guid);
+	}
+
+	if (pa && pa->name && *pa->name)
+		gpt_entry_set_name(e, pa->name);
+	if (pa && pa->attrs)
+		gpt_entry_attrs_from_string(cxt, e, pa->attrs);
+
+	DBG(LABEL, ul_debug("GPT new partition: partno=%zu, start=%ju, end=%ju, size=%ju",
+				partnum,
+				gpt_partition_start(e),
+				gpt_partition_end(e),
+				gpt_partition_size(e)));
+
+	gpt_recompute_crc(gpt->pheader, ents);
+	gpt_recompute_crc(gpt->bheader, ents);
+
+	/* report result */
+	{
+		struct fdisk_parttype *t;
+
+		cxt->label->nparts_cur++;
+		fdisk_label_set_changed(cxt->label, 1);
+
+		t = gpt_partition_parttype(cxt, &ents[partnum]);
+		fdisk_info_new_partition(cxt, partnum + 1, user_f, user_l, t);
+		fdisk_unref_parttype(t);
+	}
+
+	rc = 0;
+	if (partno)
+		*partno = partnum;
+done:
+	fdisk_unref_ask(ask);
+	return rc;
+}
+
+/*
+ * Create a new GPT disklabel - destroys any previous data.
+ */
+static int gpt_create_disklabel(struct fdisk_context *cxt)
+{
+	int rc = 0;
+	ssize_t esz = 0;
+	char str[37];
+	struct fdisk_gpt_label *gpt;
+
+	assert(cxt);
+	assert(cxt->label);
+	assert(fdisk_is_label(cxt, GPT));
+
+	gpt = self_label(cxt);
+
+	/* label private stuff has to be empty, see gpt_deinit() */
+	assert(gpt->pheader == NULL);
+	assert(gpt->bheader == NULL);
+
+	/*
+	 * When no header, entries or pmbr is set, we're probably
+	 * dealing with a new, empty disk - so always allocate memory
+	 * to deal with the data structures whatever the case is.
+	 */
+	rc = gpt_mknew_pmbr(cxt);
+	if (rc < 0)
+		goto done;
+
+	/* primary */
+	gpt->pheader = calloc(1, sizeof(*gpt->pheader));
+	if (!gpt->pheader) {
+		rc = -ENOMEM;
+		goto done;
+	}
+	rc = gpt_mknew_header(cxt, gpt->pheader, GPT_PRIMARY_PARTITION_TABLE_LBA);
+	if (rc < 0)
+		goto done;
+
+	/* backup ("copy" primary) */
+	gpt->bheader = calloc(1, sizeof(*gpt->bheader));
+	if (!gpt->bheader) {
+		rc = -ENOMEM;
+		goto done;
+	}
+	rc = gpt_mknew_header_from_bkp(cxt, gpt->bheader,
+			last_lba(cxt), gpt->pheader);
+	if (rc < 0)
+		goto done;
+
+	esz = le32_to_cpu(gpt->pheader->npartition_entries) *
+	      le32_to_cpu(gpt->pheader->sizeof_partition_entry);
+	gpt->ents = calloc(1, esz);
+	if (!gpt->ents) {
+		rc = -ENOMEM;
+		goto done;
+	}
+	gpt_recompute_crc(gpt->pheader, gpt->ents);
+	gpt_recompute_crc(gpt->bheader, gpt->ents);
+
+	cxt->label->nparts_max = le32_to_cpu(gpt->pheader->npartition_entries);
+	cxt->label->nparts_cur = 0;
+
+	guid_to_string(&gpt->pheader->disk_guid, str);
+	fdisk_label_set_changed(cxt->label, 1);
+	fdisk_info(cxt, _("Created a new GPT disklabel (GUID: %s)."), str);
+done:
+	return rc;
+}
+
+static int gpt_get_disklabel_id(struct fdisk_context *cxt, char **id)
+{
+	struct fdisk_gpt_label *gpt;
+	char str[37];
+
+	assert(cxt);
+	assert(id);
+	assert(cxt->label);
+	assert(fdisk_is_label(cxt, GPT));
+
+	gpt = self_label(cxt);
+	guid_to_string(&gpt->pheader->disk_guid, str);
+
+	*id = strdup(str);
+	if (!*id)
+		return -ENOMEM;
+	return 0;
+}
+
+static int gpt_set_disklabel_id(struct fdisk_context *cxt)
+{
+	struct fdisk_gpt_label *gpt;
+	struct gpt_guid uuid;
+	char *str, *old, *new;
+	int rc;
+
+	assert(cxt);
+	assert(cxt->label);
+	assert(fdisk_is_label(cxt, GPT));
+
+	gpt = self_label(cxt);
+	if (fdisk_ask_string(cxt,
+			_("Enter new disk UUID (in 8-4-4-4-12 format)"), &str))
+		return -EINVAL;
+
+	rc = string_to_guid(str, &uuid);
+	free(str);
+
+	if (rc) {
+		fdisk_warnx(cxt, _("Failed to parse your UUID."));
+		return rc;
+	}
+
+	gpt_get_disklabel_id(cxt, &old);
+
+	gpt->pheader->disk_guid = uuid;
+	gpt->bheader->disk_guid = uuid;
+
+	gpt_recompute_crc(gpt->pheader, gpt->ents);
+	gpt_recompute_crc(gpt->bheader, gpt->ents);
+
+	gpt_get_disklabel_id(cxt, &new);
+
+	fdisk_info(cxt, _("Disk identifier changed from %s to %s."), old, new);
+
+	free(old);
+	free(new);
+	fdisk_label_set_changed(cxt->label, 1);
+	return 0;
+}
+
+static int gpt_part_is_used(struct fdisk_context *cxt, size_t i)
+{
+	struct fdisk_gpt_label *gpt;
+	struct gpt_entry *e;
+
+	assert(cxt);
+	assert(cxt->label);
+	assert(fdisk_is_label(cxt, GPT));
+
+	gpt = self_label(cxt);
+
+	if ((uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries))
+		return 0;
+	e = &gpt->ents[i];
+
+	return !partition_unused(e) || gpt_partition_start(e);
+}
+
+/**
+ * fdisk_gpt_is_hybrid:
+ * @cxt: context
+ *
+ * The regular GPT contains PMBR (dummy protective MBR) where the protective
+ * MBR does not address any partitions.
+ *
+ * Hybrid GPT contains regular MBR where this partition table addresses the
+ * same partitions as GPT. It's recommended to not use hybrid GPT due to MBR
+ * limits.
+ *
+ * The libfdisk does not provide functionality to sync GPT and MBR, you have to
+ * directly access and modify (P)MBR (see fdisk_new_nested_context()).
+ *
+ * Returns: 1 if partition table detected as hybrid otherwise return 0
+ */
+int fdisk_gpt_is_hybrid(struct fdisk_context *cxt)
+{
+	assert(cxt);
+	return valid_pmbr(cxt) == GPT_MBR_HYBRID;
+}
+
+static int gpt_toggle_partition_flag(
+		struct fdisk_context *cxt,
+		size_t i,
+		unsigned long flag)
+{
+	struct fdisk_gpt_label *gpt;
+	uint64_t attrs, tmp;
+	char *bits;
+	const char *name = NULL;
+	int bit = -1, rc;
+
+	assert(cxt);
+	assert(cxt->label);
+	assert(fdisk_is_label(cxt, GPT));
+
+	DBG(LABEL, ul_debug("GPT entry attribute change requested partno=%zu", i));
+	gpt = self_label(cxt);
+
+	if ((uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries))
+		return -EINVAL;
+
+	attrs = le64_to_cpu(gpt->ents[i].attrs);
+	bits = (char *) &attrs;
+
+	switch (flag) {
+	case GPT_FLAG_REQUIRED:
+		bit = GPT_ATTRBIT_REQ;
+		name = GPT_ATTRSTR_REQ;
+		break;
+	case GPT_FLAG_NOBLOCK:
+		bit = GPT_ATTRBIT_NOBLOCK;
+		name = GPT_ATTRSTR_NOBLOCK;
+		break;
+	case GPT_FLAG_LEGACYBOOT:
+		bit = GPT_ATTRBIT_LEGACY;
+		name = GPT_ATTRSTR_LEGACY;
+		break;
+	case GPT_FLAG_GUIDSPECIFIC:
+		rc = fdisk_ask_number(cxt, 48, 48, 63, _("Enter GUID specific bit"), &tmp);
+		if (rc)
+			return rc;
+		bit = tmp;
+		break;
+	default:
+		/* already specified PT_FLAG_GUIDSPECIFIC bit */
+		if (flag >= 48 && flag <= 63) {
+			bit = flag;
+			flag = GPT_FLAG_GUIDSPECIFIC;
+		}
+		break;
+	}
+
+	if (bit < 0) {
+		fdisk_warnx(cxt, _("failed to toggle unsupported bit %lu"), flag);
+		return -EINVAL;
+	}
+
+	if (!isset(bits, bit))
+		setbit(bits, bit);
+	else
+		clrbit(bits, bit);
+
+	gpt->ents[i].attrs = cpu_to_le64(attrs);
+
+	if (flag == GPT_FLAG_GUIDSPECIFIC)
+		fdisk_info(cxt, isset(bits, bit) ?
+			_("The GUID specific bit %d on partition %zu is enabled now.") :
+			_("The GUID specific bit %d on partition %zu is disabled now."),
+			bit, i + 1);
+	else
+		fdisk_info(cxt, isset(bits, bit) ?
+			_("The %s flag on partition %zu is enabled now.") :
+			_("The %s flag on partition %zu is disabled now."),
+			name, i + 1);
+
+	gpt_recompute_crc(gpt->pheader, gpt->ents);
+	gpt_recompute_crc(gpt->bheader, gpt->ents);
+	fdisk_label_set_changed(cxt->label, 1);
+	return 0;
+}
+
+static int gpt_entry_cmp_start(const void *a, const void *b)
+{
+	struct gpt_entry *ae = (struct gpt_entry *) a,
+			 *be = (struct gpt_entry *) b;
+	int au = partition_unused(ae),
+	    bu = partition_unused(be);
+
+	if (au && bu)
+		return 0;
+	if (au)
+		return 1;
+	if (bu)
+		return -1;
+
+	return cmp_numbers(gpt_partition_start(ae), gpt_partition_start(be));
+}
+
+/* sort partition by start sector */
+static int gpt_reorder(struct fdisk_context *cxt)
+{
+	struct fdisk_gpt_label *gpt;
+	size_t nparts;
+
+	assert(cxt);
+	assert(cxt->label);
+	assert(fdisk_is_label(cxt, GPT));
+
+	gpt = self_label(cxt);
+	nparts = le32_to_cpu(gpt->pheader->npartition_entries);
+
+	qsort(gpt->ents, nparts, sizeof(struct gpt_entry),
+			gpt_entry_cmp_start);
+
+	gpt_recompute_crc(gpt->pheader, gpt->ents);
+	gpt_recompute_crc(gpt->bheader, gpt->ents);
+	fdisk_label_set_changed(cxt->label, 1);
+
+	fdisk_info(cxt, _("Done."));
+	return 0;
+}
+
+static int gpt_reset_alignment(struct fdisk_context *cxt)
+{
+	struct fdisk_gpt_label *gpt;
+	struct gpt_header *h;
+
+	assert(cxt);
+	assert(cxt->label);
+	assert(fdisk_is_label(cxt, GPT));
+
+	gpt = self_label(cxt);
+	h = gpt ? gpt->pheader : NULL;
+
+	if (h) {
+		/* always follow existing table */
+		cxt->first_lba = h->first_usable_lba;
+		cxt->last_lba  = h->last_usable_lba;
+	} else {
+		/* estimate ranges for GPT */
+		uint64_t first, last;
+
+		count_first_last_lba(cxt, &first, &last);
+
+		if (cxt->first_lba < first)
+			cxt->first_lba = first;
+		if (cxt->last_lba > last)
+			cxt->last_lba = last;
+	}
+
+	return 0;
+}
+/*
+ * Deinitialize fdisk-specific variables
+ */
+static void gpt_deinit(struct fdisk_label *lb)
+{
+	struct fdisk_gpt_label *gpt = (struct fdisk_gpt_label *) lb;
+
+	if (!gpt)
+		return;
+
+	free(gpt->ents);
+	free(gpt->pheader);
+	free(gpt->bheader);
+
+	gpt->ents = NULL;
+	gpt->pheader = NULL;
+	gpt->bheader = NULL;
+}
+
+static const struct fdisk_label_operations gpt_operations =
+{
+	.probe		= gpt_probe_label,
+	.write		= gpt_write_disklabel,
+	.verify		= gpt_verify_disklabel,
+	.create		= gpt_create_disklabel,
+	.list		= gpt_list_disklabel,
+	.locate		= gpt_locate_disklabel,
+	.reorder	= gpt_reorder,
+	.get_id		= gpt_get_disklabel_id,
+	.set_id		= gpt_set_disklabel_id,
+
+	.get_part	= gpt_get_partition,
+	.set_part	= gpt_set_partition,
+	.add_part	= gpt_add_partition,
+	.del_part	= gpt_delete_partition,
+
+	.part_is_used	= gpt_part_is_used,
+	.part_toggle_flag = gpt_toggle_partition_flag,
+
+	.deinit		= gpt_deinit,
+
+	.reset_alignment = gpt_reset_alignment
+};
+
+static const struct fdisk_field gpt_fields[] =
+{
+	/* basic */
+	{ FDISK_FIELD_DEVICE,	N_("Device"),	 10,	0 },
+	{ FDISK_FIELD_START,	N_("Start"),	  5,	FDISK_FIELDFL_NUMBER },
+	{ FDISK_FIELD_END,	N_("End"),	  5,	FDISK_FIELDFL_NUMBER },
+	{ FDISK_FIELD_SECTORS,	N_("Sectors"),	  5,	FDISK_FIELDFL_NUMBER },
+	{ FDISK_FIELD_SIZE,	N_("Size"),	  5,	FDISK_FIELDFL_NUMBER | FDISK_FIELDFL_EYECANDY },
+	{ FDISK_FIELD_TYPE,	N_("Type"),	0.1,	FDISK_FIELDFL_EYECANDY },
+	/* expert */
+	{ FDISK_FIELD_TYPEID,	N_("Type-UUID"), 36,	FDISK_FIELDFL_DETAIL },
+	{ FDISK_FIELD_UUID,	N_("UUID"),	 36,	FDISK_FIELDFL_DETAIL },
+	{ FDISK_FIELD_NAME,	N_("Name"),	0.2,	FDISK_FIELDFL_DETAIL },
+	{ FDISK_FIELD_ATTR,	N_("Attrs"),	  0,	FDISK_FIELDFL_DETAIL }
+};
+
+/*
+ * allocates GPT in-memory stuff
+ */
+struct fdisk_label *fdisk_new_gpt_label(struct fdisk_context *cxt)
+{
+	struct fdisk_label *lb;
+	struct fdisk_gpt_label *gpt;
+
+	assert(cxt);
+
+	gpt = calloc(1, sizeof(*gpt));
+	if (!gpt)
+		return NULL;
+
+	/* initialize generic part of the driver */
+	lb = (struct fdisk_label *) gpt;
+	lb->name = "gpt";
+	lb->id = FDISK_DISKLABEL_GPT;
+	lb->op = &gpt_operations;
+	lb->parttypes = gpt_parttypes;
+	lb->nparttypes = ARRAY_SIZE(gpt_parttypes);
+
+	lb->fields = gpt_fields;
+	lb->nfields = ARRAY_SIZE(gpt_fields);
+
+	return lb;
+}