blob: 02ff357bee6e82dc9a8f240089fa2ee9081a5a1a [file] [log] [blame]
Dees Troy4dff2e62013-11-10 04:11:43 +00001diff --git a/lib/crypto/crypto_scrypt-neon-salsa208.h b/lib/crypto/crypto_scrypt-neon-salsa208.h
2new file mode 100644
3index 0000000..a3b1019
4--- /dev/null
5+++ b/lib/crypto/crypto_scrypt-neon-salsa208.h
6@@ -0,0 +1,120 @@
7+/*
8+ * version 20110505
9+ * D. J. Bernstein
10+ * Public domain.
11+ *
12+ * Based on crypto_core/salsa208/armneon/core.c from SUPERCOP 20130419
13+ */
14+
15+#define ROUNDS 8
16+static void
17+salsa20_8_intrinsic(void * input)
18+{
19+ int i;
20+
21+ const uint32x4_t abab = {-1,0,-1,0};
22+
23+ /*
24+ * This is modified since we only have one argument. Usually you'd rearrange
25+ * the constant, key, and input bytes, but we just have one linear array to
26+ * rearrange which is a bit easier.
27+ */
28+
29+ /*
30+ * Change the input to be diagonals as if it's a 4x4 matrix of 32-bit values.
31+ */
32+ uint32x4_t x0x5x10x15;
33+ uint32x4_t x12x1x6x11;
34+ uint32x4_t x8x13x2x7;
35+ uint32x4_t x4x9x14x3;
36+
37+ uint32x4_t x0x1x10x11;
38+ uint32x4_t x12x13x6x7;
39+ uint32x4_t x8x9x2x3;
40+ uint32x4_t x4x5x14x15;
41+
42+ uint32x4_t x0x1x2x3;
43+ uint32x4_t x4x5x6x7;
44+ uint32x4_t x8x9x10x11;
45+ uint32x4_t x12x13x14x15;
46+
47+ x0x1x2x3 = vld1q_u8((uint8_t *) input);
48+ x4x5x6x7 = vld1q_u8(16 + (uint8_t *) input);
49+ x8x9x10x11 = vld1q_u8(32 + (uint8_t *) input);
50+ x12x13x14x15 = vld1q_u8(48 + (uint8_t *) input);
51+
52+ x0x1x10x11 = vcombine_u32(vget_low_u32(x0x1x2x3), vget_high_u32(x8x9x10x11));
53+ x4x5x14x15 = vcombine_u32(vget_low_u32(x4x5x6x7), vget_high_u32(x12x13x14x15));
54+ x8x9x2x3 = vcombine_u32(vget_low_u32(x8x9x10x11), vget_high_u32(x0x1x2x3));
55+ x12x13x6x7 = vcombine_u32(vget_low_u32(x12x13x14x15), vget_high_u32(x4x5x6x7));
56+
57+ x0x5x10x15 = vbslq_u32(abab,x0x1x10x11,x4x5x14x15);
58+ x8x13x2x7 = vbslq_u32(abab,x8x9x2x3,x12x13x6x7);
59+ x4x9x14x3 = vbslq_u32(abab,x4x5x14x15,x8x9x2x3);
60+ x12x1x6x11 = vbslq_u32(abab,x12x13x6x7,x0x1x10x11);
61+
62+ uint32x4_t start0 = x0x5x10x15;
63+ uint32x4_t start1 = x12x1x6x11;
64+ uint32x4_t start3 = x4x9x14x3;
65+ uint32x4_t start2 = x8x13x2x7;
66+
67+ /* From here on this should be the same as the SUPERCOP version. */
68+
69+ uint32x4_t diag0 = start0;
70+ uint32x4_t diag1 = start1;
71+ uint32x4_t diag2 = start2;
72+ uint32x4_t diag3 = start3;
73+
74+ uint32x4_t a0;
75+ uint32x4_t a1;
76+ uint32x4_t a2;
77+ uint32x4_t a3;
78+
79+ for (i = ROUNDS;i > 0;i -= 2) {
80+ a0 = diag1 + diag0;
81+ diag3 ^= vsriq_n_u32(vshlq_n_u32(a0,7),a0,25);
82+ a1 = diag0 + diag3;
83+ diag2 ^= vsriq_n_u32(vshlq_n_u32(a1,9),a1,23);
84+ a2 = diag3 + diag2;
85+ diag1 ^= vsriq_n_u32(vshlq_n_u32(a2,13),a2,19);
86+ a3 = diag2 + diag1;
87+ diag0 ^= vsriq_n_u32(vshlq_n_u32(a3,18),a3,14);
88+
89+ diag3 = vextq_u32(diag3,diag3,3);
90+ diag2 = vextq_u32(diag2,diag2,2);
91+ diag1 = vextq_u32(diag1,diag1,1);
92+
93+ a0 = diag3 + diag0;
94+ diag1 ^= vsriq_n_u32(vshlq_n_u32(a0,7),a0,25);
95+ a1 = diag0 + diag1;
96+ diag2 ^= vsriq_n_u32(vshlq_n_u32(a1,9),a1,23);
97+ a2 = diag1 + diag2;
98+ diag3 ^= vsriq_n_u32(vshlq_n_u32(a2,13),a2,19);
99+ a3 = diag2 + diag3;
100+ diag0 ^= vsriq_n_u32(vshlq_n_u32(a3,18),a3,14);
101+
102+ diag1 = vextq_u32(diag1,diag1,3);
103+ diag2 = vextq_u32(diag2,diag2,2);
104+ diag3 = vextq_u32(diag3,diag3,1);
105+ }
106+
107+ x0x5x10x15 = diag0 + start0;
108+ x12x1x6x11 = diag1 + start1;
109+ x8x13x2x7 = diag2 + start2;
110+ x4x9x14x3 = diag3 + start3;
111+
112+ x0x1x10x11 = vbslq_u32(abab,x0x5x10x15,x12x1x6x11);
113+ x12x13x6x7 = vbslq_u32(abab,x12x1x6x11,x8x13x2x7);
114+ x8x9x2x3 = vbslq_u32(abab,x8x13x2x7,x4x9x14x3);
115+ x4x5x14x15 = vbslq_u32(abab,x4x9x14x3,x0x5x10x15);
116+
117+ x0x1x2x3 = vcombine_u32(vget_low_u32(x0x1x10x11),vget_high_u32(x8x9x2x3));
118+ x4x5x6x7 = vcombine_u32(vget_low_u32(x4x5x14x15),vget_high_u32(x12x13x6x7));
119+ x8x9x10x11 = vcombine_u32(vget_low_u32(x8x9x2x3),vget_high_u32(x0x1x10x11));
120+ x12x13x14x15 = vcombine_u32(vget_low_u32(x12x13x6x7),vget_high_u32(x4x5x14x15));
121+
122+ vst1q_u8((uint8_t *) input,(uint8x16_t) x0x1x2x3);
123+ vst1q_u8(16 + (uint8_t *) input,(uint8x16_t) x4x5x6x7);
124+ vst1q_u8(32 + (uint8_t *) input,(uint8x16_t) x8x9x10x11);
125+ vst1q_u8(48 + (uint8_t *) input,(uint8x16_t) x12x13x14x15);
126+}
127diff --git a/lib/crypto/crypto_scrypt-neon.c b/lib/crypto/crypto_scrypt-neon.c
128new file mode 100644
129index 0000000..a3bf052
130--- /dev/null
131+++ b/lib/crypto/crypto_scrypt-neon.c
Elliott Hughes87b59b82016-05-17 12:52:12 -0700132@@ -0,0 +1,304 @@
Dees Troy4dff2e62013-11-10 04:11:43 +0000133+/*-
134+ * Copyright 2009 Colin Percival
135+ * All rights reserved.
136+ *
137+ * Redistribution and use in source and binary forms, with or without
138+ * modification, are permitted provided that the following conditions
139+ * are met:
140+ * 1. Redistributions of source code must retain the above copyright
141+ * notice, this list of conditions and the following disclaimer.
142+ * 2. Redistributions in binary form must reproduce the above copyright
143+ * notice, this list of conditions and the following disclaimer in the
144+ * documentation and/or other materials provided with the distribution.
145+ *
146+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
147+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
148+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
149+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
150+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
151+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
152+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
153+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
154+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
155+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
156+ * SUCH DAMAGE.
157+ *
158+ * This file was originally written by Colin Percival as part of the Tarsnap
159+ * online backup system.
160+ */
161+#include "scrypt_platform.h"
162+
Dees Troy4dff2e62013-11-10 04:11:43 +0000163+#include <arm_neon.h>
164+
165+#include <errno.h>
166+#include <stdint.h>
167+#include <limits.h>
168+#include <stdlib.h>
169+#include <string.h>
170+
171+#ifdef USE_OPENSSL_PBKDF2
172+#include <openssl/evp.h>
173+#else
174+#include "sha256.h"
175+#endif
176+#include "sysendian.h"
177+
178+#include "crypto_scrypt.h"
179+
180+#include "crypto_scrypt-neon-salsa208.h"
181+
182+static void blkcpy(void *, void *, size_t);
183+static void blkxor(void *, void *, size_t);
184+void crypto_core_salsa208_armneon2(void *);
185+static void blockmix_salsa8(uint8x16_t *, uint8x16_t *, uint8x16_t *, size_t);
186+static uint64_t integerify(void *, size_t);
187+static void smix(uint8_t *, size_t, uint64_t, void *, void *);
188+
189+static void
190+blkcpy(void * dest, void * src, size_t len)
191+{
192+ uint8x16_t * D = dest;
193+ uint8x16_t * S = src;
194+ size_t L = len / 16;
195+ size_t i;
196+
197+ for (i = 0; i < L; i++)
198+ D[i] = S[i];
199+}
200+
201+static void
202+blkxor(void * dest, void * src, size_t len)
203+{
204+ uint8x16_t * D = dest;
205+ uint8x16_t * S = src;
206+ size_t L = len / 16;
207+ size_t i;
208+
209+ for (i = 0; i < L; i++)
210+ D[i] = veorq_u8(D[i], S[i]);
211+}
212+
213+/**
214+ * blockmix_salsa8(B, Y, r):
215+ * Compute B = BlockMix_{salsa20/8, r}(B). The input B must be 128r bytes in
216+ * length; the temporary space Y must also be the same size.
217+ */
218+static void
219+blockmix_salsa8(uint8x16_t * Bin, uint8x16_t * Bout, uint8x16_t * X, size_t r)
220+{
221+ size_t i;
222+
223+ /* 1: X <-- B_{2r - 1} */
224+ blkcpy(X, &Bin[8 * r - 4], 64);
225+
226+ /* 2: for i = 0 to 2r - 1 do */
227+ for (i = 0; i < r; i++) {
228+ /* 3: X <-- H(X \xor B_i) */
229+ blkxor(X, &Bin[i * 8], 64);
230+ salsa20_8_intrinsic((void *) X);
231+
232+ /* 4: Y_i <-- X */
233+ /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
234+ blkcpy(&Bout[i * 4], X, 64);
235+
236+ /* 3: X <-- H(X \xor B_i) */
237+ blkxor(X, &Bin[i * 8 + 4], 64);
238+ salsa20_8_intrinsic((void *) X);
239+
240+ /* 4: Y_i <-- X */
241+ /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
242+ blkcpy(&Bout[(r + i) * 4], X, 64);
243+ }
244+}
245+
246+/**
247+ * integerify(B, r):
248+ * Return the result of parsing B_{2r-1} as a little-endian integer.
249+ */
250+static uint64_t
251+integerify(void * B, size_t r)
252+{
253+ uint8_t * X = (void*)((uintptr_t)(B) + (2 * r - 1) * 64);
254+
255+ return (le64dec(X));
256+}
257+
258+/**
259+ * smix(B, r, N, V, XY):
260+ * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; the
261+ * temporary storage V must be 128rN bytes in length; the temporary storage
262+ * XY must be 256r bytes in length. The value N must be a power of 2.
263+ */
264+static void
265+smix(uint8_t * B, size_t r, uint64_t N, void * V, void * XY)
266+{
267+ uint8x16_t * X = XY;
268+ uint8x16_t * Y = (void *)((uintptr_t)(XY) + 128 * r);
269+ uint8x16_t * Z = (void *)((uintptr_t)(XY) + 256 * r);
270+ uint32_t * X32 = (void *)X;
271+ uint64_t i, j;
272+ size_t k;
273+
274+ /* 1: X <-- B */
275+ blkcpy(X, B, 128 * r);
276+
277+ /* 2: for i = 0 to N - 1 do */
278+ for (i = 0; i < N; i += 2) {
279+ /* 3: V_i <-- X */
280+ blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r);
281+
282+ /* 4: X <-- H(X) */
283+ blockmix_salsa8(X, Y, Z, r);
284+
285+ /* 3: V_i <-- X */
286+ blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r),
287+ Y, 128 * r);
288+
289+ /* 4: X <-- H(X) */
290+ blockmix_salsa8(Y, X, Z, r);
291+ }
292+
293+ /* 6: for i = 0 to N - 1 do */
294+ for (i = 0; i < N; i += 2) {
295+ /* 7: j <-- Integerify(X) mod N */
296+ j = integerify(X, r) & (N - 1);
297+
298+ /* 8: X <-- H(X \xor V_j) */
299+ blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
300+ blockmix_salsa8(X, Y, Z, r);
301+
302+ /* 7: j <-- Integerify(X) mod N */
303+ j = integerify(Y, r) & (N - 1);
304+
305+ /* 8: X <-- H(X \xor V_j) */
306+ blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
307+ blockmix_salsa8(Y, X, Z, r);
308+ }
309+
310+ /* 10: B' <-- X */
311+ blkcpy(B, X, 128 * r);
312+}
313+
314+/**
315+ * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
316+ * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
317+ * p, buflen) and write the result into buf. The parameters r, p, and buflen
318+ * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
319+ * must be a power of 2.
320+ *
321+ * Return 0 on success; or -1 on error.
322+ */
323+int
324+crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
325+ const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
326+ uint8_t * buf, size_t buflen)
327+{
328+ void * B0, * V0, * XY0;
329+ uint8_t * B;
330+ uint32_t * V;
331+ uint32_t * XY;
332+ uint32_t i;
333+
334+ /* Sanity-check parameters. */
335+#if SIZE_MAX > UINT32_MAX
336+ if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
337+ errno = EFBIG;
338+ goto err0;
339+ }
340+#endif
341+ if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
342+ errno = EFBIG;
343+ goto err0;
344+ }
345+ if (((N & (N - 1)) != 0) || (N == 0)) {
346+ errno = EINVAL;
347+ goto err0;
348+ }
349+ if ((r > SIZE_MAX / 128 / p) ||
350+#if SIZE_MAX / 256 <= UINT32_MAX
351+ (r > SIZE_MAX / 256) ||
352+#endif
353+ (N > SIZE_MAX / 128 / r)) {
354+ errno = ENOMEM;
355+ goto err0;
356+ }
357+
358+ /* Allocate memory. */
359+#ifdef HAVE_POSIX_MEMALIGN
360+ if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0)
361+ goto err0;
362+ B = (uint8_t *)(B0);
363+ if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0)
364+ goto err1;
365+ XY = (uint32_t *)(XY0);
366+#ifndef MAP_ANON
367+ if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0)
368+ goto err2;
369+ V = (uint32_t *)(V0);
370+#endif
371+#else
372+ if ((B0 = malloc(128 * r * p + 63)) == NULL)
373+ goto err0;
374+ B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63));
375+ if ((XY0 = malloc(256 * r + 64 + 63)) == NULL)
376+ goto err1;
377+ XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63));
378+#ifndef MAP_ANON
379+ if ((V0 = malloc(128 * r * N + 63)) == NULL)
380+ goto err2;
381+ V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63));
382+#endif
383+#endif
384+#ifdef MAP_ANON
385+ if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE,
386+#ifdef MAP_NOCORE
387+ MAP_ANON | MAP_PRIVATE | MAP_NOCORE,
388+#else
389+ MAP_ANON | MAP_PRIVATE,
390+#endif
391+ -1, 0)) == MAP_FAILED)
392+ goto err2;
393+ V = (uint32_t *)(V0);
394+#endif
395+
396+ /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
397+#ifdef USE_OPENSSL_PBKDF2
398+ PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, salt, saltlen, 1, EVP_sha256(), p * 128 * r, B);
399+#else
400+ PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
401+#endif
402+
403+ /* 2: for i = 0 to p - 1 do */
404+ for (i = 0; i < p; i++) {
405+ /* 3: B_i <-- MF(B_i, N) */
406+ smix(&B[i * 128 * r], r, N, V, XY);
407+ }
408+
409+ /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
410+#ifdef USE_OPENSSL_PBKDF2
411+ PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, B, p * 128 * r, 1, EVP_sha256(), buflen, buf);
412+#else
413+ PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
414+#endif
415+
416+ /* Free memory. */
417+#ifdef MAP_ANON
418+ if (munmap(V0, 128 * r * N))
419+ goto err2;
420+#else
421+ free(V0);
422+#endif
423+ free(XY0);
424+ free(B0);
425+
426+ /* Success! */
427+ return (0);
428+
429+err2:
430+ free(XY0);
431+err1:
432+ free(B0);
433+err0:
434+ /* Failure! */
435+ return (-1);
436+}