bigbiff bigbiff | cdcfee4 | 2013-02-27 21:11:26 -0500 | [diff] [blame] | 1 | /* |
| 2 | * This code implements the MD5 message-digest algorithm. |
| 3 | * The algorithm is due to Ron Rivest. This code was |
| 4 | * written by Colin Plumb in 1993, no copyright is claimed. |
| 5 | * This code is in the public domain; do with it what you wish. |
| 6 | * |
| 7 | * Equivalent code is available from RSA Data Security, Inc. |
| 8 | * This code has been tested against that, and is equivalent, |
| 9 | * except that you don't need to include two pages of legalese |
| 10 | * with every copy. |
| 11 | * |
| 12 | * To compute the message digest of a chunk of bytes, declare an |
| 13 | * MD5Context structure, pass it to MD5Init, call MD5Update as |
| 14 | * needed on buffers full of bytes, and then call MD5Final, which |
| 15 | * will fill a supplied 16-byte array with the digest. |
| 16 | */ |
| 17 | #include <string.h> /* for memcpy() */ |
| 18 | |
| 19 | #include "md5.h" |
| 20 | |
| 21 | #if !defined(WORDS_BIGENDIAN) |
| 22 | #define byteReverse(buf, len) /* Nothing */ |
| 23 | #else |
| 24 | void byteReverse(unsigned char *buf, unsigned longs); |
| 25 | |
| 26 | #ifndef ASM_MD5 |
| 27 | /* |
| 28 | * Note: this code is harmless on little-endian machines. |
| 29 | */ |
| 30 | void byteReverse(unsigned char *buf, unsigned longs) |
| 31 | { |
| 32 | uint32_t t; |
| 33 | do { |
| 34 | t = (uint32_t) ((unsigned) buf[3] << 8 | buf[2]) << 16 | |
| 35 | ((unsigned) buf[1] << 8 | buf[0]); |
| 36 | *(uint32_t *) buf = t; |
| 37 | buf += 4; |
| 38 | } while (--longs); |
| 39 | } |
| 40 | #endif |
| 41 | #endif |
| 42 | |
| 43 | /* |
| 44 | * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious |
| 45 | * initialization constants. |
| 46 | */ |
| 47 | void MD5Init(struct MD5Context *ctx) |
| 48 | { |
| 49 | ctx->buf[0] = 0x67452301; |
| 50 | ctx->buf[1] = 0xefcdab89; |
| 51 | ctx->buf[2] = 0x98badcfe; |
| 52 | ctx->buf[3] = 0x10325476; |
| 53 | |
| 54 | ctx->bits[0] = 0; |
| 55 | ctx->bits[1] = 0; |
| 56 | } |
| 57 | |
| 58 | /* |
| 59 | * Update context to reflect the concatenation of another buffer full |
| 60 | * of bytes. |
| 61 | */ |
| 62 | void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len) |
| 63 | { |
| 64 | uint32_t t; |
| 65 | |
| 66 | /* Update bitcount */ |
| 67 | |
| 68 | t = ctx->bits[0]; |
| 69 | if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t) |
| 70 | ctx->bits[1]++; /* Carry from low to high */ |
| 71 | ctx->bits[1] += len >> 29; |
| 72 | |
| 73 | t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ |
| 74 | |
| 75 | /* Handle any leading odd-sized chunks */ |
| 76 | |
| 77 | if (t) { |
| 78 | unsigned char *p = (unsigned char *) ctx->in + t; |
| 79 | |
| 80 | t = 64 - t; |
| 81 | if (len < t) { |
| 82 | memcpy(p, buf, len); |
| 83 | return; |
| 84 | } |
| 85 | memcpy(p, buf, t); |
| 86 | byteReverse(ctx->in, 16); |
| 87 | MD5Transform(ctx->buf, (uint32_t *) ctx->in); |
| 88 | buf += t; |
| 89 | len -= t; |
| 90 | } |
| 91 | /* Process data in 64-byte chunks */ |
| 92 | |
| 93 | while (len >= 64) { |
| 94 | memcpy(ctx->in, buf, 64); |
| 95 | byteReverse(ctx->in, 16); |
| 96 | MD5Transform(ctx->buf, (uint32_t *) ctx->in); |
| 97 | buf += 64; |
| 98 | len -= 64; |
| 99 | } |
| 100 | |
| 101 | /* Handle any remaining bytes of data. */ |
| 102 | |
| 103 | memcpy(ctx->in, buf, len); |
| 104 | } |
| 105 | |
| 106 | /* |
| 107 | * Final wrapup - pad to 64-byte boundary with the bit pattern |
| 108 | * 1 0* (64-bit count of bits processed, MSB-first) |
| 109 | */ |
| 110 | void MD5Final(unsigned char digest[MD5LENGTH], struct MD5Context *ctx) |
| 111 | { |
| 112 | unsigned count; |
| 113 | unsigned char *p; |
| 114 | |
| 115 | /* Compute number of bytes mod 64 */ |
| 116 | count = (ctx->bits[0] >> 3) & 0x3F; |
| 117 | |
| 118 | /* Set the first char of padding to 0x80. This is safe since there is |
| 119 | always at least one byte free */ |
| 120 | p = ctx->in + count; |
| 121 | *p++ = 0x80; |
| 122 | |
| 123 | /* Bytes of padding needed to make 64 bytes */ |
| 124 | count = 64 - 1 - count; |
| 125 | |
| 126 | /* Pad out to 56 mod 64 */ |
| 127 | if (count < 8) { |
| 128 | /* Two lots of padding: Pad the first block to 64 bytes */ |
| 129 | memset(p, 0, count); |
| 130 | byteReverse(ctx->in, 16); |
| 131 | MD5Transform(ctx->buf, (uint32_t *) ctx->in); |
| 132 | |
| 133 | /* Now fill the next block with 56 bytes */ |
| 134 | memset(ctx->in, 0, 56); |
| 135 | } else { |
| 136 | /* Pad block to 56 bytes */ |
| 137 | memset(p, 0, count - 8); |
| 138 | } |
| 139 | byteReverse(ctx->in, 14); |
| 140 | |
| 141 | /* Append length in bits and transform. |
| 142 | * Use memcpy to avoid aliasing problems. On most systems, |
| 143 | * this will be optimized away to the same code. |
| 144 | */ |
| 145 | memcpy(&ctx->in[14 * sizeof(uint32_t)], &ctx->bits[0], 4); |
| 146 | memcpy(&ctx->in[15 * sizeof(uint32_t)], &ctx->bits[1], 4); |
| 147 | |
| 148 | MD5Transform(ctx->buf, (uint32_t *) ctx->in); |
| 149 | byteReverse((unsigned char *) ctx->buf, 4); |
| 150 | memcpy(digest, ctx->buf, MD5LENGTH); |
| 151 | memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ |
| 152 | } |
| 153 | |
| 154 | #ifndef ASM_MD5 |
| 155 | |
| 156 | /* The four core functions - F1 is optimized somewhat */ |
| 157 | |
| 158 | /* #define F1(x, y, z) (x & y | ~x & z) */ |
| 159 | #define F1(x, y, z) (z ^ (x & (y ^ z))) |
| 160 | #define F2(x, y, z) F1(z, x, y) |
| 161 | #define F3(x, y, z) (x ^ y ^ z) |
| 162 | #define F4(x, y, z) (y ^ (x | ~z)) |
| 163 | |
| 164 | /* This is the central step in the MD5 algorithm. */ |
| 165 | #define MD5STEP(f, w, x, y, z, data, s) \ |
| 166 | ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) |
| 167 | |
| 168 | /* |
| 169 | * The core of the MD5 algorithm, this alters an existing MD5 hash to |
| 170 | * reflect the addition of 16 longwords of new data. MD5Update blocks |
| 171 | * the data and converts bytes into longwords for this routine. |
| 172 | */ |
| 173 | void MD5Transform(uint32_t buf[4], uint32_t const in[16]) |
| 174 | { |
| 175 | register uint32_t a, b, c, d; |
| 176 | |
| 177 | a = buf[0]; |
| 178 | b = buf[1]; |
| 179 | c = buf[2]; |
| 180 | d = buf[3]; |
| 181 | |
| 182 | MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); |
| 183 | MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); |
| 184 | MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); |
| 185 | MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); |
| 186 | MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); |
| 187 | MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); |
| 188 | MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); |
| 189 | MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); |
| 190 | MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); |
| 191 | MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); |
| 192 | MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); |
| 193 | MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); |
| 194 | MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); |
| 195 | MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); |
| 196 | MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); |
| 197 | MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); |
| 198 | |
| 199 | MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); |
| 200 | MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); |
| 201 | MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); |
| 202 | MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); |
| 203 | MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); |
| 204 | MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); |
| 205 | MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); |
| 206 | MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); |
| 207 | MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); |
| 208 | MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); |
| 209 | MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); |
| 210 | MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); |
| 211 | MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); |
| 212 | MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); |
| 213 | MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); |
| 214 | MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); |
| 215 | |
| 216 | MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); |
| 217 | MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); |
| 218 | MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); |
| 219 | MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); |
| 220 | MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); |
| 221 | MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); |
| 222 | MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); |
| 223 | MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); |
| 224 | MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); |
| 225 | MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); |
| 226 | MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); |
| 227 | MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); |
| 228 | MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); |
| 229 | MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); |
| 230 | MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); |
| 231 | MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); |
| 232 | |
| 233 | MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); |
| 234 | MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); |
| 235 | MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); |
| 236 | MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); |
| 237 | MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); |
| 238 | MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); |
| 239 | MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); |
| 240 | MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); |
| 241 | MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); |
| 242 | MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); |
| 243 | MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); |
| 244 | MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); |
| 245 | MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); |
| 246 | MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); |
| 247 | MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); |
| 248 | MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); |
| 249 | |
| 250 | buf[0] += a; |
| 251 | buf[1] += b; |
| 252 | buf[2] += c; |
| 253 | buf[3] += d; |
| 254 | } |
| 255 | |
| 256 | #endif |
| 257 | |