Dees_Troy | 51a0e82 | 2012-09-05 15:24:24 -0400 | [diff] [blame] | 1 | /* |
| 2 | * jdcoefct.c |
| 3 | * |
| 4 | * Copyright (C) 1994-1997, Thomas G. Lane. |
| 5 | * This file is part of the Independent JPEG Group's software. |
| 6 | * For conditions of distribution and use, see the accompanying README file. |
| 7 | * |
| 8 | * This file contains the coefficient buffer controller for decompression. |
| 9 | * This controller is the top level of the JPEG decompressor proper. |
| 10 | * The coefficient buffer lies between entropy decoding and inverse-DCT steps. |
| 11 | * |
| 12 | * In buffered-image mode, this controller is the interface between |
| 13 | * input-oriented processing and output-oriented processing. |
| 14 | * Also, the input side (only) is used when reading a file for transcoding. |
| 15 | */ |
| 16 | |
| 17 | #define JPEG_INTERNALS |
| 18 | #include "jinclude.h" |
| 19 | #include "jpeglib.h" |
| 20 | |
| 21 | /* Block smoothing is only applicable for progressive JPEG, so: */ |
| 22 | #ifndef D_PROGRESSIVE_SUPPORTED |
| 23 | #undef BLOCK_SMOOTHING_SUPPORTED |
| 24 | #endif |
| 25 | |
| 26 | /* Private buffer controller object */ |
| 27 | |
| 28 | typedef struct { |
| 29 | struct jpeg_d_coef_controller pub; /* public fields */ |
| 30 | |
| 31 | /* These variables keep track of the current location of the input side. */ |
| 32 | /* cinfo->input_iMCU_row is also used for this. */ |
| 33 | JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ |
| 34 | int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
| 35 | int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
| 36 | |
| 37 | /* The output side's location is represented by cinfo->output_iMCU_row. */ |
| 38 | |
| 39 | /* In single-pass modes, it's sufficient to buffer just one MCU. |
| 40 | * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks, |
| 41 | * and let the entropy decoder write into that workspace each time. |
| 42 | * (On 80x86, the workspace is FAR even though it's not really very big; |
| 43 | * this is to keep the module interfaces unchanged when a large coefficient |
| 44 | * buffer is necessary.) |
| 45 | * In multi-pass modes, this array points to the current MCU's blocks |
| 46 | * within the virtual arrays; it is used only by the input side. |
| 47 | */ |
| 48 | JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU]; |
| 49 | |
| 50 | #ifdef D_MULTISCAN_FILES_SUPPORTED |
| 51 | /* In multi-pass modes, we need a virtual block array for each component. */ |
| 52 | jvirt_barray_ptr whole_image[MAX_COMPONENTS]; |
| 53 | #endif |
| 54 | |
| 55 | #ifdef BLOCK_SMOOTHING_SUPPORTED |
| 56 | /* When doing block smoothing, we latch coefficient Al values here */ |
| 57 | int * coef_bits_latch; |
| 58 | #define SAVED_COEFS 6 /* we save coef_bits[0..5] */ |
| 59 | #endif |
| 60 | } my_coef_controller; |
| 61 | |
| 62 | typedef my_coef_controller * my_coef_ptr; |
| 63 | |
| 64 | /* Forward declarations */ |
| 65 | METHODDEF(int) decompress_onepass |
| 66 | JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
| 67 | #ifdef D_MULTISCAN_FILES_SUPPORTED |
| 68 | METHODDEF(int) decompress_data |
| 69 | JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
| 70 | #endif |
| 71 | #ifdef BLOCK_SMOOTHING_SUPPORTED |
| 72 | LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo)); |
| 73 | METHODDEF(int) decompress_smooth_data |
| 74 | JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
| 75 | #endif |
| 76 | |
| 77 | |
| 78 | LOCAL(void) |
| 79 | start_iMCU_row (j_decompress_ptr cinfo) |
| 80 | /* Reset within-iMCU-row counters for a new row (input side) */ |
| 81 | { |
| 82 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
| 83 | |
| 84 | /* In an interleaved scan, an MCU row is the same as an iMCU row. |
| 85 | * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
| 86 | * But at the bottom of the image, process only what's left. |
| 87 | */ |
| 88 | if (cinfo->comps_in_scan > 1) { |
| 89 | coef->MCU_rows_per_iMCU_row = 1; |
| 90 | } else { |
| 91 | if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1)) |
| 92 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
| 93 | else |
| 94 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
| 95 | } |
| 96 | |
| 97 | coef->MCU_ctr = 0; |
| 98 | coef->MCU_vert_offset = 0; |
| 99 | } |
| 100 | |
| 101 | |
| 102 | /* |
| 103 | * Initialize for an input processing pass. |
| 104 | */ |
| 105 | |
| 106 | METHODDEF(void) |
| 107 | start_input_pass (j_decompress_ptr cinfo) |
| 108 | { |
| 109 | cinfo->input_iMCU_row = 0; |
| 110 | start_iMCU_row(cinfo); |
| 111 | } |
| 112 | |
| 113 | |
| 114 | /* |
| 115 | * Initialize for an output processing pass. |
| 116 | */ |
| 117 | |
| 118 | METHODDEF(void) |
| 119 | start_output_pass (j_decompress_ptr cinfo) |
| 120 | { |
| 121 | #ifdef BLOCK_SMOOTHING_SUPPORTED |
| 122 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
| 123 | |
| 124 | /* If multipass, check to see whether to use block smoothing on this pass */ |
| 125 | if (coef->pub.coef_arrays != NULL) { |
| 126 | if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) |
| 127 | coef->pub.decompress_data = decompress_smooth_data; |
| 128 | else |
| 129 | coef->pub.decompress_data = decompress_data; |
| 130 | } |
| 131 | #endif |
| 132 | cinfo->output_iMCU_row = 0; |
| 133 | } |
| 134 | |
| 135 | |
| 136 | /* |
| 137 | * Decompress and return some data in the single-pass case. |
| 138 | * Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
| 139 | * Input and output must run in lockstep since we have only a one-MCU buffer. |
| 140 | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
| 141 | * |
| 142 | * NB: output_buf contains a plane for each component in image, |
| 143 | * which we index according to the component's SOF position. |
| 144 | */ |
| 145 | |
| 146 | METHODDEF(int) |
| 147 | decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
| 148 | { |
| 149 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
| 150 | JDIMENSION MCU_col_num; /* index of current MCU within row */ |
| 151 | JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
| 152 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
| 153 | int blkn, ci, xindex, yindex, yoffset, useful_width; |
| 154 | JSAMPARRAY output_ptr; |
| 155 | JDIMENSION start_col, output_col; |
| 156 | jpeg_component_info *compptr; |
| 157 | inverse_DCT_method_ptr inverse_DCT; |
| 158 | |
| 159 | #ifdef ANDROID_TILE_BASED_DECODE |
| 160 | if (cinfo->tile_decode) { |
| 161 | last_MCU_col = |
| 162 | (cinfo->coef->MCU_column_right_boundary - |
| 163 | cinfo->coef->MCU_column_left_boundary) - 1; |
| 164 | } |
| 165 | #endif |
| 166 | |
| 167 | /* Loop to process as much as one whole iMCU row */ |
| 168 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
| 169 | yoffset++) { |
| 170 | for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; |
| 171 | MCU_col_num++) { |
| 172 | /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ |
| 173 | if (MCU_col_num < (unsigned int)coef->pub.MCU_columns_to_skip) { |
| 174 | (*cinfo->entropy->decode_mcu_discard_coef) (cinfo); |
| 175 | continue; |
| 176 | } else { |
| 177 | jzero_far((void FAR *) coef->MCU_buffer[0], |
| 178 | (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK))); |
| 179 | if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
| 180 | /* Suspension forced; update state counters and exit */ |
| 181 | coef->MCU_vert_offset = yoffset; |
| 182 | coef->MCU_ctr = MCU_col_num; |
| 183 | return JPEG_SUSPENDED; |
| 184 | } |
| 185 | } |
| 186 | /* Determine where data should go in output_buf and do the IDCT thing. |
| 187 | * We skip dummy blocks at the right and bottom edges (but blkn gets |
| 188 | * incremented past them!). Note the inner loop relies on having |
| 189 | * allocated the MCU_buffer[] blocks sequentially. |
| 190 | */ |
| 191 | blkn = 0; /* index of current DCT block within MCU */ |
| 192 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| 193 | compptr = cinfo->cur_comp_info[ci]; |
| 194 | /* Don't bother to IDCT an uninteresting component. */ |
| 195 | if (! compptr->component_needed) { |
| 196 | blkn += compptr->MCU_blocks; |
| 197 | continue; |
| 198 | } |
| 199 | inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; |
| 200 | useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width |
| 201 | : compptr->last_col_width; |
| 202 | output_ptr = output_buf[compptr->component_index] + |
| 203 | yoffset * compptr->DCT_scaled_size; |
| 204 | start_col = MCU_col_num * compptr->MCU_sample_width; |
| 205 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
| 206 | if (cinfo->input_iMCU_row < last_iMCU_row || |
| 207 | yoffset+yindex < compptr->last_row_height) { |
| 208 | output_col = start_col; |
| 209 | for (xindex = 0; xindex < useful_width; xindex++) { |
| 210 | (*inverse_DCT) (cinfo, compptr, |
| 211 | (JCOEFPTR) coef->MCU_buffer[blkn+xindex], |
| 212 | output_ptr, output_col); |
| 213 | output_col += compptr->DCT_scaled_size; |
| 214 | } |
| 215 | } |
| 216 | blkn += compptr->MCU_width; |
| 217 | output_ptr += compptr->DCT_scaled_size; |
| 218 | } |
| 219 | } |
| 220 | } |
| 221 | /* Completed an MCU row, but perhaps not an iMCU row */ |
| 222 | coef->MCU_ctr = 0; |
| 223 | } |
| 224 | /* Completed the iMCU row, advance counters for next one */ |
| 225 | cinfo->output_iMCU_row++; |
| 226 | if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
| 227 | start_iMCU_row(cinfo); |
| 228 | return JPEG_ROW_COMPLETED; |
| 229 | } |
| 230 | /* Completed the scan */ |
| 231 | (*cinfo->inputctl->finish_input_pass) (cinfo); |
| 232 | return JPEG_SCAN_COMPLETED; |
| 233 | } |
| 234 | |
| 235 | |
| 236 | /* |
| 237 | * Dummy consume-input routine for single-pass operation. |
| 238 | */ |
| 239 | |
| 240 | METHODDEF(int) |
| 241 | dummy_consume_data (j_decompress_ptr cinfo) |
| 242 | { |
| 243 | return JPEG_SUSPENDED; /* Always indicate nothing was done */ |
| 244 | } |
| 245 | |
| 246 | #ifdef D_MULTISCAN_FILES_SUPPORTED |
| 247 | /* |
| 248 | * Consume input data and store it in the full-image coefficient buffer. |
| 249 | * We read as much as one fully interleaved MCU row ("iMCU" row) per call, |
| 250 | * ie, v_samp_factor block rows for each component in the scan. |
| 251 | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
| 252 | */ |
| 253 | |
| 254 | METHODDEF(int) |
| 255 | consume_data (j_decompress_ptr cinfo) |
| 256 | { |
| 257 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
| 258 | JDIMENSION MCU_col_num; /* index of current MCU within row */ |
| 259 | int blkn, ci, xindex, yindex, yoffset; |
| 260 | JDIMENSION start_col; |
| 261 | JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
| 262 | JBLOCKROW buffer_ptr; |
| 263 | jpeg_component_info *compptr; |
| 264 | |
| 265 | /* Align the virtual buffers for the components used in this scan. */ |
| 266 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| 267 | compptr = cinfo->cur_comp_info[ci]; |
| 268 | buffer[ci] = (*cinfo->mem->access_virt_barray) |
| 269 | ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], |
| 270 | cinfo->tile_decode ? 0 : cinfo->input_iMCU_row * compptr->v_samp_factor, |
| 271 | (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 272 | /* Note: entropy decoder expects buffer to be zeroed, |
| 273 | * but this is handled automatically by the memory manager |
| 274 | * because we requested a pre-zeroed array. |
| 275 | */ |
| 276 | } |
| 277 | unsigned int MCUs_per_row = cinfo->MCUs_per_row; |
| 278 | #ifdef ANDROID_TILE_BASED_DECODE |
| 279 | if (cinfo->tile_decode) { |
| 280 | int iMCU_width_To_MCU_width; |
| 281 | if (cinfo->comps_in_scan > 1) { |
| 282 | // Interleaved |
| 283 | iMCU_width_To_MCU_width = 1; |
| 284 | } else { |
| 285 | // Non-intervleaved |
| 286 | iMCU_width_To_MCU_width = cinfo->cur_comp_info[0]->h_samp_factor; |
| 287 | } |
| 288 | MCUs_per_row = jmin(MCUs_per_row, |
| 289 | (cinfo->coef->column_right_boundary - cinfo->coef->column_left_boundary) |
| 290 | * cinfo->entropy->index->MCU_sample_size * iMCU_width_To_MCU_width); |
| 291 | } |
| 292 | #endif |
| 293 | |
| 294 | /* Loop to process one whole iMCU row */ |
| 295 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
| 296 | yoffset++) { |
| 297 | // configure huffman decoder |
| 298 | #ifdef ANDROID_TILE_BASED_DECODE |
| 299 | if (cinfo->tile_decode) { |
| 300 | huffman_scan_header scan_header = |
| 301 | cinfo->entropy->index->scan[cinfo->input_scan_number]; |
| 302 | int col_offset = cinfo->coef->column_left_boundary; |
| 303 | (*cinfo->entropy->configure_huffman_decoder) (cinfo, |
| 304 | scan_header.offset[cinfo->input_iMCU_row] |
| 305 | [col_offset + yoffset * scan_header.MCUs_per_row]); |
| 306 | } |
| 307 | #endif |
| 308 | |
| 309 | // zero all blocks |
| 310 | for (MCU_col_num = coef->MCU_ctr; MCU_col_num < MCUs_per_row; |
| 311 | MCU_col_num++) { |
| 312 | /* Construct list of pointers to DCT blocks belonging to this MCU */ |
| 313 | blkn = 0; /* index of current DCT block within MCU */ |
| 314 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| 315 | compptr = cinfo->cur_comp_info[ci]; |
| 316 | start_col = MCU_col_num * compptr->MCU_width; |
| 317 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
| 318 | buffer_ptr = buffer[ci][yindex+yoffset] + start_col; |
| 319 | for (xindex = 0; xindex < compptr->MCU_width; xindex++) { |
| 320 | coef->MCU_buffer[blkn++] = buffer_ptr++; |
| 321 | #ifdef ANDROID_TILE_BASED_DECODE |
| 322 | if (cinfo->tile_decode && cinfo->input_scan_number == 0) { |
| 323 | // need to do pre-zero ourselves. |
| 324 | jzero_far((void FAR *) coef->MCU_buffer[blkn-1], |
| 325 | (size_t) (SIZEOF(JBLOCK))); |
| 326 | } |
| 327 | #endif |
| 328 | } |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | |
| 333 | /* Try to fetch the MCU. */ |
| 334 | if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
| 335 | /* Suspension forced; update state counters and exit */ |
| 336 | coef->MCU_vert_offset = yoffset; |
| 337 | coef->MCU_ctr = MCU_col_num; |
| 338 | return JPEG_SUSPENDED; |
| 339 | } |
| 340 | } |
| 341 | /* Completed an MCU row, but perhaps not an iMCU row */ |
| 342 | coef->MCU_ctr = 0; |
| 343 | } |
| 344 | /* Completed the iMCU row, advance counters for next one */ |
| 345 | if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
| 346 | start_iMCU_row(cinfo); |
| 347 | return JPEG_ROW_COMPLETED; |
| 348 | } |
| 349 | /* Completed the scan */ |
| 350 | (*cinfo->inputctl->finish_input_pass) (cinfo); |
| 351 | return JPEG_SCAN_COMPLETED; |
| 352 | } |
| 353 | |
| 354 | /* |
| 355 | * Consume input data and store it in the coefficient buffer. |
| 356 | * Read one fully interleaved MCU row ("iMCU" row) per call. |
| 357 | */ |
| 358 | |
| 359 | METHODDEF(int) |
| 360 | consume_data_multi_scan (j_decompress_ptr cinfo) |
| 361 | { |
| 362 | huffman_index *index = cinfo->entropy->index; |
| 363 | int i, retcode, ci; |
| 364 | int mcu = cinfo->input_iMCU_row; |
| 365 | jinit_phuff_decoder(cinfo); |
| 366 | for (i = 0; i < index->scan_count; i++) { |
| 367 | (*cinfo->inputctl->finish_input_pass) (cinfo); |
| 368 | jset_input_stream_position(cinfo, index->scan[i].bitstream_offset); |
| 369 | cinfo->output_iMCU_row = mcu; |
| 370 | cinfo->unread_marker = 0; |
| 371 | // Consume SOS and DHT headers |
| 372 | retcode = (*cinfo->inputctl->consume_markers) (cinfo, index, i); |
| 373 | cinfo->input_iMCU_row = mcu; |
| 374 | cinfo->input_scan_number = i; |
| 375 | cinfo->entropy->index = index; |
| 376 | // Consume scan block data |
| 377 | consume_data(cinfo); |
| 378 | } |
| 379 | cinfo->input_iMCU_row = mcu + 1; |
| 380 | cinfo->input_scan_number = 0; |
| 381 | cinfo->output_scan_number = 0; |
| 382 | return JPEG_ROW_COMPLETED; |
| 383 | } |
| 384 | |
| 385 | /* |
| 386 | * Same as consume_data, expect for saving the Huffman decode information |
| 387 | * - bitstream offset and DC coefficient to index. |
| 388 | */ |
| 389 | |
| 390 | METHODDEF(int) |
| 391 | consume_data_build_huffman_index_baseline (j_decompress_ptr cinfo, |
| 392 | huffman_index *index, int current_scan) |
| 393 | { |
| 394 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
| 395 | JDIMENSION MCU_col_num; /* index of current MCU within row */ |
| 396 | int ci, xindex, yindex, yoffset; |
| 397 | JDIMENSION start_col; |
| 398 | JBLOCKROW buffer_ptr; |
| 399 | |
| 400 | huffman_scan_header *scan_header = index->scan + current_scan; |
| 401 | scan_header->MCU_rows_per_iMCU_row = coef->MCU_rows_per_iMCU_row; |
| 402 | |
| 403 | size_t allocate_size = coef->MCU_rows_per_iMCU_row |
| 404 | * jdiv_round_up(cinfo->MCUs_per_row, index->MCU_sample_size) |
| 405 | * sizeof(huffman_offset_data); |
| 406 | scan_header->offset[cinfo->input_iMCU_row] = |
| 407 | (huffman_offset_data*)malloc(allocate_size); |
| 408 | index->mem_used += allocate_size; |
| 409 | |
| 410 | huffman_offset_data *offset_data = scan_header->offset[cinfo->input_iMCU_row]; |
| 411 | |
| 412 | /* Loop to process one whole iMCU row */ |
| 413 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
| 414 | yoffset++) { |
| 415 | for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; |
| 416 | MCU_col_num++) { |
| 417 | // Record huffman bit offset |
| 418 | if (MCU_col_num % index->MCU_sample_size == 0) { |
| 419 | (*cinfo->entropy->get_huffman_decoder_configuration) |
| 420 | (cinfo, offset_data); |
| 421 | ++offset_data; |
| 422 | } |
| 423 | |
| 424 | /* Try to fetch the MCU. */ |
| 425 | if (! (*cinfo->entropy->decode_mcu_discard_coef) (cinfo)) { |
| 426 | /* Suspension forced; update state counters and exit */ |
| 427 | coef->MCU_vert_offset = yoffset; |
| 428 | coef->MCU_ctr = MCU_col_num; |
| 429 | return JPEG_SUSPENDED; |
| 430 | } |
| 431 | } |
| 432 | /* Completed an MCU row, but perhaps not an iMCU row */ |
| 433 | coef->MCU_ctr = 0; |
| 434 | } |
| 435 | /* Completed the iMCU row, advance counters for next one */ |
| 436 | if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
| 437 | start_iMCU_row(cinfo); |
| 438 | return JPEG_ROW_COMPLETED; |
| 439 | } |
| 440 | /* Completed the scan */ |
| 441 | (*cinfo->inputctl->finish_input_pass) (cinfo); |
| 442 | return JPEG_SCAN_COMPLETED; |
| 443 | } |
| 444 | |
| 445 | /* |
| 446 | * Same as consume_data, expect for saving the Huffman decode information |
| 447 | * - bitstream offset and DC coefficient to index. |
| 448 | */ |
| 449 | |
| 450 | METHODDEF(int) |
| 451 | consume_data_build_huffman_index_progressive (j_decompress_ptr cinfo, |
| 452 | huffman_index *index, int current_scan) |
| 453 | { |
| 454 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
| 455 | JDIMENSION MCU_col_num; /* index of current MCU within row */ |
| 456 | int blkn, ci, xindex, yindex, yoffset; |
| 457 | JDIMENSION start_col; |
| 458 | JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
| 459 | JBLOCKROW buffer_ptr; |
| 460 | jpeg_component_info *compptr; |
| 461 | |
| 462 | int factor = 4; // maximum factor is 4. |
| 463 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
| 464 | factor = jmin(factor, cinfo->cur_comp_info[ci]->h_samp_factor); |
| 465 | |
| 466 | int sample_size = index->MCU_sample_size * factor; |
| 467 | huffman_scan_header *scan_header = index->scan + current_scan; |
| 468 | scan_header->MCU_rows_per_iMCU_row = coef->MCU_rows_per_iMCU_row; |
| 469 | scan_header->MCUs_per_row = jdiv_round_up(cinfo->MCUs_per_row, sample_size); |
| 470 | scan_header->comps_in_scan = cinfo->comps_in_scan; |
| 471 | |
| 472 | size_t allocate_size = coef->MCU_rows_per_iMCU_row |
| 473 | * scan_header->MCUs_per_row * sizeof(huffman_offset_data); |
| 474 | scan_header->offset[cinfo->input_iMCU_row] = |
| 475 | (huffman_offset_data*)malloc(allocate_size); |
| 476 | index->mem_used += allocate_size; |
| 477 | |
| 478 | huffman_offset_data *offset_data = scan_header->offset[cinfo->input_iMCU_row]; |
| 479 | |
| 480 | /* Align the virtual buffers for the components used in this scan. */ |
| 481 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| 482 | compptr = cinfo->cur_comp_info[ci]; |
| 483 | buffer[ci] = (*cinfo->mem->access_virt_barray) |
| 484 | ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], |
| 485 | 0, // Only need one row buffer |
| 486 | (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 487 | } |
| 488 | /* Loop to process one whole iMCU row */ |
| 489 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
| 490 | yoffset++) { |
| 491 | for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; |
| 492 | MCU_col_num++) { |
| 493 | /* For each MCU, we loop through different color components. |
| 494 | * Then, for each color component we will get a list of pointers to DCT |
| 495 | * blocks in the virtual buffer. |
| 496 | */ |
| 497 | blkn = 0; /* index of current DCT block within MCU */ |
| 498 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| 499 | compptr = cinfo->cur_comp_info[ci]; |
| 500 | start_col = MCU_col_num * compptr->MCU_width; |
| 501 | /* Get the list of pointers to DCT blocks in |
| 502 | * the virtual buffer in a color component of the MCU. |
| 503 | */ |
| 504 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
| 505 | buffer_ptr = buffer[ci][yindex+yoffset] + start_col; |
| 506 | for (xindex = 0; xindex < compptr->MCU_width; xindex++) { |
| 507 | coef->MCU_buffer[blkn++] = buffer_ptr++; |
| 508 | if (cinfo->input_scan_number == 0) { |
| 509 | // need to do pre-zero by ourself. |
| 510 | jzero_far((void FAR *) coef->MCU_buffer[blkn-1], |
| 511 | (size_t) (SIZEOF(JBLOCK))); |
| 512 | } |
| 513 | } |
| 514 | } |
| 515 | } |
| 516 | // Record huffman bit offset |
| 517 | if (MCU_col_num % sample_size == 0) { |
| 518 | (*cinfo->entropy->get_huffman_decoder_configuration) |
| 519 | (cinfo, offset_data); |
| 520 | ++offset_data; |
| 521 | } |
| 522 | /* Try to fetch the MCU. */ |
| 523 | if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
| 524 | /* Suspension forced; update state counters and exit */ |
| 525 | coef->MCU_vert_offset = yoffset; |
| 526 | coef->MCU_ctr = MCU_col_num; |
| 527 | return JPEG_SUSPENDED; |
| 528 | } |
| 529 | } |
| 530 | /* Completed an MCU row, but perhaps not an iMCU row */ |
| 531 | coef->MCU_ctr = 0; |
| 532 | } |
| 533 | (*cinfo->entropy->get_huffman_decoder_configuration) |
| 534 | (cinfo, &scan_header->prev_MCU_offset); |
| 535 | /* Completed the iMCU row, advance counters for next one */ |
| 536 | if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
| 537 | start_iMCU_row(cinfo); |
| 538 | return JPEG_ROW_COMPLETED; |
| 539 | } |
| 540 | /* Completed the scan */ |
| 541 | (*cinfo->inputctl->finish_input_pass) (cinfo); |
| 542 | return JPEG_SCAN_COMPLETED; |
| 543 | } |
| 544 | |
| 545 | /* |
| 546 | * Decompress and return some data in the multi-pass case. |
| 547 | * Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
| 548 | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
| 549 | * |
| 550 | * NB: output_buf contains a plane for each component in image. |
| 551 | */ |
| 552 | |
| 553 | METHODDEF(int) |
| 554 | decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
| 555 | { |
| 556 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
| 557 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
| 558 | JDIMENSION block_num; |
| 559 | int ci, block_row, block_rows; |
| 560 | JBLOCKARRAY buffer; |
| 561 | JBLOCKROW buffer_ptr; |
| 562 | JSAMPARRAY output_ptr; |
| 563 | JDIMENSION output_col; |
| 564 | jpeg_component_info *compptr; |
| 565 | inverse_DCT_method_ptr inverse_DCT; |
| 566 | |
| 567 | /* Force some input to be done if we are getting ahead of the input. */ |
| 568 | while (cinfo->input_scan_number < cinfo->output_scan_number || |
| 569 | (cinfo->input_scan_number == cinfo->output_scan_number && |
| 570 | cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { |
| 571 | if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) |
| 572 | return JPEG_SUSPENDED; |
| 573 | } |
| 574 | |
| 575 | /* OK, output from the virtual arrays. */ |
| 576 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
| 577 | ci++, compptr++) { |
| 578 | /* Don't bother to IDCT an uninteresting component. */ |
| 579 | if (! compptr->component_needed) |
| 580 | continue; |
| 581 | /* Align the virtual buffer for this component. */ |
| 582 | buffer = (*cinfo->mem->access_virt_barray) |
| 583 | ((j_common_ptr) cinfo, coef->whole_image[ci], |
| 584 | cinfo->tile_decode ? 0 : cinfo->output_iMCU_row * compptr->v_samp_factor, |
| 585 | (JDIMENSION) compptr->v_samp_factor, FALSE); |
| 586 | /* Count non-dummy DCT block rows in this iMCU row. */ |
| 587 | if (cinfo->output_iMCU_row < last_iMCU_row) |
| 588 | block_rows = compptr->v_samp_factor; |
| 589 | else { |
| 590 | /* NB: can't use last_row_height here; it is input-side-dependent! */ |
| 591 | block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
| 592 | if (block_rows == 0) block_rows = compptr->v_samp_factor; |
| 593 | } |
| 594 | inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
| 595 | output_ptr = output_buf[ci]; |
| 596 | int width_in_blocks = compptr->width_in_blocks; |
| 597 | int start_block = 0; |
| 598 | #if ANDROID_TILE_BASED_DECODE |
| 599 | if (cinfo->tile_decode) { |
| 600 | // width_in_blocks for a component depends on its h_samp_factor. |
| 601 | width_in_blocks = jmin(width_in_blocks, |
| 602 | (cinfo->coef->MCU_column_right_boundary - |
| 603 | cinfo->coef->MCU_column_left_boundary) * |
| 604 | compptr->h_samp_factor); |
| 605 | start_block = coef->pub.MCU_columns_to_skip * |
| 606 | compptr->h_samp_factor; |
| 607 | } |
| 608 | #endif |
| 609 | /* Loop over all DCT blocks to be processed. */ |
| 610 | for (block_row = 0; block_row < block_rows; block_row++) { |
| 611 | buffer_ptr = buffer[block_row]; |
| 612 | output_col = start_block * compptr->DCT_scaled_size; |
| 613 | buffer_ptr += start_block; |
| 614 | for (block_num = start_block; block_num < (unsigned int)width_in_blocks; block_num++) { |
| 615 | (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr, |
| 616 | output_ptr, output_col); |
| 617 | buffer_ptr++; |
| 618 | output_col += compptr->DCT_scaled_size; |
| 619 | } |
| 620 | output_ptr += compptr->DCT_scaled_size; |
| 621 | } |
| 622 | } |
| 623 | |
| 624 | if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) |
| 625 | return JPEG_ROW_COMPLETED; |
| 626 | return JPEG_SCAN_COMPLETED; |
| 627 | } |
| 628 | |
| 629 | #endif /* D_MULTISCAN_FILES_SUPPORTED */ |
| 630 | |
| 631 | |
| 632 | #ifdef BLOCK_SMOOTHING_SUPPORTED |
| 633 | |
| 634 | /* |
| 635 | * This code applies interblock smoothing as described by section K.8 |
| 636 | * of the JPEG standard: the first 5 AC coefficients are estimated from |
| 637 | * the DC values of a DCT block and its 8 neighboring blocks. |
| 638 | * We apply smoothing only for progressive JPEG decoding, and only if |
| 639 | * the coefficients it can estimate are not yet known to full precision. |
| 640 | */ |
| 641 | |
| 642 | /* Natural-order array positions of the first 5 zigzag-order coefficients */ |
| 643 | #define Q01_POS 1 |
| 644 | #define Q10_POS 8 |
| 645 | #define Q20_POS 16 |
| 646 | #define Q11_POS 9 |
| 647 | #define Q02_POS 2 |
| 648 | |
| 649 | /* |
| 650 | * Determine whether block smoothing is applicable and safe. |
| 651 | * We also latch the current states of the coef_bits[] entries for the |
| 652 | * AC coefficients; otherwise, if the input side of the decompressor |
| 653 | * advances into a new scan, we might think the coefficients are known |
| 654 | * more accurately than they really are. |
| 655 | */ |
| 656 | |
| 657 | LOCAL(boolean) |
| 658 | smoothing_ok (j_decompress_ptr cinfo) |
| 659 | { |
| 660 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
| 661 | boolean smoothing_useful = FALSE; |
| 662 | int ci, coefi; |
| 663 | jpeg_component_info *compptr; |
| 664 | JQUANT_TBL * qtable; |
| 665 | int * coef_bits; |
| 666 | int * coef_bits_latch; |
| 667 | |
| 668 | if (! cinfo->progressive_mode || cinfo->coef_bits == NULL) |
| 669 | return FALSE; |
| 670 | |
| 671 | /* Allocate latch area if not already done */ |
| 672 | if (coef->coef_bits_latch == NULL) |
| 673 | coef->coef_bits_latch = (int *) |
| 674 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 675 | cinfo->num_components * |
| 676 | (SAVED_COEFS * SIZEOF(int))); |
| 677 | coef_bits_latch = coef->coef_bits_latch; |
| 678 | |
| 679 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
| 680 | ci++, compptr++) { |
| 681 | /* All components' quantization values must already be latched. */ |
| 682 | if ((qtable = compptr->quant_table) == NULL) |
| 683 | return FALSE; |
| 684 | /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ |
| 685 | if (qtable->quantval[0] == 0 || |
| 686 | qtable->quantval[Q01_POS] == 0 || |
| 687 | qtable->quantval[Q10_POS] == 0 || |
| 688 | qtable->quantval[Q20_POS] == 0 || |
| 689 | qtable->quantval[Q11_POS] == 0 || |
| 690 | qtable->quantval[Q02_POS] == 0) |
| 691 | return FALSE; |
| 692 | /* DC values must be at least partly known for all components. */ |
| 693 | coef_bits = cinfo->coef_bits[ci]; |
| 694 | if (coef_bits[0] < 0) |
| 695 | return FALSE; |
| 696 | /* Block smoothing is helpful if some AC coefficients remain inaccurate. */ |
| 697 | for (coefi = 1; coefi <= 5; coefi++) { |
| 698 | coef_bits_latch[coefi] = coef_bits[coefi]; |
| 699 | if (coef_bits[coefi] != 0) |
| 700 | smoothing_useful = TRUE; |
| 701 | } |
| 702 | coef_bits_latch += SAVED_COEFS; |
| 703 | } |
| 704 | |
| 705 | return smoothing_useful; |
| 706 | } |
| 707 | |
| 708 | |
| 709 | /* |
| 710 | * Variant of decompress_data for use when doing block smoothing. |
| 711 | */ |
| 712 | |
| 713 | METHODDEF(int) |
| 714 | decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
| 715 | { |
| 716 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
| 717 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
| 718 | JDIMENSION block_num, last_block_column; |
| 719 | int ci, block_row, block_rows, access_rows; |
| 720 | JBLOCKARRAY buffer; |
| 721 | JBLOCKROW buffer_ptr, prev_block_row, next_block_row; |
| 722 | JSAMPARRAY output_ptr; |
| 723 | JDIMENSION output_col; |
| 724 | jpeg_component_info *compptr; |
| 725 | inverse_DCT_method_ptr inverse_DCT; |
| 726 | boolean first_row, last_row; |
| 727 | JBLOCK workspace; |
| 728 | int *coef_bits; |
| 729 | JQUANT_TBL *quanttbl; |
| 730 | INT32 Q00,Q01,Q02,Q10,Q11,Q20, num; |
| 731 | int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9; |
| 732 | int Al, pred; |
| 733 | |
| 734 | /* Force some input to be done if we are getting ahead of the input. */ |
| 735 | while (cinfo->input_scan_number <= cinfo->output_scan_number && |
| 736 | ! cinfo->inputctl->eoi_reached) { |
| 737 | if (cinfo->input_scan_number == cinfo->output_scan_number) { |
| 738 | /* If input is working on current scan, we ordinarily want it to |
| 739 | * have completed the current row. But if input scan is DC, |
| 740 | * we want it to keep one row ahead so that next block row's DC |
| 741 | * values are up to date. |
| 742 | */ |
| 743 | JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0; |
| 744 | if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta) |
| 745 | break; |
| 746 | } |
| 747 | if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) |
| 748 | return JPEG_SUSPENDED; |
| 749 | } |
| 750 | |
| 751 | /* OK, output from the virtual arrays. */ |
| 752 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
| 753 | ci++, compptr++) { |
| 754 | /* Don't bother to IDCT an uninteresting component. */ |
| 755 | if (! compptr->component_needed) |
| 756 | continue; |
| 757 | /* Count non-dummy DCT block rows in this iMCU row. */ |
| 758 | if (cinfo->output_iMCU_row < last_iMCU_row) { |
| 759 | block_rows = compptr->v_samp_factor; |
| 760 | access_rows = block_rows * 2; /* this and next iMCU row */ |
| 761 | last_row = FALSE; |
| 762 | } else { |
| 763 | /* NB: can't use last_row_height here; it is input-side-dependent! */ |
| 764 | block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
| 765 | if (block_rows == 0) block_rows = compptr->v_samp_factor; |
| 766 | access_rows = block_rows; /* this iMCU row only */ |
| 767 | last_row = TRUE; |
| 768 | } |
| 769 | /* Align the virtual buffer for this component. */ |
| 770 | if (cinfo->output_iMCU_row > 0) { |
| 771 | access_rows += compptr->v_samp_factor; /* prior iMCU row too */ |
| 772 | buffer = (*cinfo->mem->access_virt_barray) |
| 773 | ((j_common_ptr) cinfo, coef->whole_image[ci], |
| 774 | (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, |
| 775 | (JDIMENSION) access_rows, FALSE); |
| 776 | buffer += compptr->v_samp_factor; /* point to current iMCU row */ |
| 777 | first_row = FALSE; |
| 778 | } else { |
| 779 | buffer = (*cinfo->mem->access_virt_barray) |
| 780 | ((j_common_ptr) cinfo, coef->whole_image[ci], |
| 781 | (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE); |
| 782 | first_row = TRUE; |
| 783 | } |
| 784 | /* Fetch component-dependent info */ |
| 785 | coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); |
| 786 | quanttbl = compptr->quant_table; |
| 787 | Q00 = quanttbl->quantval[0]; |
| 788 | Q01 = quanttbl->quantval[Q01_POS]; |
| 789 | Q10 = quanttbl->quantval[Q10_POS]; |
| 790 | Q20 = quanttbl->quantval[Q20_POS]; |
| 791 | Q11 = quanttbl->quantval[Q11_POS]; |
| 792 | Q02 = quanttbl->quantval[Q02_POS]; |
| 793 | inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
| 794 | output_ptr = output_buf[ci]; |
| 795 | /* Loop over all DCT blocks to be processed. */ |
| 796 | for (block_row = 0; block_row < block_rows; block_row++) { |
| 797 | buffer_ptr = buffer[block_row]; |
| 798 | if (first_row && block_row == 0) |
| 799 | prev_block_row = buffer_ptr; |
| 800 | else |
| 801 | prev_block_row = buffer[block_row-1]; |
| 802 | if (last_row && block_row == block_rows-1) |
| 803 | next_block_row = buffer_ptr; |
| 804 | else |
| 805 | next_block_row = buffer[block_row+1]; |
| 806 | /* We fetch the surrounding DC values using a sliding-register approach. |
| 807 | * Initialize all nine here so as to do the right thing on narrow pics. |
| 808 | */ |
| 809 | DC1 = DC2 = DC3 = (int) prev_block_row[0][0]; |
| 810 | DC4 = DC5 = DC6 = (int) buffer_ptr[0][0]; |
| 811 | DC7 = DC8 = DC9 = (int) next_block_row[0][0]; |
| 812 | output_col = 0; |
| 813 | last_block_column = compptr->width_in_blocks - 1; |
| 814 | for (block_num = 0; block_num <= last_block_column; block_num++) { |
| 815 | /* Fetch current DCT block into workspace so we can modify it. */ |
| 816 | jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1); |
| 817 | /* Update DC values */ |
| 818 | if (block_num < last_block_column) { |
| 819 | DC3 = (int) prev_block_row[1][0]; |
| 820 | DC6 = (int) buffer_ptr[1][0]; |
| 821 | DC9 = (int) next_block_row[1][0]; |
| 822 | } |
| 823 | /* Compute coefficient estimates per K.8. |
| 824 | * An estimate is applied only if coefficient is still zero, |
| 825 | * and is not known to be fully accurate. |
| 826 | */ |
| 827 | /* AC01 */ |
| 828 | if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) { |
| 829 | num = 36 * Q00 * (DC4 - DC6); |
| 830 | if (num >= 0) { |
| 831 | pred = (int) (((Q01<<7) + num) / (Q01<<8)); |
| 832 | if (Al > 0 && pred >= (1<<Al)) |
| 833 | pred = (1<<Al)-1; |
| 834 | } else { |
| 835 | pred = (int) (((Q01<<7) - num) / (Q01<<8)); |
| 836 | if (Al > 0 && pred >= (1<<Al)) |
| 837 | pred = (1<<Al)-1; |
| 838 | pred = -pred; |
| 839 | } |
| 840 | workspace[1] = (JCOEF) pred; |
| 841 | } |
| 842 | /* AC10 */ |
| 843 | if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) { |
| 844 | num = 36 * Q00 * (DC2 - DC8); |
| 845 | if (num >= 0) { |
| 846 | pred = (int) (((Q10<<7) + num) / (Q10<<8)); |
| 847 | if (Al > 0 && pred >= (1<<Al)) |
| 848 | pred = (1<<Al)-1; |
| 849 | } else { |
| 850 | pred = (int) (((Q10<<7) - num) / (Q10<<8)); |
| 851 | if (Al > 0 && pred >= (1<<Al)) |
| 852 | pred = (1<<Al)-1; |
| 853 | pred = -pred; |
| 854 | } |
| 855 | workspace[8] = (JCOEF) pred; |
| 856 | } |
| 857 | /* AC20 */ |
| 858 | if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) { |
| 859 | num = 9 * Q00 * (DC2 + DC8 - 2*DC5); |
| 860 | if (num >= 0) { |
| 861 | pred = (int) (((Q20<<7) + num) / (Q20<<8)); |
| 862 | if (Al > 0 && pred >= (1<<Al)) |
| 863 | pred = (1<<Al)-1; |
| 864 | } else { |
| 865 | pred = (int) (((Q20<<7) - num) / (Q20<<8)); |
| 866 | if (Al > 0 && pred >= (1<<Al)) |
| 867 | pred = (1<<Al)-1; |
| 868 | pred = -pred; |
| 869 | } |
| 870 | workspace[16] = (JCOEF) pred; |
| 871 | } |
| 872 | /* AC11 */ |
| 873 | if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) { |
| 874 | num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9); |
| 875 | if (num >= 0) { |
| 876 | pred = (int) (((Q11<<7) + num) / (Q11<<8)); |
| 877 | if (Al > 0 && pred >= (1<<Al)) |
| 878 | pred = (1<<Al)-1; |
| 879 | } else { |
| 880 | pred = (int) (((Q11<<7) - num) / (Q11<<8)); |
| 881 | if (Al > 0 && pred >= (1<<Al)) |
| 882 | pred = (1<<Al)-1; |
| 883 | pred = -pred; |
| 884 | } |
| 885 | workspace[9] = (JCOEF) pred; |
| 886 | } |
| 887 | /* AC02 */ |
| 888 | if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) { |
| 889 | num = 9 * Q00 * (DC4 + DC6 - 2*DC5); |
| 890 | if (num >= 0) { |
| 891 | pred = (int) (((Q02<<7) + num) / (Q02<<8)); |
| 892 | if (Al > 0 && pred >= (1<<Al)) |
| 893 | pred = (1<<Al)-1; |
| 894 | } else { |
| 895 | pred = (int) (((Q02<<7) - num) / (Q02<<8)); |
| 896 | if (Al > 0 && pred >= (1<<Al)) |
| 897 | pred = (1<<Al)-1; |
| 898 | pred = -pred; |
| 899 | } |
| 900 | workspace[2] = (JCOEF) pred; |
| 901 | } |
| 902 | /* OK, do the IDCT */ |
| 903 | (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace, |
| 904 | output_ptr, output_col); |
| 905 | /* Advance for next column */ |
| 906 | DC1 = DC2; DC2 = DC3; |
| 907 | DC4 = DC5; DC5 = DC6; |
| 908 | DC7 = DC8; DC8 = DC9; |
| 909 | buffer_ptr++, prev_block_row++, next_block_row++; |
| 910 | output_col += compptr->DCT_scaled_size; |
| 911 | } |
| 912 | output_ptr += compptr->DCT_scaled_size; |
| 913 | } |
| 914 | } |
| 915 | |
| 916 | if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) |
| 917 | return JPEG_ROW_COMPLETED; |
| 918 | return JPEG_SCAN_COMPLETED; |
| 919 | } |
| 920 | |
| 921 | #endif /* BLOCK_SMOOTHING_SUPPORTED */ |
| 922 | |
| 923 | |
| 924 | /* |
| 925 | * Initialize coefficient buffer controller. |
| 926 | */ |
| 927 | |
| 928 | GLOBAL(void) |
| 929 | jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer) |
| 930 | { |
| 931 | my_coef_ptr coef; |
| 932 | |
| 933 | coef = (my_coef_ptr) |
| 934 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 935 | SIZEOF(my_coef_controller)); |
| 936 | cinfo->coef = (struct jpeg_d_coef_controller *) coef; |
| 937 | coef->pub.start_input_pass = start_input_pass; |
| 938 | coef->pub.start_output_pass = start_output_pass; |
| 939 | coef->pub.column_left_boundary = 0; |
| 940 | coef->pub.column_right_boundary = 0; |
| 941 | coef->pub.MCU_columns_to_skip = 0; |
| 942 | #ifdef BLOCK_SMOOTHING_SUPPORTED |
| 943 | coef->coef_bits_latch = NULL; |
| 944 | #endif |
| 945 | |
| 946 | #ifdef ANDROID_TILE_BASED_DECODE |
| 947 | if (cinfo->tile_decode) { |
| 948 | if (cinfo->progressive_mode) { |
| 949 | /* Allocate one iMCU row virtual array, coef->whole_image[ci], |
| 950 | * for each color component, padded to a multiple of h_samp_factor |
| 951 | * DCT blocks in the horizontal direction. |
| 952 | */ |
| 953 | int ci, access_rows; |
| 954 | jpeg_component_info *compptr; |
| 955 | |
| 956 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
| 957 | ci++, compptr++) { |
| 958 | access_rows = compptr->v_samp_factor; |
| 959 | coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |
| 960 | ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, |
| 961 | (JDIMENSION) jround_up((long) compptr->width_in_blocks, |
| 962 | (long) compptr->h_samp_factor), |
| 963 | (JDIMENSION) compptr->v_samp_factor, // one iMCU row |
| 964 | (JDIMENSION) access_rows); |
| 965 | } |
| 966 | coef->pub.consume_data_build_huffman_index = |
| 967 | consume_data_build_huffman_index_progressive; |
| 968 | coef->pub.consume_data = consume_data_multi_scan; |
| 969 | coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ |
| 970 | coef->pub.decompress_data = decompress_onepass; |
| 971 | } else { |
| 972 | /* We only need a single-MCU buffer. */ |
| 973 | JBLOCKROW buffer; |
| 974 | int i; |
| 975 | |
| 976 | buffer = (JBLOCKROW) |
| 977 | (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 978 | D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); |
| 979 | for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { |
| 980 | coef->MCU_buffer[i] = buffer + i; |
| 981 | } |
| 982 | coef->pub.consume_data_build_huffman_index = |
| 983 | consume_data_build_huffman_index_baseline; |
| 984 | coef->pub.consume_data = dummy_consume_data; |
| 985 | coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ |
| 986 | coef->pub.decompress_data = decompress_onepass; |
| 987 | } |
| 988 | return; |
| 989 | } |
| 990 | #endif |
| 991 | |
| 992 | /* Create the coefficient buffer. */ |
| 993 | if (need_full_buffer) { |
| 994 | #ifdef D_MULTISCAN_FILES_SUPPORTED |
| 995 | /* Allocate a full-image virtual array for each component, */ |
| 996 | /* padded to a multiple of samp_factor DCT blocks in each direction. */ |
| 997 | /* Note we ask for a pre-zeroed array. */ |
| 998 | int ci, access_rows; |
| 999 | jpeg_component_info *compptr; |
| 1000 | |
| 1001 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
| 1002 | ci++, compptr++) { |
| 1003 | access_rows = compptr->v_samp_factor; |
| 1004 | #ifdef BLOCK_SMOOTHING_SUPPORTED |
| 1005 | /* If block smoothing could be used, need a bigger window */ |
| 1006 | if (cinfo->progressive_mode) |
| 1007 | access_rows *= 3; |
| 1008 | #endif |
| 1009 | coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |
| 1010 | ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, |
| 1011 | (JDIMENSION) jround_up((long) compptr->width_in_blocks, |
| 1012 | (long) compptr->h_samp_factor), |
| 1013 | (JDIMENSION) jround_up((long) compptr->height_in_blocks, |
| 1014 | (long) compptr->v_samp_factor), |
| 1015 | (JDIMENSION) access_rows); |
| 1016 | } |
| 1017 | coef->pub.consume_data = consume_data; |
| 1018 | coef->pub.decompress_data = decompress_data; |
| 1019 | coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ |
| 1020 | #else |
| 1021 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
| 1022 | #endif |
| 1023 | } else { |
| 1024 | /* We only need a single-MCU buffer. */ |
| 1025 | JBLOCKROW buffer; |
| 1026 | int i; |
| 1027 | |
| 1028 | buffer = (JBLOCKROW) |
| 1029 | (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 1030 | D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); |
| 1031 | for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { |
| 1032 | coef->MCU_buffer[i] = buffer + i; |
| 1033 | } |
| 1034 | coef->pub.consume_data = dummy_consume_data; |
| 1035 | coef->pub.decompress_data = decompress_onepass; |
| 1036 | coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ |
| 1037 | } |
| 1038 | } |