Ethan Yonker | 1e4a199 | 2014-11-06 09:05:01 -0600 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2013 The Android Open Source Project |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * * Redistributions of source code must retain the above copyright |
| 7 | * notice, this list of conditions and the following disclaimer. |
| 8 | * * Redistributions in binary form must reproduce the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer in the |
| 10 | * documentation and/or other materials provided with the distribution. |
| 11 | * * Neither the name of Google Inc. nor the names of its contributors may |
| 12 | * be used to endorse or promote products derived from this software |
| 13 | * without specific prior written permission. |
| 14 | * |
| 15 | * THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR |
| 16 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| 17 | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO |
| 18 | * EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 19 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 20 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; |
| 21 | * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| 22 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR |
| 23 | * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF |
| 24 | * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | */ |
| 26 | |
| 27 | // This is an implementation of the P256 elliptic curve group. It's written to |
| 28 | // be portable 32-bit, although it's still constant-time. |
| 29 | // |
| 30 | // WARNING: Implementing these functions in a constant-time manner is far from |
| 31 | // obvious. Be careful when touching this code. |
| 32 | // |
| 33 | // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. |
| 34 | |
| 35 | #include <stdint.h> |
| 36 | #include <stdio.h> |
| 37 | |
| 38 | #include <string.h> |
| 39 | #include <stdlib.h> |
| 40 | |
| 41 | #include "mincrypt/p256.h" |
| 42 | |
| 43 | typedef uint8_t u8; |
| 44 | typedef uint32_t u32; |
| 45 | typedef int32_t s32; |
| 46 | typedef uint64_t u64; |
| 47 | |
| 48 | /* Our field elements are represented as nine 32-bit limbs. |
| 49 | * |
| 50 | * The value of an felem (field element) is: |
| 51 | * x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228) |
| 52 | * |
| 53 | * That is, each limb is alternately 29 or 28-bits wide in little-endian |
| 54 | * order. |
| 55 | * |
| 56 | * This means that an felem hits 2**257, rather than 2**256 as we would like. A |
| 57 | * 28, 29, ... pattern would cause us to hit 2**256, but that causes problems |
| 58 | * when multiplying as terms end up one bit short of a limb which would require |
| 59 | * much bit-shifting to correct. |
| 60 | * |
| 61 | * Finally, the values stored in an felem are in Montgomery form. So the value |
| 62 | * |y| is stored as (y*R) mod p, where p is the P-256 prime and R is 2**257. |
| 63 | */ |
| 64 | typedef u32 limb; |
| 65 | #define NLIMBS 9 |
| 66 | typedef limb felem[NLIMBS]; |
| 67 | |
| 68 | static const limb kBottom28Bits = 0xfffffff; |
| 69 | static const limb kBottom29Bits = 0x1fffffff; |
| 70 | |
| 71 | /* kOne is the number 1 as an felem. It's 2**257 mod p split up into 29 and |
| 72 | * 28-bit words. */ |
| 73 | static const felem kOne = { |
| 74 | 2, 0, 0, 0xffff800, |
| 75 | 0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff, |
| 76 | 0 |
| 77 | }; |
| 78 | static const felem kZero = {0}; |
| 79 | static const felem kP = { |
| 80 | 0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff, |
| 81 | 0, 0, 0x200000, 0xf000000, |
| 82 | 0xfffffff |
| 83 | }; |
| 84 | static const felem k2P = { |
| 85 | 0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff, |
| 86 | 0, 0, 0x400000, 0xe000000, |
| 87 | 0x1fffffff |
| 88 | }; |
| 89 | /* kPrecomputed contains precomputed values to aid the calculation of scalar |
| 90 | * multiples of the base point, G. It's actually two, equal length, tables |
| 91 | * concatenated. |
| 92 | * |
| 93 | * The first table contains (x,y) felem pairs for 16 multiples of the base |
| 94 | * point, G. |
| 95 | * |
| 96 | * Index | Index (binary) | Value |
| 97 | * 0 | 0000 | 0G (all zeros, omitted) |
| 98 | * 1 | 0001 | G |
| 99 | * 2 | 0010 | 2**64G |
| 100 | * 3 | 0011 | 2**64G + G |
| 101 | * 4 | 0100 | 2**128G |
| 102 | * 5 | 0101 | 2**128G + G |
| 103 | * 6 | 0110 | 2**128G + 2**64G |
| 104 | * 7 | 0111 | 2**128G + 2**64G + G |
| 105 | * 8 | 1000 | 2**192G |
| 106 | * 9 | 1001 | 2**192G + G |
| 107 | * 10 | 1010 | 2**192G + 2**64G |
| 108 | * 11 | 1011 | 2**192G + 2**64G + G |
| 109 | * 12 | 1100 | 2**192G + 2**128G |
| 110 | * 13 | 1101 | 2**192G + 2**128G + G |
| 111 | * 14 | 1110 | 2**192G + 2**128G + 2**64G |
| 112 | * 15 | 1111 | 2**192G + 2**128G + 2**64G + G |
| 113 | * |
| 114 | * The second table follows the same style, but the terms are 2**32G, |
| 115 | * 2**96G, 2**160G, 2**224G. |
| 116 | * |
| 117 | * This is ~2KB of data. */ |
| 118 | static const limb kPrecomputed[NLIMBS * 2 * 15 * 2] = { |
| 119 | 0x11522878, 0xe730d41, 0xdb60179, 0x4afe2ff, 0x12883add, 0xcaddd88, 0x119e7edc, 0xd4a6eab, 0x3120bee, |
| 120 | 0x1d2aac15, 0xf25357c, 0x19e45cdd, 0x5c721d0, 0x1992c5a5, 0xa237487, 0x154ba21, 0x14b10bb, 0xae3fe3, |
| 121 | 0xd41a576, 0x922fc51, 0x234994f, 0x60b60d3, 0x164586ae, 0xce95f18, 0x1fe49073, 0x3fa36cc, 0x5ebcd2c, |
| 122 | 0xb402f2f, 0x15c70bf, 0x1561925c, 0x5a26704, 0xda91e90, 0xcdc1c7f, 0x1ea12446, 0xe1ade1e, 0xec91f22, |
| 123 | 0x26f7778, 0x566847e, 0xa0bec9e, 0x234f453, 0x1a31f21a, 0xd85e75c, 0x56c7109, 0xa267a00, 0xb57c050, |
| 124 | 0x98fb57, 0xaa837cc, 0x60c0792, 0xcfa5e19, 0x61bab9e, 0x589e39b, 0xa324c5, 0x7d6dee7, 0x2976e4b, |
| 125 | 0x1fc4124a, 0xa8c244b, 0x1ce86762, 0xcd61c7e, 0x1831c8e0, 0x75774e1, 0x1d96a5a9, 0x843a649, 0xc3ab0fa, |
| 126 | 0x6e2e7d5, 0x7673a2a, 0x178b65e8, 0x4003e9b, 0x1a1f11c2, 0x7816ea, 0xf643e11, 0x58c43df, 0xf423fc2, |
| 127 | 0x19633ffa, 0x891f2b2, 0x123c231c, 0x46add8c, 0x54700dd, 0x59e2b17, 0x172db40f, 0x83e277d, 0xb0dd609, |
| 128 | 0xfd1da12, 0x35c6e52, 0x19ede20c, 0xd19e0c0, 0x97d0f40, 0xb015b19, 0x449e3f5, 0xe10c9e, 0x33ab581, |
| 129 | 0x56a67ab, 0x577734d, 0x1dddc062, 0xc57b10d, 0x149b39d, 0x26a9e7b, 0xc35df9f, 0x48764cd, 0x76dbcca, |
| 130 | 0xca4b366, 0xe9303ab, 0x1a7480e7, 0x57e9e81, 0x1e13eb50, 0xf466cf3, 0x6f16b20, 0x4ba3173, 0xc168c33, |
| 131 | 0x15cb5439, 0x6a38e11, 0x73658bd, 0xb29564f, 0x3f6dc5b, 0x53b97e, 0x1322c4c0, 0x65dd7ff, 0x3a1e4f6, |
| 132 | 0x14e614aa, 0x9246317, 0x1bc83aca, 0xad97eed, 0xd38ce4a, 0xf82b006, 0x341f077, 0xa6add89, 0x4894acd, |
| 133 | 0x9f162d5, 0xf8410ef, 0x1b266a56, 0xd7f223, 0x3e0cb92, 0xe39b672, 0x6a2901a, 0x69a8556, 0x7e7c0, |
| 134 | 0x9b7d8d3, 0x309a80, 0x1ad05f7f, 0xc2fb5dd, 0xcbfd41d, 0x9ceb638, 0x1051825c, 0xda0cf5b, 0x812e881, |
| 135 | 0x6f35669, 0x6a56f2c, 0x1df8d184, 0x345820, 0x1477d477, 0x1645db1, 0xbe80c51, 0xc22be3e, 0xe35e65a, |
| 136 | 0x1aeb7aa0, 0xc375315, 0xf67bc99, 0x7fdd7b9, 0x191fc1be, 0x61235d, 0x2c184e9, 0x1c5a839, 0x47a1e26, |
| 137 | 0xb7cb456, 0x93e225d, 0x14f3c6ed, 0xccc1ac9, 0x17fe37f3, 0x4988989, 0x1a90c502, 0x2f32042, 0xa17769b, |
| 138 | 0xafd8c7c, 0x8191c6e, 0x1dcdb237, 0x16200c0, 0x107b32a1, 0x66c08db, 0x10d06a02, 0x3fc93, 0x5620023, |
| 139 | 0x16722b27, 0x68b5c59, 0x270fcfc, 0xfad0ecc, 0xe5de1c2, 0xeab466b, 0x2fc513c, 0x407f75c, 0xbaab133, |
| 140 | 0x9705fe9, 0xb88b8e7, 0x734c993, 0x1e1ff8f, 0x19156970, 0xabd0f00, 0x10469ea7, 0x3293ac0, 0xcdc98aa, |
| 141 | 0x1d843fd, 0xe14bfe8, 0x15be825f, 0x8b5212, 0xeb3fb67, 0x81cbd29, 0xbc62f16, 0x2b6fcc7, 0xf5a4e29, |
| 142 | 0x13560b66, 0xc0b6ac2, 0x51ae690, 0xd41e271, 0xf3e9bd4, 0x1d70aab, 0x1029f72, 0x73e1c35, 0xee70fbc, |
| 143 | 0xad81baf, 0x9ecc49a, 0x86c741e, 0xfe6be30, 0x176752e7, 0x23d416, 0x1f83de85, 0x27de188, 0x66f70b8, |
| 144 | 0x181cd51f, 0x96b6e4c, 0x188f2335, 0xa5df759, 0x17a77eb6, 0xfeb0e73, 0x154ae914, 0x2f3ec51, 0x3826b59, |
| 145 | 0xb91f17d, 0x1c72949, 0x1362bf0a, 0xe23fddf, 0xa5614b0, 0xf7d8f, 0x79061, 0x823d9d2, 0x8213f39, |
| 146 | 0x1128ae0b, 0xd095d05, 0xb85c0c2, 0x1ecb2ef, 0x24ddc84, 0xe35e901, 0x18411a4a, 0xf5ddc3d, 0x3786689, |
| 147 | 0x52260e8, 0x5ae3564, 0x542b10d, 0x8d93a45, 0x19952aa4, 0x996cc41, 0x1051a729, 0x4be3499, 0x52b23aa, |
| 148 | 0x109f307e, 0x6f5b6bb, 0x1f84e1e7, 0x77a0cfa, 0x10c4df3f, 0x25a02ea, 0xb048035, 0xe31de66, 0xc6ecaa3, |
| 149 | 0x28ea335, 0x2886024, 0x1372f020, 0xf55d35, 0x15e4684c, 0xf2a9e17, 0x1a4a7529, 0xcb7beb1, 0xb2a78a1, |
| 150 | 0x1ab21f1f, 0x6361ccf, 0x6c9179d, 0xb135627, 0x1267b974, 0x4408bad, 0x1cbff658, 0xe3d6511, 0xc7d76f, |
| 151 | 0x1cc7a69, 0xe7ee31b, 0x54fab4f, 0x2b914f, 0x1ad27a30, 0xcd3579e, 0xc50124c, 0x50daa90, 0xb13f72, |
| 152 | 0xb06aa75, 0x70f5cc6, 0x1649e5aa, 0x84a5312, 0x329043c, 0x41c4011, 0x13d32411, 0xb04a838, 0xd760d2d, |
| 153 | 0x1713b532, 0xbaa0c03, 0x84022ab, 0x6bcf5c1, 0x2f45379, 0x18ae070, 0x18c9e11e, 0x20bca9a, 0x66f496b, |
| 154 | 0x3eef294, 0x67500d2, 0xd7f613c, 0x2dbbeb, 0xb741038, 0xe04133f, 0x1582968d, 0xbe985f7, 0x1acbc1a, |
| 155 | 0x1a6a939f, 0x33e50f6, 0xd665ed4, 0xb4b7bd6, 0x1e5a3799, 0x6b33847, 0x17fa56ff, 0x65ef930, 0x21dc4a, |
| 156 | 0x2b37659, 0x450fe17, 0xb357b65, 0xdf5efac, 0x15397bef, 0x9d35a7f, 0x112ac15f, 0x624e62e, 0xa90ae2f, |
| 157 | 0x107eecd2, 0x1f69bbe, 0x77d6bce, 0x5741394, 0x13c684fc, 0x950c910, 0x725522b, 0xdc78583, 0x40eeabb, |
| 158 | 0x1fde328a, 0xbd61d96, 0xd28c387, 0x9e77d89, 0x12550c40, 0x759cb7d, 0x367ef34, 0xae2a960, 0x91b8bdc, |
| 159 | 0x93462a9, 0xf469ef, 0xb2e9aef, 0xd2ca771, 0x54e1f42, 0x7aaa49, 0x6316abb, 0x2413c8e, 0x5425bf9, |
| 160 | 0x1bed3e3a, 0xf272274, 0x1f5e7326, 0x6416517, 0xea27072, 0x9cedea7, 0x6e7633, 0x7c91952, 0xd806dce, |
| 161 | 0x8e2a7e1, 0xe421e1a, 0x418c9e1, 0x1dbc890, 0x1b395c36, 0xa1dc175, 0x1dc4ef73, 0x8956f34, 0xe4b5cf2, |
| 162 | 0x1b0d3a18, 0x3194a36, 0x6c2641f, 0xe44124c, 0xa2f4eaa, 0xa8c25ba, 0xf927ed7, 0x627b614, 0x7371cca, |
| 163 | 0xba16694, 0x417bc03, 0x7c0a7e3, 0x9c35c19, 0x1168a205, 0x8b6b00d, 0x10e3edc9, 0x9c19bf2, 0x5882229, |
| 164 | 0x1b2b4162, 0xa5cef1a, 0x1543622b, 0x9bd433e, 0x364e04d, 0x7480792, 0x5c9b5b3, 0xe85ff25, 0x408ef57, |
| 165 | 0x1814cfa4, 0x121b41b, 0xd248a0f, 0x3b05222, 0x39bb16a, 0xc75966d, 0xa038113, 0xa4a1769, 0x11fbc6c, |
| 166 | 0x917e50e, 0xeec3da8, 0x169d6eac, 0x10c1699, 0xa416153, 0xf724912, 0x15cd60b7, 0x4acbad9, 0x5efc5fa, |
| 167 | 0xf150ed7, 0x122b51, 0x1104b40a, 0xcb7f442, 0xfbb28ff, 0x6ac53ca, 0x196142cc, 0x7bf0fa9, 0x957651, |
| 168 | 0x4e0f215, 0xed439f8, 0x3f46bd5, 0x5ace82f, 0x110916b6, 0x6db078, 0xffd7d57, 0xf2ecaac, 0xca86dec, |
| 169 | 0x15d6b2da, 0x965ecc9, 0x1c92b4c2, 0x1f3811, 0x1cb080f5, 0x2d8b804, 0x19d1c12d, 0xf20bd46, 0x1951fa7, |
| 170 | 0xa3656c3, 0x523a425, 0xfcd0692, 0xd44ddc8, 0x131f0f5b, 0xaf80e4a, 0xcd9fc74, 0x99bb618, 0x2db944c, |
| 171 | 0xa673090, 0x1c210e1, 0x178c8d23, 0x1474383, 0x10b8743d, 0x985a55b, 0x2e74779, 0x576138, 0x9587927, |
| 172 | 0x133130fa, 0xbe05516, 0x9f4d619, 0xbb62570, 0x99ec591, 0xd9468fe, 0x1d07782d, 0xfc72e0b, 0x701b298, |
| 173 | 0x1863863b, 0x85954b8, 0x121a0c36, 0x9e7fedf, 0xf64b429, 0x9b9d71e, 0x14e2f5d8, 0xf858d3a, 0x942eea8, |
| 174 | 0xda5b765, 0x6edafff, 0xa9d18cc, 0xc65e4ba, 0x1c747e86, 0xe4ea915, 0x1981d7a1, 0x8395659, 0x52ed4e2, |
| 175 | 0x87d43b7, 0x37ab11b, 0x19d292ce, 0xf8d4692, 0x18c3053f, 0x8863e13, 0x4c146c0, 0x6bdf55a, 0x4e4457d, |
| 176 | 0x16152289, 0xac78ec2, 0x1a59c5a2, 0x2028b97, 0x71c2d01, 0x295851f, 0x404747b, 0x878558d, 0x7d29aa4, |
| 177 | 0x13d8341f, 0x8daefd7, 0x139c972d, 0x6b7ea75, 0xd4a9dde, 0xff163d8, 0x81d55d7, 0xa5bef68, 0xb7b30d8, |
| 178 | 0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f51951, 0x9d0c177, 0x1c49a78, |
| 179 | }; |
| 180 | |
| 181 | |
| 182 | /* Field element operations: */ |
| 183 | |
| 184 | /* NON_ZERO_TO_ALL_ONES returns: |
| 185 | * 0xffffffff for 0 < x <= 2**31 |
| 186 | * 0 for x == 0 or x > 2**31. |
| 187 | * |
| 188 | * x must be a u32 or an equivalent type such as limb. */ |
| 189 | #define NON_ZERO_TO_ALL_ONES(x) ((((u32)(x) - 1) >> 31) - 1) |
| 190 | |
| 191 | /* felem_reduce_carry adds a multiple of p in order to cancel |carry|, |
| 192 | * which is a term at 2**257. |
| 193 | * |
| 194 | * On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28. |
| 195 | * On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29. */ |
| 196 | static void felem_reduce_carry(felem inout, limb carry) { |
| 197 | const u32 carry_mask = NON_ZERO_TO_ALL_ONES(carry); |
| 198 | |
| 199 | inout[0] += carry << 1; |
| 200 | inout[3] += 0x10000000 & carry_mask; |
| 201 | /* carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the |
| 202 | * previous line therefore this doesn't underflow. */ |
| 203 | inout[3] -= carry << 11; |
| 204 | inout[4] += (0x20000000 - 1) & carry_mask; |
| 205 | inout[5] += (0x10000000 - 1) & carry_mask; |
| 206 | inout[6] += (0x20000000 - 1) & carry_mask; |
| 207 | inout[6] -= carry << 22; |
| 208 | /* This may underflow if carry is non-zero but, if so, we'll fix it in the |
| 209 | * next line. */ |
| 210 | inout[7] -= 1 & carry_mask; |
| 211 | inout[7] += carry << 25; |
| 212 | } |
| 213 | |
| 214 | /* felem_sum sets out = in+in2. |
| 215 | * |
| 216 | * On entry, in[i]+in2[i] must not overflow a 32-bit word. |
| 217 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 */ |
| 218 | static void felem_sum(felem out, const felem in, const felem in2) { |
| 219 | limb carry = 0; |
| 220 | unsigned i; |
| 221 | |
| 222 | for (i = 0;; i++) { |
| 223 | out[i] = in[i] + in2[i]; |
| 224 | out[i] += carry; |
| 225 | carry = out[i] >> 29; |
| 226 | out[i] &= kBottom29Bits; |
| 227 | |
| 228 | i++; |
| 229 | if (i == NLIMBS) |
| 230 | break; |
| 231 | |
| 232 | out[i] = in[i] + in2[i]; |
| 233 | out[i] += carry; |
| 234 | carry = out[i] >> 28; |
| 235 | out[i] &= kBottom28Bits; |
| 236 | } |
| 237 | |
| 238 | felem_reduce_carry(out, carry); |
| 239 | } |
| 240 | |
| 241 | #define two31m3 (((limb)1) << 31) - (((limb)1) << 3) |
| 242 | #define two30m2 (((limb)1) << 30) - (((limb)1) << 2) |
| 243 | #define two30p13m2 (((limb)1) << 30) + (((limb)1) << 13) - (((limb)1) << 2) |
| 244 | #define two31m2 (((limb)1) << 31) - (((limb)1) << 2) |
| 245 | #define two31p24m2 (((limb)1) << 31) + (((limb)1) << 24) - (((limb)1) << 2) |
| 246 | #define two30m27m2 (((limb)1) << 30) - (((limb)1) << 27) - (((limb)1) << 2) |
| 247 | |
| 248 | /* zero31 is 0 mod p. */ |
| 249 | static const felem zero31 = { two31m3, two30m2, two31m2, two30p13m2, two31m2, two30m2, two31p24m2, two30m27m2, two31m2 }; |
| 250 | |
| 251 | /* felem_diff sets out = in-in2. |
| 252 | * |
| 253 | * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and |
| 254 | * in2[0,2,...] < 2**30, in2[1,3,...] < 2**29. |
| 255 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */ |
| 256 | static void felem_diff(felem out, const felem in, const felem in2) { |
| 257 | limb carry = 0; |
| 258 | unsigned i; |
| 259 | |
| 260 | for (i = 0;; i++) { |
| 261 | out[i] = in[i] - in2[i]; |
| 262 | out[i] += zero31[i]; |
| 263 | out[i] += carry; |
| 264 | carry = out[i] >> 29; |
| 265 | out[i] &= kBottom29Bits; |
| 266 | |
| 267 | i++; |
| 268 | if (i == NLIMBS) |
| 269 | break; |
| 270 | |
| 271 | out[i] = in[i] - in2[i]; |
| 272 | out[i] += zero31[i]; |
| 273 | out[i] += carry; |
| 274 | carry = out[i] >> 28; |
| 275 | out[i] &= kBottom28Bits; |
| 276 | } |
| 277 | |
| 278 | felem_reduce_carry(out, carry); |
| 279 | } |
| 280 | |
| 281 | /* felem_reduce_degree sets out = tmp/R mod p where tmp contains 64-bit words |
| 282 | * with the same 29,28,... bit positions as an felem. |
| 283 | * |
| 284 | * The values in felems are in Montgomery form: x*R mod p where R = 2**257. |
| 285 | * Since we just multiplied two Montgomery values together, the result is |
| 286 | * x*y*R*R mod p. We wish to divide by R in order for the result also to be |
| 287 | * in Montgomery form. |
| 288 | * |
| 289 | * On entry: tmp[i] < 2**64 |
| 290 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 */ |
| 291 | static void felem_reduce_degree(felem out, u64 tmp[17]) { |
| 292 | /* The following table may be helpful when reading this code: |
| 293 | * |
| 294 | * Limb number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10... |
| 295 | * Width (bits): 29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29 |
| 296 | * Start bit: 0 | 29| 57| 86|114|143|171|200|228|257|285 |
| 297 | * (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285 */ |
| 298 | limb tmp2[18], carry, x, xMask; |
| 299 | unsigned i; |
| 300 | |
| 301 | /* tmp contains 64-bit words with the same 29,28,29-bit positions as an |
| 302 | * felem. So the top of an element of tmp might overlap with another |
| 303 | * element two positions down. The following loop eliminates this |
| 304 | * overlap. */ |
| 305 | tmp2[0] = (limb)(tmp[0] & kBottom29Bits); |
| 306 | |
| 307 | /* In the following we use "(limb) tmp[x]" and "(limb) (tmp[x]>>32)" to try |
| 308 | * and hint to the compiler that it can do a single-word shift by selecting |
| 309 | * the right register rather than doing a double-word shift and truncating |
| 310 | * afterwards. */ |
| 311 | tmp2[1] = ((limb) tmp[0]) >> 29; |
| 312 | tmp2[1] |= (((limb)(tmp[0] >> 32)) << 3) & kBottom28Bits; |
| 313 | tmp2[1] += ((limb) tmp[1]) & kBottom28Bits; |
| 314 | carry = tmp2[1] >> 28; |
| 315 | tmp2[1] &= kBottom28Bits; |
| 316 | |
| 317 | for (i = 2; i < 17; i++) { |
| 318 | tmp2[i] = ((limb)(tmp[i - 2] >> 32)) >> 25; |
| 319 | tmp2[i] += ((limb)(tmp[i - 1])) >> 28; |
| 320 | tmp2[i] += (((limb)(tmp[i - 1] >> 32)) << 4) & kBottom29Bits; |
| 321 | tmp2[i] += ((limb) tmp[i]) & kBottom29Bits; |
| 322 | tmp2[i] += carry; |
| 323 | carry = tmp2[i] >> 29; |
| 324 | tmp2[i] &= kBottom29Bits; |
| 325 | |
| 326 | i++; |
| 327 | if (i == 17) |
| 328 | break; |
| 329 | tmp2[i] = ((limb)(tmp[i - 2] >> 32)) >> 25; |
| 330 | tmp2[i] += ((limb)(tmp[i - 1])) >> 29; |
| 331 | tmp2[i] += (((limb)(tmp[i - 1] >> 32)) << 3) & kBottom28Bits; |
| 332 | tmp2[i] += ((limb) tmp[i]) & kBottom28Bits; |
| 333 | tmp2[i] += carry; |
| 334 | carry = tmp2[i] >> 28; |
| 335 | tmp2[i] &= kBottom28Bits; |
| 336 | } |
| 337 | |
| 338 | tmp2[17] = ((limb)(tmp[15] >> 32)) >> 25; |
| 339 | tmp2[17] += ((limb)(tmp[16])) >> 29; |
| 340 | tmp2[17] += (((limb)(tmp[16] >> 32)) << 3); |
| 341 | tmp2[17] += carry; |
| 342 | |
| 343 | /* Montgomery elimination of terms. |
| 344 | * |
| 345 | * Since R is 2**257, we can divide by R with a bitwise shift if we can |
| 346 | * ensure that the right-most 257 bits are all zero. We can make that true by |
| 347 | * adding multiplies of p without affecting the value. |
| 348 | * |
| 349 | * So we eliminate limbs from right to left. Since the bottom 29 bits of p |
| 350 | * are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0. |
| 351 | * We can do that for 8 further limbs and then right shift to eliminate the |
| 352 | * extra factor of R. */ |
| 353 | for (i = 0;; i += 2) { |
| 354 | tmp2[i + 1] += tmp2[i] >> 29; |
| 355 | x = tmp2[i] & kBottom29Bits; |
| 356 | xMask = NON_ZERO_TO_ALL_ONES(x); |
| 357 | tmp2[i] = 0; |
| 358 | |
| 359 | /* The bounds calculations for this loop are tricky. Each iteration of |
| 360 | * the loop eliminates two words by adding values to words to their |
| 361 | * right. |
| 362 | * |
| 363 | * The following table contains the amounts added to each word (as an |
| 364 | * offset from the value of i at the top of the loop). The amounts are |
| 365 | * accounted for from the first and second half of the loop separately |
| 366 | * and are written as, for example, 28 to mean a value <2**28. |
| 367 | * |
| 368 | * Word: 3 4 5 6 7 8 9 10 |
| 369 | * Added in top half: 28 11 29 21 29 28 |
| 370 | * 28 29 |
| 371 | * 29 |
| 372 | * Added in bottom half: 29 10 28 21 28 28 |
| 373 | * 29 |
| 374 | * |
| 375 | * The value that is currently offset 7 will be offset 5 for the next |
| 376 | * iteration and then offset 3 for the iteration after that. Therefore |
| 377 | * the total value added will be the values added at 7, 5 and 3. |
| 378 | * |
| 379 | * The following table accumulates these values. The sums at the bottom |
| 380 | * are written as, for example, 29+28, to mean a value < 2**29+2**28. |
| 381 | * |
| 382 | * Word: 3 4 5 6 7 8 9 10 11 12 13 |
| 383 | * 28 11 10 29 21 29 28 28 28 28 28 |
| 384 | * 29 28 11 28 29 28 29 28 29 28 |
| 385 | * 29 28 21 21 29 21 29 21 |
| 386 | * 10 29 28 21 28 21 28 |
| 387 | * 28 29 28 29 28 29 28 |
| 388 | * 11 10 29 10 29 10 |
| 389 | * 29 28 11 28 11 |
| 390 | * 29 29 |
| 391 | * -------------------------------------------- |
| 392 | * 30+ 31+ 30+ 31+ 30+ |
| 393 | * 28+ 29+ 28+ 29+ 21+ |
| 394 | * 21+ 28+ 21+ 28+ 10 |
| 395 | * 10 21+ 10 21+ |
| 396 | * 11 11 |
| 397 | * |
| 398 | * So the greatest amount is added to tmp2[10] and tmp2[12]. If |
| 399 | * tmp2[10/12] has an initial value of <2**29, then the maximum value |
| 400 | * will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32, |
| 401 | * as required. */ |
| 402 | tmp2[i + 3] += (x << 10) & kBottom28Bits; |
| 403 | tmp2[i + 4] += (x >> 18); |
| 404 | |
| 405 | tmp2[i + 6] += (x << 21) & kBottom29Bits; |
| 406 | tmp2[i + 7] += x >> 8; |
| 407 | |
| 408 | /* At position 200, which is the starting bit position for word 7, we |
| 409 | * have a factor of 0xf000000 = 2**28 - 2**24. */ |
| 410 | tmp2[i + 7] += 0x10000000 & xMask; |
| 411 | /* Word 7 is 28 bits wide, so the 2**28 term exactly hits word 8. */ |
| 412 | tmp2[i + 8] += (x - 1) & xMask; |
| 413 | tmp2[i + 7] -= (x << 24) & kBottom28Bits; |
| 414 | tmp2[i + 8] -= x >> 4; |
| 415 | |
| 416 | tmp2[i + 8] += 0x20000000 & xMask; |
| 417 | tmp2[i + 8] -= x; |
| 418 | tmp2[i + 8] += (x << 28) & kBottom29Bits; |
| 419 | tmp2[i + 9] += ((x >> 1) - 1) & xMask; |
| 420 | |
| 421 | if (i+1 == NLIMBS) |
| 422 | break; |
| 423 | tmp2[i + 2] += tmp2[i + 1] >> 28; |
| 424 | x = tmp2[i + 1] & kBottom28Bits; |
| 425 | xMask = NON_ZERO_TO_ALL_ONES(x); |
| 426 | tmp2[i + 1] = 0; |
| 427 | |
| 428 | tmp2[i + 4] += (x << 11) & kBottom29Bits; |
| 429 | tmp2[i + 5] += (x >> 18); |
| 430 | |
| 431 | tmp2[i + 7] += (x << 21) & kBottom28Bits; |
| 432 | tmp2[i + 8] += x >> 7; |
| 433 | |
| 434 | /* At position 199, which is the starting bit of the 8th word when |
| 435 | * dealing with a context starting on an odd word, we have a factor of |
| 436 | * 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th |
| 437 | * word from i+1 is i+8. */ |
| 438 | tmp2[i + 8] += 0x20000000 & xMask; |
| 439 | tmp2[i + 9] += (x - 1) & xMask; |
| 440 | tmp2[i + 8] -= (x << 25) & kBottom29Bits; |
| 441 | tmp2[i + 9] -= x >> 4; |
| 442 | |
| 443 | tmp2[i + 9] += 0x10000000 & xMask; |
| 444 | tmp2[i + 9] -= x; |
| 445 | tmp2[i + 10] += (x - 1) & xMask; |
| 446 | } |
| 447 | |
| 448 | /* We merge the right shift with a carry chain. The words above 2**257 have |
| 449 | * widths of 28,29,... which we need to correct when copying them down. */ |
| 450 | carry = 0; |
| 451 | for (i = 0; i < 8; i++) { |
| 452 | /* The maximum value of tmp2[i + 9] occurs on the first iteration and |
| 453 | * is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is |
| 454 | * therefore safe. */ |
| 455 | out[i] = tmp2[i + 9]; |
| 456 | out[i] += carry; |
| 457 | out[i] += (tmp2[i + 10] << 28) & kBottom29Bits; |
| 458 | carry = out[i] >> 29; |
| 459 | out[i] &= kBottom29Bits; |
| 460 | |
| 461 | i++; |
| 462 | out[i] = tmp2[i + 9] >> 1; |
| 463 | out[i] += carry; |
| 464 | carry = out[i] >> 28; |
| 465 | out[i] &= kBottom28Bits; |
| 466 | } |
| 467 | |
| 468 | out[8] = tmp2[17]; |
| 469 | out[8] += carry; |
| 470 | carry = out[8] >> 29; |
| 471 | out[8] &= kBottom29Bits; |
| 472 | |
| 473 | felem_reduce_carry(out, carry); |
| 474 | } |
| 475 | |
| 476 | /* felem_square sets out=in*in. |
| 477 | * |
| 478 | * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29. |
| 479 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */ |
| 480 | static void felem_square(felem out, const felem in) { |
| 481 | u64 tmp[17]; |
| 482 | |
| 483 | tmp[0] = ((u64) in[0]) * in[0]; |
| 484 | tmp[1] = ((u64) in[0]) * (in[1] << 1); |
| 485 | tmp[2] = ((u64) in[0]) * (in[2] << 1) + |
| 486 | ((u64) in[1]) * (in[1] << 1); |
| 487 | tmp[3] = ((u64) in[0]) * (in[3] << 1) + |
| 488 | ((u64) in[1]) * (in[2] << 1); |
| 489 | tmp[4] = ((u64) in[0]) * (in[4] << 1) + |
| 490 | ((u64) in[1]) * (in[3] << 2) + ((u64) in[2]) * in[2]; |
| 491 | tmp[5] = ((u64) in[0]) * (in[5] << 1) + ((u64) in[1]) * |
| 492 | (in[4] << 1) + ((u64) in[2]) * (in[3] << 1); |
| 493 | tmp[6] = ((u64) in[0]) * (in[6] << 1) + ((u64) in[1]) * |
| 494 | (in[5] << 2) + ((u64) in[2]) * (in[4] << 1) + |
| 495 | ((u64) in[3]) * (in[3] << 1); |
| 496 | tmp[7] = ((u64) in[0]) * (in[7] << 1) + ((u64) in[1]) * |
| 497 | (in[6] << 1) + ((u64) in[2]) * (in[5] << 1) + |
| 498 | ((u64) in[3]) * (in[4] << 1); |
| 499 | /* tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60, |
| 500 | * which is < 2**64 as required. */ |
| 501 | tmp[8] = ((u64) in[0]) * (in[8] << 1) + ((u64) in[1]) * |
| 502 | (in[7] << 2) + ((u64) in[2]) * (in[6] << 1) + |
| 503 | ((u64) in[3]) * (in[5] << 2) + ((u64) in[4]) * in[4]; |
| 504 | tmp[9] = ((u64) in[1]) * (in[8] << 1) + ((u64) in[2]) * |
| 505 | (in[7] << 1) + ((u64) in[3]) * (in[6] << 1) + |
| 506 | ((u64) in[4]) * (in[5] << 1); |
| 507 | tmp[10] = ((u64) in[2]) * (in[8] << 1) + ((u64) in[3]) * |
| 508 | (in[7] << 2) + ((u64) in[4]) * (in[6] << 1) + |
| 509 | ((u64) in[5]) * (in[5] << 1); |
| 510 | tmp[11] = ((u64) in[3]) * (in[8] << 1) + ((u64) in[4]) * |
| 511 | (in[7] << 1) + ((u64) in[5]) * (in[6] << 1); |
| 512 | tmp[12] = ((u64) in[4]) * (in[8] << 1) + |
| 513 | ((u64) in[5]) * (in[7] << 2) + ((u64) in[6]) * in[6]; |
| 514 | tmp[13] = ((u64) in[5]) * (in[8] << 1) + |
| 515 | ((u64) in[6]) * (in[7] << 1); |
| 516 | tmp[14] = ((u64) in[6]) * (in[8] << 1) + |
| 517 | ((u64) in[7]) * (in[7] << 1); |
| 518 | tmp[15] = ((u64) in[7]) * (in[8] << 1); |
| 519 | tmp[16] = ((u64) in[8]) * in[8]; |
| 520 | |
| 521 | felem_reduce_degree(out, tmp); |
| 522 | } |
| 523 | |
| 524 | /* felem_mul sets out=in*in2. |
| 525 | * |
| 526 | * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and |
| 527 | * in2[0,2,...] < 2**30, in2[1,3,...] < 2**29. |
| 528 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */ |
| 529 | static void felem_mul(felem out, const felem in, const felem in2) { |
| 530 | u64 tmp[17]; |
| 531 | |
| 532 | tmp[0] = ((u64) in[0]) * in2[0]; |
| 533 | tmp[1] = ((u64) in[0]) * (in2[1] << 0) + |
| 534 | ((u64) in[1]) * (in2[0] << 0); |
| 535 | tmp[2] = ((u64) in[0]) * (in2[2] << 0) + ((u64) in[1]) * |
| 536 | (in2[1] << 1) + ((u64) in[2]) * (in2[0] << 0); |
| 537 | tmp[3] = ((u64) in[0]) * (in2[3] << 0) + ((u64) in[1]) * |
| 538 | (in2[2] << 0) + ((u64) in[2]) * (in2[1] << 0) + |
| 539 | ((u64) in[3]) * (in2[0] << 0); |
| 540 | tmp[4] = ((u64) in[0]) * (in2[4] << 0) + ((u64) in[1]) * |
| 541 | (in2[3] << 1) + ((u64) in[2]) * (in2[2] << 0) + |
| 542 | ((u64) in[3]) * (in2[1] << 1) + |
| 543 | ((u64) in[4]) * (in2[0] << 0); |
| 544 | tmp[5] = ((u64) in[0]) * (in2[5] << 0) + ((u64) in[1]) * |
| 545 | (in2[4] << 0) + ((u64) in[2]) * (in2[3] << 0) + |
| 546 | ((u64) in[3]) * (in2[2] << 0) + ((u64) in[4]) * |
| 547 | (in2[1] << 0) + ((u64) in[5]) * (in2[0] << 0); |
| 548 | tmp[6] = ((u64) in[0]) * (in2[6] << 0) + ((u64) in[1]) * |
| 549 | (in2[5] << 1) + ((u64) in[2]) * (in2[4] << 0) + |
| 550 | ((u64) in[3]) * (in2[3] << 1) + ((u64) in[4]) * |
| 551 | (in2[2] << 0) + ((u64) in[5]) * (in2[1] << 1) + |
| 552 | ((u64) in[6]) * (in2[0] << 0); |
| 553 | tmp[7] = ((u64) in[0]) * (in2[7] << 0) + ((u64) in[1]) * |
| 554 | (in2[6] << 0) + ((u64) in[2]) * (in2[5] << 0) + |
| 555 | ((u64) in[3]) * (in2[4] << 0) + ((u64) in[4]) * |
| 556 | (in2[3] << 0) + ((u64) in[5]) * (in2[2] << 0) + |
| 557 | ((u64) in[6]) * (in2[1] << 0) + |
| 558 | ((u64) in[7]) * (in2[0] << 0); |
| 559 | /* tmp[8] has the greatest value but doesn't overflow. See logic in |
| 560 | * felem_square. */ |
| 561 | tmp[8] = ((u64) in[0]) * (in2[8] << 0) + ((u64) in[1]) * |
| 562 | (in2[7] << 1) + ((u64) in[2]) * (in2[6] << 0) + |
| 563 | ((u64) in[3]) * (in2[5] << 1) + ((u64) in[4]) * |
| 564 | (in2[4] << 0) + ((u64) in[5]) * (in2[3] << 1) + |
| 565 | ((u64) in[6]) * (in2[2] << 0) + ((u64) in[7]) * |
| 566 | (in2[1] << 1) + ((u64) in[8]) * (in2[0] << 0); |
| 567 | tmp[9] = ((u64) in[1]) * (in2[8] << 0) + ((u64) in[2]) * |
| 568 | (in2[7] << 0) + ((u64) in[3]) * (in2[6] << 0) + |
| 569 | ((u64) in[4]) * (in2[5] << 0) + ((u64) in[5]) * |
| 570 | (in2[4] << 0) + ((u64) in[6]) * (in2[3] << 0) + |
| 571 | ((u64) in[7]) * (in2[2] << 0) + |
| 572 | ((u64) in[8]) * (in2[1] << 0); |
| 573 | tmp[10] = ((u64) in[2]) * (in2[8] << 0) + ((u64) in[3]) * |
| 574 | (in2[7] << 1) + ((u64) in[4]) * (in2[6] << 0) + |
| 575 | ((u64) in[5]) * (in2[5] << 1) + ((u64) in[6]) * |
| 576 | (in2[4] << 0) + ((u64) in[7]) * (in2[3] << 1) + |
| 577 | ((u64) in[8]) * (in2[2] << 0); |
| 578 | tmp[11] = ((u64) in[3]) * (in2[8] << 0) + ((u64) in[4]) * |
| 579 | (in2[7] << 0) + ((u64) in[5]) * (in2[6] << 0) + |
| 580 | ((u64) in[6]) * (in2[5] << 0) + ((u64) in[7]) * |
| 581 | (in2[4] << 0) + ((u64) in[8]) * (in2[3] << 0); |
| 582 | tmp[12] = ((u64) in[4]) * (in2[8] << 0) + ((u64) in[5]) * |
| 583 | (in2[7] << 1) + ((u64) in[6]) * (in2[6] << 0) + |
| 584 | ((u64) in[7]) * (in2[5] << 1) + |
| 585 | ((u64) in[8]) * (in2[4] << 0); |
| 586 | tmp[13] = ((u64) in[5]) * (in2[8] << 0) + ((u64) in[6]) * |
| 587 | (in2[7] << 0) + ((u64) in[7]) * (in2[6] << 0) + |
| 588 | ((u64) in[8]) * (in2[5] << 0); |
| 589 | tmp[14] = ((u64) in[6]) * (in2[8] << 0) + ((u64) in[7]) * |
| 590 | (in2[7] << 1) + ((u64) in[8]) * (in2[6] << 0); |
| 591 | tmp[15] = ((u64) in[7]) * (in2[8] << 0) + |
| 592 | ((u64) in[8]) * (in2[7] << 0); |
| 593 | tmp[16] = ((u64) in[8]) * (in2[8] << 0); |
| 594 | |
| 595 | felem_reduce_degree(out, tmp); |
| 596 | } |
| 597 | |
| 598 | static void felem_assign(felem out, const felem in) { |
| 599 | memcpy(out, in, sizeof(felem)); |
| 600 | } |
| 601 | |
| 602 | /* felem_inv calculates |out| = |in|^{-1} |
| 603 | * |
| 604 | * Based on Fermat's Little Theorem: |
| 605 | * a^p = a (mod p) |
| 606 | * a^{p-1} = 1 (mod p) |
| 607 | * a^{p-2} = a^{-1} (mod p) |
| 608 | */ |
| 609 | static void felem_inv(felem out, const felem in) { |
| 610 | felem ftmp, ftmp2; |
| 611 | /* each e_I will hold |in|^{2^I - 1} */ |
| 612 | felem e2, e4, e8, e16, e32, e64; |
| 613 | unsigned i; |
| 614 | |
| 615 | felem_square(ftmp, in); /* 2^1 */ |
| 616 | felem_mul(ftmp, in, ftmp); /* 2^2 - 2^0 */ |
| 617 | felem_assign(e2, ftmp); |
| 618 | felem_square(ftmp, ftmp); /* 2^3 - 2^1 */ |
| 619 | felem_square(ftmp, ftmp); /* 2^4 - 2^2 */ |
| 620 | felem_mul(ftmp, ftmp, e2); /* 2^4 - 2^0 */ |
| 621 | felem_assign(e4, ftmp); |
| 622 | felem_square(ftmp, ftmp); /* 2^5 - 2^1 */ |
| 623 | felem_square(ftmp, ftmp); /* 2^6 - 2^2 */ |
| 624 | felem_square(ftmp, ftmp); /* 2^7 - 2^3 */ |
| 625 | felem_square(ftmp, ftmp); /* 2^8 - 2^4 */ |
| 626 | felem_mul(ftmp, ftmp, e4); /* 2^8 - 2^0 */ |
| 627 | felem_assign(e8, ftmp); |
| 628 | for (i = 0; i < 8; i++) { |
| 629 | felem_square(ftmp, ftmp); |
| 630 | } /* 2^16 - 2^8 */ |
| 631 | felem_mul(ftmp, ftmp, e8); /* 2^16 - 2^0 */ |
| 632 | felem_assign(e16, ftmp); |
| 633 | for (i = 0; i < 16; i++) { |
| 634 | felem_square(ftmp, ftmp); |
| 635 | } /* 2^32 - 2^16 */ |
| 636 | felem_mul(ftmp, ftmp, e16); /* 2^32 - 2^0 */ |
| 637 | felem_assign(e32, ftmp); |
| 638 | for (i = 0; i < 32; i++) { |
| 639 | felem_square(ftmp, ftmp); |
| 640 | } /* 2^64 - 2^32 */ |
| 641 | felem_assign(e64, ftmp); |
| 642 | felem_mul(ftmp, ftmp, in); /* 2^64 - 2^32 + 2^0 */ |
| 643 | for (i = 0; i < 192; i++) { |
| 644 | felem_square(ftmp, ftmp); |
| 645 | } /* 2^256 - 2^224 + 2^192 */ |
| 646 | |
| 647 | felem_mul(ftmp2, e64, e32); /* 2^64 - 2^0 */ |
| 648 | for (i = 0; i < 16; i++) { |
| 649 | felem_square(ftmp2, ftmp2); |
| 650 | } /* 2^80 - 2^16 */ |
| 651 | felem_mul(ftmp2, ftmp2, e16); /* 2^80 - 2^0 */ |
| 652 | for (i = 0; i < 8; i++) { |
| 653 | felem_square(ftmp2, ftmp2); |
| 654 | } /* 2^88 - 2^8 */ |
| 655 | felem_mul(ftmp2, ftmp2, e8); /* 2^88 - 2^0 */ |
| 656 | for (i = 0; i < 4; i++) { |
| 657 | felem_square(ftmp2, ftmp2); |
| 658 | } /* 2^92 - 2^4 */ |
| 659 | felem_mul(ftmp2, ftmp2, e4); /* 2^92 - 2^0 */ |
| 660 | felem_square(ftmp2, ftmp2); /* 2^93 - 2^1 */ |
| 661 | felem_square(ftmp2, ftmp2); /* 2^94 - 2^2 */ |
| 662 | felem_mul(ftmp2, ftmp2, e2); /* 2^94 - 2^0 */ |
| 663 | felem_square(ftmp2, ftmp2); /* 2^95 - 2^1 */ |
| 664 | felem_square(ftmp2, ftmp2); /* 2^96 - 2^2 */ |
| 665 | felem_mul(ftmp2, ftmp2, in); /* 2^96 - 3 */ |
| 666 | |
| 667 | felem_mul(out, ftmp2, ftmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */ |
| 668 | } |
| 669 | |
| 670 | /* felem_scalar_3 sets out=3*out. |
| 671 | * |
| 672 | * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. |
| 673 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */ |
| 674 | static void felem_scalar_3(felem out) { |
| 675 | limb carry = 0; |
| 676 | unsigned i; |
| 677 | |
| 678 | for (i = 0;; i++) { |
| 679 | out[i] *= 3; |
| 680 | out[i] += carry; |
| 681 | carry = out[i] >> 29; |
| 682 | out[i] &= kBottom29Bits; |
| 683 | |
| 684 | i++; |
| 685 | if (i == NLIMBS) |
| 686 | break; |
| 687 | |
| 688 | out[i] *= 3; |
| 689 | out[i] += carry; |
| 690 | carry = out[i] >> 28; |
| 691 | out[i] &= kBottom28Bits; |
| 692 | } |
| 693 | |
| 694 | felem_reduce_carry(out, carry); |
| 695 | } |
| 696 | |
| 697 | /* felem_scalar_4 sets out=4*out. |
| 698 | * |
| 699 | * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. |
| 700 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */ |
| 701 | static void felem_scalar_4(felem out) { |
| 702 | limb carry = 0, next_carry; |
| 703 | unsigned i; |
| 704 | |
| 705 | for (i = 0;; i++) { |
| 706 | next_carry = out[i] >> 27; |
| 707 | out[i] <<= 2; |
| 708 | out[i] &= kBottom29Bits; |
| 709 | out[i] += carry; |
| 710 | carry = next_carry + (out[i] >> 29); |
| 711 | out[i] &= kBottom29Bits; |
| 712 | |
| 713 | i++; |
| 714 | if (i == NLIMBS) |
| 715 | break; |
| 716 | |
| 717 | next_carry = out[i] >> 26; |
| 718 | out[i] <<= 2; |
| 719 | out[i] &= kBottom28Bits; |
| 720 | out[i] += carry; |
| 721 | carry = next_carry + (out[i] >> 28); |
| 722 | out[i] &= kBottom28Bits; |
| 723 | } |
| 724 | |
| 725 | felem_reduce_carry(out, carry); |
| 726 | } |
| 727 | |
| 728 | /* felem_scalar_8 sets out=8*out. |
| 729 | * |
| 730 | * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. |
| 731 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */ |
| 732 | static void felem_scalar_8(felem out) { |
| 733 | limb carry = 0, next_carry; |
| 734 | unsigned i; |
| 735 | |
| 736 | for (i = 0;; i++) { |
| 737 | next_carry = out[i] >> 26; |
| 738 | out[i] <<= 3; |
| 739 | out[i] &= kBottom29Bits; |
| 740 | out[i] += carry; |
| 741 | carry = next_carry + (out[i] >> 29); |
| 742 | out[i] &= kBottom29Bits; |
| 743 | |
| 744 | i++; |
| 745 | if (i == NLIMBS) |
| 746 | break; |
| 747 | |
| 748 | next_carry = out[i] >> 25; |
| 749 | out[i] <<= 3; |
| 750 | out[i] &= kBottom28Bits; |
| 751 | out[i] += carry; |
| 752 | carry = next_carry + (out[i] >> 28); |
| 753 | out[i] &= kBottom28Bits; |
| 754 | } |
| 755 | |
| 756 | felem_reduce_carry(out, carry); |
| 757 | } |
| 758 | |
| 759 | /* felem_is_zero_vartime returns 1 iff |in| == 0. It takes a variable amount of |
| 760 | * time depending on the value of |in|. */ |
| 761 | static char felem_is_zero_vartime(const felem in) { |
| 762 | limb carry; |
| 763 | int i; |
| 764 | limb tmp[NLIMBS]; |
| 765 | |
| 766 | felem_assign(tmp, in); |
| 767 | |
| 768 | /* First, reduce tmp to a minimal form. */ |
| 769 | do { |
| 770 | carry = 0; |
| 771 | for (i = 0;; i++) { |
| 772 | tmp[i] += carry; |
| 773 | carry = tmp[i] >> 29; |
| 774 | tmp[i] &= kBottom29Bits; |
| 775 | |
| 776 | i++; |
| 777 | if (i == NLIMBS) |
| 778 | break; |
| 779 | |
| 780 | tmp[i] += carry; |
| 781 | carry = tmp[i] >> 28; |
| 782 | tmp[i] &= kBottom28Bits; |
| 783 | } |
| 784 | |
| 785 | felem_reduce_carry(tmp, carry); |
| 786 | } while (carry); |
| 787 | |
| 788 | /* tmp < 2**257, so the only possible zero values are 0, p and 2p. */ |
| 789 | return memcmp(tmp, kZero, sizeof(tmp)) == 0 || |
| 790 | memcmp(tmp, kP, sizeof(tmp)) == 0 || |
| 791 | memcmp(tmp, k2P, sizeof(tmp)) == 0; |
| 792 | } |
| 793 | |
| 794 | |
| 795 | /* Group operations: |
| 796 | * |
| 797 | * Elements of the elliptic curve group are represented in Jacobian |
| 798 | * coordinates: (x, y, z). An affine point (x', y') is x'=x/z**2, y'=y/z**3 in |
| 799 | * Jacobian form. */ |
| 800 | |
| 801 | /* point_double sets {x_out,y_out,z_out} = 2*{x,y,z}. |
| 802 | * |
| 803 | * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l */ |
| 804 | static void point_double(felem x_out, felem y_out, felem z_out, const felem x, |
| 805 | const felem y, const felem z) { |
| 806 | felem delta, gamma, alpha, beta, tmp, tmp2; |
| 807 | |
| 808 | felem_square(delta, z); |
| 809 | felem_square(gamma, y); |
| 810 | felem_mul(beta, x, gamma); |
| 811 | |
| 812 | felem_sum(tmp, x, delta); |
| 813 | felem_diff(tmp2, x, delta); |
| 814 | felem_mul(alpha, tmp, tmp2); |
| 815 | felem_scalar_3(alpha); |
| 816 | |
| 817 | felem_sum(tmp, y, z); |
| 818 | felem_square(tmp, tmp); |
| 819 | felem_diff(tmp, tmp, gamma); |
| 820 | felem_diff(z_out, tmp, delta); |
| 821 | |
| 822 | felem_scalar_4(beta); |
| 823 | felem_square(x_out, alpha); |
| 824 | felem_diff(x_out, x_out, beta); |
| 825 | felem_diff(x_out, x_out, beta); |
| 826 | |
| 827 | felem_diff(tmp, beta, x_out); |
| 828 | felem_mul(tmp, alpha, tmp); |
| 829 | felem_square(tmp2, gamma); |
| 830 | felem_scalar_8(tmp2); |
| 831 | felem_diff(y_out, tmp, tmp2); |
| 832 | } |
| 833 | |
| 834 | /* point_add_mixed sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,1}. |
| 835 | * (i.e. the second point is affine.) |
| 836 | * |
| 837 | * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl |
| 838 | * |
| 839 | * Note that this function does not handle P+P, infinity+P nor P+infinity |
| 840 | * correctly. */ |
| 841 | static void point_add_mixed(felem x_out, felem y_out, felem z_out, |
| 842 | const felem x1, const felem y1, const felem z1, |
| 843 | const felem x2, const felem y2) { |
| 844 | felem z1z1, z1z1z1, s2, u2, h, i, j, r, rr, v, tmp; |
| 845 | |
| 846 | felem_square(z1z1, z1); |
| 847 | felem_sum(tmp, z1, z1); |
| 848 | |
| 849 | felem_mul(u2, x2, z1z1); |
| 850 | felem_mul(z1z1z1, z1, z1z1); |
| 851 | felem_mul(s2, y2, z1z1z1); |
| 852 | felem_diff(h, u2, x1); |
| 853 | felem_sum(i, h, h); |
| 854 | felem_square(i, i); |
| 855 | felem_mul(j, h, i); |
| 856 | felem_diff(r, s2, y1); |
| 857 | felem_sum(r, r, r); |
| 858 | felem_mul(v, x1, i); |
| 859 | |
| 860 | felem_mul(z_out, tmp, h); |
| 861 | felem_square(rr, r); |
| 862 | felem_diff(x_out, rr, j); |
| 863 | felem_diff(x_out, x_out, v); |
| 864 | felem_diff(x_out, x_out, v); |
| 865 | |
| 866 | felem_diff(tmp, v, x_out); |
| 867 | felem_mul(y_out, tmp, r); |
| 868 | felem_mul(tmp, y1, j); |
| 869 | felem_diff(y_out, y_out, tmp); |
| 870 | felem_diff(y_out, y_out, tmp); |
| 871 | } |
| 872 | |
| 873 | /* point_add sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,z2}. |
| 874 | * |
| 875 | * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl |
| 876 | * |
| 877 | * Note that this function does not handle P+P, infinity+P nor P+infinity |
| 878 | * correctly. */ |
| 879 | static void point_add(felem x_out, felem y_out, felem z_out, const felem x1, |
| 880 | const felem y1, const felem z1, const felem x2, |
| 881 | const felem y2, const felem z2) { |
| 882 | felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp; |
| 883 | |
| 884 | felem_square(z1z1, z1); |
| 885 | felem_square(z2z2, z2); |
| 886 | felem_mul(u1, x1, z2z2); |
| 887 | |
| 888 | felem_sum(tmp, z1, z2); |
| 889 | felem_square(tmp, tmp); |
| 890 | felem_diff(tmp, tmp, z1z1); |
| 891 | felem_diff(tmp, tmp, z2z2); |
| 892 | |
| 893 | felem_mul(z2z2z2, z2, z2z2); |
| 894 | felem_mul(s1, y1, z2z2z2); |
| 895 | |
| 896 | felem_mul(u2, x2, z1z1); |
| 897 | felem_mul(z1z1z1, z1, z1z1); |
| 898 | felem_mul(s2, y2, z1z1z1); |
| 899 | felem_diff(h, u2, u1); |
| 900 | felem_sum(i, h, h); |
| 901 | felem_square(i, i); |
| 902 | felem_mul(j, h, i); |
| 903 | felem_diff(r, s2, s1); |
| 904 | felem_sum(r, r, r); |
| 905 | felem_mul(v, u1, i); |
| 906 | |
| 907 | felem_mul(z_out, tmp, h); |
| 908 | felem_square(rr, r); |
| 909 | felem_diff(x_out, rr, j); |
| 910 | felem_diff(x_out, x_out, v); |
| 911 | felem_diff(x_out, x_out, v); |
| 912 | |
| 913 | felem_diff(tmp, v, x_out); |
| 914 | felem_mul(y_out, tmp, r); |
| 915 | felem_mul(tmp, s1, j); |
| 916 | felem_diff(y_out, y_out, tmp); |
| 917 | felem_diff(y_out, y_out, tmp); |
| 918 | } |
| 919 | |
| 920 | /* point_add_or_double_vartime sets {x_out,y_out,z_out} = {x1,y1,z1} + |
| 921 | * {x2,y2,z2}. |
| 922 | * |
| 923 | * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl |
| 924 | * |
| 925 | * This function handles the case where {x1,y1,z1}={x2,y2,z2}. */ |
| 926 | static void point_add_or_double_vartime( |
| 927 | felem x_out, felem y_out, felem z_out, const felem x1, const felem y1, |
| 928 | const felem z1, const felem x2, const felem y2, const felem z2) { |
| 929 | felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp; |
| 930 | char x_equal, y_equal; |
| 931 | |
| 932 | felem_square(z1z1, z1); |
| 933 | felem_square(z2z2, z2); |
| 934 | felem_mul(u1, x1, z2z2); |
| 935 | |
| 936 | felem_sum(tmp, z1, z2); |
| 937 | felem_square(tmp, tmp); |
| 938 | felem_diff(tmp, tmp, z1z1); |
| 939 | felem_diff(tmp, tmp, z2z2); |
| 940 | |
| 941 | felem_mul(z2z2z2, z2, z2z2); |
| 942 | felem_mul(s1, y1, z2z2z2); |
| 943 | |
| 944 | felem_mul(u2, x2, z1z1); |
| 945 | felem_mul(z1z1z1, z1, z1z1); |
| 946 | felem_mul(s2, y2, z1z1z1); |
| 947 | felem_diff(h, u2, u1); |
| 948 | x_equal = felem_is_zero_vartime(h); |
| 949 | felem_sum(i, h, h); |
| 950 | felem_square(i, i); |
| 951 | felem_mul(j, h, i); |
| 952 | felem_diff(r, s2, s1); |
| 953 | y_equal = felem_is_zero_vartime(r); |
| 954 | if (x_equal && y_equal) { |
| 955 | point_double(x_out, y_out, z_out, x1, y1, z1); |
| 956 | return; |
| 957 | } |
| 958 | felem_sum(r, r, r); |
| 959 | felem_mul(v, u1, i); |
| 960 | |
| 961 | felem_mul(z_out, tmp, h); |
| 962 | felem_square(rr, r); |
| 963 | felem_diff(x_out, rr, j); |
| 964 | felem_diff(x_out, x_out, v); |
| 965 | felem_diff(x_out, x_out, v); |
| 966 | |
| 967 | felem_diff(tmp, v, x_out); |
| 968 | felem_mul(y_out, tmp, r); |
| 969 | felem_mul(tmp, s1, j); |
| 970 | felem_diff(y_out, y_out, tmp); |
| 971 | felem_diff(y_out, y_out, tmp); |
| 972 | } |
| 973 | |
| 974 | /* copy_conditional sets out=in if mask = 0xffffffff in constant time. |
| 975 | * |
| 976 | * On entry: mask is either 0 or 0xffffffff. */ |
| 977 | static void copy_conditional(felem out, const felem in, limb mask) { |
| 978 | int i; |
| 979 | |
| 980 | for (i = 0; i < NLIMBS; i++) { |
| 981 | const limb tmp = mask & (in[i] ^ out[i]); |
| 982 | out[i] ^= tmp; |
| 983 | } |
| 984 | } |
| 985 | |
| 986 | /* select_affine_point sets {out_x,out_y} to the index'th entry of table. |
| 987 | * On entry: index < 16, table[0] must be zero. */ |
| 988 | static void select_affine_point(felem out_x, felem out_y, const limb* table, |
| 989 | limb index) { |
| 990 | limb i, j; |
| 991 | |
| 992 | memset(out_x, 0, sizeof(felem)); |
| 993 | memset(out_y, 0, sizeof(felem)); |
| 994 | |
| 995 | for (i = 1; i < 16; i++) { |
| 996 | limb mask = i ^ index; |
| 997 | mask |= mask >> 2; |
| 998 | mask |= mask >> 1; |
| 999 | mask &= 1; |
| 1000 | mask--; |
| 1001 | for (j = 0; j < NLIMBS; j++, table++) { |
| 1002 | out_x[j] |= *table & mask; |
| 1003 | } |
| 1004 | for (j = 0; j < NLIMBS; j++, table++) { |
| 1005 | out_y[j] |= *table & mask; |
| 1006 | } |
| 1007 | } |
| 1008 | } |
| 1009 | |
| 1010 | /* select_jacobian_point sets {out_x,out_y,out_z} to the index'th entry of |
| 1011 | * table. On entry: index < 16, table[0] must be zero. */ |
| 1012 | static void select_jacobian_point(felem out_x, felem out_y, felem out_z, |
| 1013 | const limb* table, limb index) { |
| 1014 | limb i, j; |
| 1015 | |
| 1016 | memset(out_x, 0, sizeof(felem)); |
| 1017 | memset(out_y, 0, sizeof(felem)); |
| 1018 | memset(out_z, 0, sizeof(felem)); |
| 1019 | |
| 1020 | /* The implicit value at index 0 is all zero. We don't need to perform that |
| 1021 | * iteration of the loop because we already set out_* to zero. */ |
| 1022 | table += 3 * NLIMBS; |
| 1023 | |
| 1024 | // Hit all entries to obscure cache profiling. |
| 1025 | for (i = 1; i < 16; i++) { |
| 1026 | limb mask = i ^ index; |
| 1027 | mask |= mask >> 2; |
| 1028 | mask |= mask >> 1; |
| 1029 | mask &= 1; |
| 1030 | mask--; |
| 1031 | for (j = 0; j < NLIMBS; j++, table++) { |
| 1032 | out_x[j] |= *table & mask; |
| 1033 | } |
| 1034 | for (j = 0; j < NLIMBS; j++, table++) { |
| 1035 | out_y[j] |= *table & mask; |
| 1036 | } |
| 1037 | for (j = 0; j < NLIMBS; j++, table++) { |
| 1038 | out_z[j] |= *table & mask; |
| 1039 | } |
| 1040 | } |
| 1041 | } |
| 1042 | |
| 1043 | /* scalar_base_mult sets {nx,ny,nz} = scalar*G where scalar is a little-endian |
| 1044 | * number. Note that the value of scalar must be less than the order of the |
| 1045 | * group. */ |
| 1046 | static void scalar_base_mult(felem nx, felem ny, felem nz, |
| 1047 | const p256_int* scalar) { |
| 1048 | int i, j; |
| 1049 | limb n_is_infinity_mask = -1, p_is_noninfinite_mask, mask; |
| 1050 | u32 table_offset; |
| 1051 | |
| 1052 | felem px, py; |
| 1053 | felem tx, ty, tz; |
| 1054 | |
| 1055 | memset(nx, 0, sizeof(felem)); |
| 1056 | memset(ny, 0, sizeof(felem)); |
| 1057 | memset(nz, 0, sizeof(felem)); |
| 1058 | |
| 1059 | /* The loop adds bits at positions 0, 64, 128 and 192, followed by |
| 1060 | * positions 32,96,160 and 224 and does this 32 times. */ |
| 1061 | for (i = 0; i < 32; i++) { |
| 1062 | if (i) { |
| 1063 | point_double(nx, ny, nz, nx, ny, nz); |
| 1064 | } |
| 1065 | table_offset = 0; |
| 1066 | for (j = 0; j <= 32; j += 32) { |
| 1067 | char bit0 = p256_get_bit(scalar, 31 - i + j); |
| 1068 | char bit1 = p256_get_bit(scalar, 95 - i + j); |
| 1069 | char bit2 = p256_get_bit(scalar, 159 - i + j); |
| 1070 | char bit3 = p256_get_bit(scalar, 223 - i + j); |
| 1071 | limb index = bit0 | (bit1 << 1) | (bit2 << 2) | (bit3 << 3); |
| 1072 | |
| 1073 | select_affine_point(px, py, kPrecomputed + table_offset, index); |
| 1074 | table_offset += 30 * NLIMBS; |
| 1075 | |
| 1076 | /* Since scalar is less than the order of the group, we know that |
| 1077 | * {nx,ny,nz} != {px,py,1}, unless both are zero, which we handle |
| 1078 | * below. */ |
| 1079 | point_add_mixed(tx, ty, tz, nx, ny, nz, px, py); |
| 1080 | /* The result of point_add_mixed is incorrect if {nx,ny,nz} is zero |
| 1081 | * (a.k.a. the point at infinity). We handle that situation by |
| 1082 | * copying the point from the table. */ |
| 1083 | copy_conditional(nx, px, n_is_infinity_mask); |
| 1084 | copy_conditional(ny, py, n_is_infinity_mask); |
| 1085 | copy_conditional(nz, kOne, n_is_infinity_mask); |
| 1086 | |
| 1087 | /* Equally, the result is also wrong if the point from the table is |
| 1088 | * zero, which happens when the index is zero. We handle that by |
| 1089 | * only copying from {tx,ty,tz} to {nx,ny,nz} if index != 0. */ |
| 1090 | p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index); |
| 1091 | mask = p_is_noninfinite_mask & ~n_is_infinity_mask; |
| 1092 | copy_conditional(nx, tx, mask); |
| 1093 | copy_conditional(ny, ty, mask); |
| 1094 | copy_conditional(nz, tz, mask); |
| 1095 | /* If p was not zero, then n is now non-zero. */ |
| 1096 | n_is_infinity_mask &= ~p_is_noninfinite_mask; |
| 1097 | } |
| 1098 | } |
| 1099 | } |
| 1100 | |
| 1101 | /* point_to_affine converts a Jacobian point to an affine point. If the input |
| 1102 | * is the point at infinity then it returns (0, 0) in constant time. */ |
| 1103 | static void point_to_affine(felem x_out, felem y_out, const felem nx, |
| 1104 | const felem ny, const felem nz) { |
| 1105 | felem z_inv, z_inv_sq; |
| 1106 | felem_inv(z_inv, nz); |
| 1107 | felem_square(z_inv_sq, z_inv); |
| 1108 | felem_mul(x_out, nx, z_inv_sq); |
| 1109 | felem_mul(z_inv, z_inv, z_inv_sq); |
| 1110 | felem_mul(y_out, ny, z_inv); |
| 1111 | } |
| 1112 | |
| 1113 | /* scalar_base_mult sets {nx,ny,nz} = scalar*{x,y}. */ |
| 1114 | static void scalar_mult(felem nx, felem ny, felem nz, const felem x, |
| 1115 | const felem y, const p256_int* scalar) { |
| 1116 | int i; |
| 1117 | felem px, py, pz, tx, ty, tz; |
| 1118 | felem precomp[16][3]; |
| 1119 | limb n_is_infinity_mask, index, p_is_noninfinite_mask, mask; |
| 1120 | |
| 1121 | /* We precompute 0,1,2,... times {x,y}. */ |
| 1122 | memset(precomp, 0, sizeof(felem) * 3); |
| 1123 | memcpy(&precomp[1][0], x, sizeof(felem)); |
| 1124 | memcpy(&precomp[1][1], y, sizeof(felem)); |
| 1125 | memcpy(&precomp[1][2], kOne, sizeof(felem)); |
| 1126 | |
| 1127 | for (i = 2; i < 16; i += 2) { |
| 1128 | point_double(precomp[i][0], precomp[i][1], precomp[i][2], |
| 1129 | precomp[i / 2][0], precomp[i / 2][1], precomp[i / 2][2]); |
| 1130 | |
| 1131 | point_add_mixed(precomp[i + 1][0], precomp[i + 1][1], precomp[i + 1][2], |
| 1132 | precomp[i][0], precomp[i][1], precomp[i][2], x, y); |
| 1133 | } |
| 1134 | |
| 1135 | memset(nx, 0, sizeof(felem)); |
| 1136 | memset(ny, 0, sizeof(felem)); |
| 1137 | memset(nz, 0, sizeof(felem)); |
| 1138 | n_is_infinity_mask = -1; |
| 1139 | |
| 1140 | /* We add in a window of four bits each iteration and do this 64 times. */ |
| 1141 | for (i = 0; i < 256; i += 4) { |
| 1142 | if (i) { |
| 1143 | point_double(nx, ny, nz, nx, ny, nz); |
| 1144 | point_double(nx, ny, nz, nx, ny, nz); |
| 1145 | point_double(nx, ny, nz, nx, ny, nz); |
| 1146 | point_double(nx, ny, nz, nx, ny, nz); |
| 1147 | } |
| 1148 | |
| 1149 | index = (p256_get_bit(scalar, 255 - i - 0) << 3) | |
| 1150 | (p256_get_bit(scalar, 255 - i - 1) << 2) | |
| 1151 | (p256_get_bit(scalar, 255 - i - 2) << 1) | |
| 1152 | p256_get_bit(scalar, 255 - i - 3); |
| 1153 | |
| 1154 | /* See the comments in scalar_base_mult about handling infinities. */ |
| 1155 | select_jacobian_point(px, py, pz, precomp[0][0], index); |
| 1156 | point_add(tx, ty, tz, nx, ny, nz, px, py, pz); |
| 1157 | copy_conditional(nx, px, n_is_infinity_mask); |
| 1158 | copy_conditional(ny, py, n_is_infinity_mask); |
| 1159 | copy_conditional(nz, pz, n_is_infinity_mask); |
| 1160 | |
| 1161 | p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index); |
| 1162 | mask = p_is_noninfinite_mask & ~n_is_infinity_mask; |
| 1163 | |
| 1164 | copy_conditional(nx, tx, mask); |
| 1165 | copy_conditional(ny, ty, mask); |
| 1166 | copy_conditional(nz, tz, mask); |
| 1167 | n_is_infinity_mask &= ~p_is_noninfinite_mask; |
| 1168 | } |
| 1169 | } |
| 1170 | |
| 1171 | #define kRDigits {2, 0, 0, 0xfffffffe, 0xffffffff, 0xffffffff, 0xfffffffd, 1} // 2^257 mod p256.p |
| 1172 | |
| 1173 | #define kRInvDigits {0x80000000, 1, 0xffffffff, 0, 0x80000001, 0xfffffffe, 1, 0x7fffffff} // 1 / 2^257 mod p256.p |
| 1174 | |
| 1175 | static const p256_int kR = { kRDigits }; |
| 1176 | static const p256_int kRInv = { kRInvDigits }; |
| 1177 | |
| 1178 | /* to_montgomery sets out = R*in. */ |
| 1179 | static void to_montgomery(felem out, const p256_int* in) { |
| 1180 | p256_int in_shifted; |
| 1181 | int i; |
| 1182 | |
| 1183 | p256_init(&in_shifted); |
| 1184 | p256_modmul(&SECP256r1_p, in, 0, &kR, &in_shifted); |
| 1185 | |
| 1186 | for (i = 0; i < NLIMBS; i++) { |
| 1187 | if ((i & 1) == 0) { |
| 1188 | out[i] = P256_DIGIT(&in_shifted, 0) & kBottom29Bits; |
| 1189 | p256_shr(&in_shifted, 29, &in_shifted); |
| 1190 | } else { |
| 1191 | out[i] = P256_DIGIT(&in_shifted, 0) & kBottom28Bits; |
| 1192 | p256_shr(&in_shifted, 28, &in_shifted); |
| 1193 | } |
| 1194 | } |
| 1195 | |
| 1196 | p256_clear(&in_shifted); |
| 1197 | } |
| 1198 | |
| 1199 | /* from_montgomery sets out=in/R. */ |
| 1200 | static void from_montgomery(p256_int* out, const felem in) { |
| 1201 | p256_int result, tmp; |
| 1202 | int i, top; |
| 1203 | |
| 1204 | p256_init(&result); |
| 1205 | p256_init(&tmp); |
| 1206 | |
| 1207 | p256_add_d(&tmp, in[NLIMBS - 1], &result); |
| 1208 | for (i = NLIMBS - 2; i >= 0; i--) { |
| 1209 | if ((i & 1) == 0) { |
| 1210 | top = p256_shl(&result, 29, &tmp); |
| 1211 | } else { |
| 1212 | top = p256_shl(&result, 28, &tmp); |
| 1213 | } |
| 1214 | top |= p256_add_d(&tmp, in[i], &result); |
| 1215 | } |
| 1216 | |
| 1217 | p256_modmul(&SECP256r1_p, &kRInv, top, &result, out); |
| 1218 | |
| 1219 | p256_clear(&result); |
| 1220 | p256_clear(&tmp); |
| 1221 | } |
| 1222 | |
| 1223 | /* p256_base_point_mul sets {out_x,out_y} = nG, where n is < the |
| 1224 | * order of the group. */ |
| 1225 | void p256_base_point_mul(const p256_int* n, p256_int* out_x, p256_int* out_y) { |
| 1226 | felem x, y, z; |
| 1227 | |
| 1228 | scalar_base_mult(x, y, z, n); |
| 1229 | |
| 1230 | { |
| 1231 | felem x_affine, y_affine; |
| 1232 | |
| 1233 | point_to_affine(x_affine, y_affine, x, y, z); |
| 1234 | from_montgomery(out_x, x_affine); |
| 1235 | from_montgomery(out_y, y_affine); |
| 1236 | } |
| 1237 | } |
| 1238 | |
| 1239 | /* p256_points_mul_vartime sets {out_x,out_y} = n1*G + n2*{in_x,in_y}, where |
| 1240 | * n1 and n2 are < the order of the group. |
| 1241 | * |
| 1242 | * As indicated by the name, this function operates in variable time. This |
| 1243 | * is safe because it's used for signature validation which doesn't deal |
| 1244 | * with secrets. */ |
| 1245 | void p256_points_mul_vartime( |
| 1246 | const p256_int* n1, const p256_int* n2, const p256_int* in_x, |
| 1247 | const p256_int* in_y, p256_int* out_x, p256_int* out_y) { |
| 1248 | felem x1, y1, z1, x2, y2, z2, px, py; |
| 1249 | |
| 1250 | /* If both scalars are zero, then the result is the point at infinity. */ |
| 1251 | if (p256_is_zero(n1) != 0 && p256_is_zero(n2) != 0) { |
| 1252 | p256_clear(out_x); |
| 1253 | p256_clear(out_y); |
| 1254 | return; |
| 1255 | } |
| 1256 | |
| 1257 | to_montgomery(px, in_x); |
| 1258 | to_montgomery(py, in_y); |
| 1259 | scalar_base_mult(x1, y1, z1, n1); |
| 1260 | scalar_mult(x2, y2, z2, px, py, n2); |
| 1261 | |
| 1262 | if (p256_is_zero(n2) != 0) { |
| 1263 | /* If n2 == 0, then {x2,y2,z2} is zero and the result is just |
| 1264 | * {x1,y1,z1}. */ |
| 1265 | } else if (p256_is_zero(n1) != 0) { |
| 1266 | /* If n1 == 0, then {x1,y1,z1} is zero and the result is just |
| 1267 | * {x2,y2,z2}. */ |
| 1268 | memcpy(x1, x2, sizeof(x2)); |
| 1269 | memcpy(y1, y2, sizeof(y2)); |
| 1270 | memcpy(z1, z2, sizeof(z2)); |
| 1271 | } else { |
| 1272 | /* This function handles the case where {x1,y1,z1} == {x2,y2,z2}. */ |
| 1273 | point_add_or_double_vartime(x1, y1, z1, x1, y1, z1, x2, y2, z2); |
| 1274 | } |
| 1275 | |
| 1276 | point_to_affine(px, py, x1, y1, z1); |
| 1277 | from_montgomery(out_x, px); |
| 1278 | from_montgomery(out_y, py); |
| 1279 | } |