Dees_Troy | 51a0e82 | 2012-09-05 15:24:24 -0400 | [diff] [blame] | 1 | /* |
| 2 | * transupp.c |
| 3 | * |
| 4 | * Copyright (C) 1997, Thomas G. Lane. |
| 5 | * This file is part of the Independent JPEG Group's software. |
| 6 | * For conditions of distribution and use, see the accompanying README file. |
| 7 | * |
| 8 | * This file contains image transformation routines and other utility code |
| 9 | * used by the jpegtran sample application. These are NOT part of the core |
| 10 | * JPEG library. But we keep these routines separate from jpegtran.c to |
| 11 | * ease the task of maintaining jpegtran-like programs that have other user |
| 12 | * interfaces. |
| 13 | */ |
| 14 | |
| 15 | /* Although this file really shouldn't have access to the library internals, |
| 16 | * it's helpful to let it call jround_up() and jcopy_block_row(). |
| 17 | */ |
| 18 | #define JPEG_INTERNALS |
| 19 | |
| 20 | #include "jinclude.h" |
| 21 | #include "jpeglib.h" |
| 22 | #include "transupp.h" /* My own external interface */ |
| 23 | |
| 24 | |
| 25 | #if TRANSFORMS_SUPPORTED |
| 26 | |
| 27 | /* |
| 28 | * Lossless image transformation routines. These routines work on DCT |
| 29 | * coefficient arrays and thus do not require any lossy decompression |
| 30 | * or recompression of the image. |
| 31 | * Thanks to Guido Vollbeding for the initial design and code of this feature. |
| 32 | * |
| 33 | * Horizontal flipping is done in-place, using a single top-to-bottom |
| 34 | * pass through the virtual source array. It will thus be much the |
| 35 | * fastest option for images larger than main memory. |
| 36 | * |
| 37 | * The other routines require a set of destination virtual arrays, so they |
| 38 | * need twice as much memory as jpegtran normally does. The destination |
| 39 | * arrays are always written in normal scan order (top to bottom) because |
| 40 | * the virtual array manager expects this. The source arrays will be scanned |
| 41 | * in the corresponding order, which means multiple passes through the source |
| 42 | * arrays for most of the transforms. That could result in much thrashing |
| 43 | * if the image is larger than main memory. |
| 44 | * |
| 45 | * Some notes about the operating environment of the individual transform |
| 46 | * routines: |
| 47 | * 1. Both the source and destination virtual arrays are allocated from the |
| 48 | * source JPEG object, and therefore should be manipulated by calling the |
| 49 | * source's memory manager. |
| 50 | * 2. The destination's component count should be used. It may be smaller |
| 51 | * than the source's when forcing to grayscale. |
| 52 | * 3. Likewise the destination's sampling factors should be used. When |
| 53 | * forcing to grayscale the destination's sampling factors will be all 1, |
| 54 | * and we may as well take that as the effective iMCU size. |
| 55 | * 4. When "trim" is in effect, the destination's dimensions will be the |
| 56 | * trimmed values but the source's will be untrimmed. |
| 57 | * 5. All the routines assume that the source and destination buffers are |
| 58 | * padded out to a full iMCU boundary. This is true, although for the |
| 59 | * source buffer it is an undocumented property of jdcoefct.c. |
| 60 | * Notes 2,3,4 boil down to this: generally we should use the destination's |
| 61 | * dimensions and ignore the source's. |
| 62 | */ |
| 63 | |
| 64 | |
| 65 | LOCAL(void) |
| 66 | do_flip_h (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 67 | jvirt_barray_ptr *src_coef_arrays) |
| 68 | /* Horizontal flip; done in-place, so no separate dest array is required */ |
| 69 | { |
| 70 | JDIMENSION MCU_cols, comp_width, blk_x, blk_y; |
| 71 | int ci, k, offset_y; |
| 72 | JBLOCKARRAY buffer; |
| 73 | JCOEFPTR ptr1, ptr2; |
| 74 | JCOEF temp1, temp2; |
| 75 | jpeg_component_info *compptr; |
| 76 | |
| 77 | /* Horizontal mirroring of DCT blocks is accomplished by swapping |
| 78 | * pairs of blocks in-place. Within a DCT block, we perform horizontal |
| 79 | * mirroring by changing the signs of odd-numbered columns. |
| 80 | * Partial iMCUs at the right edge are left untouched. |
| 81 | */ |
| 82 | MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE); |
| 83 | |
| 84 | for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 85 | compptr = dstinfo->comp_info + ci; |
| 86 | comp_width = MCU_cols * compptr->h_samp_factor; |
| 87 | for (blk_y = 0; blk_y < compptr->height_in_blocks; |
| 88 | blk_y += compptr->v_samp_factor) { |
| 89 | buffer = (*srcinfo->mem->access_virt_barray) |
| 90 | ((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y, |
| 91 | (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 92 | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 93 | for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) { |
| 94 | ptr1 = buffer[offset_y][blk_x]; |
| 95 | ptr2 = buffer[offset_y][comp_width - blk_x - 1]; |
| 96 | /* this unrolled loop doesn't need to know which row it's on... */ |
| 97 | for (k = 0; k < DCTSIZE2; k += 2) { |
| 98 | temp1 = *ptr1; /* swap even column */ |
| 99 | temp2 = *ptr2; |
| 100 | *ptr1++ = temp2; |
| 101 | *ptr2++ = temp1; |
| 102 | temp1 = *ptr1; /* swap odd column with sign change */ |
| 103 | temp2 = *ptr2; |
| 104 | *ptr1++ = -temp2; |
| 105 | *ptr2++ = -temp1; |
| 106 | } |
| 107 | } |
| 108 | } |
| 109 | } |
| 110 | } |
| 111 | } |
| 112 | |
| 113 | |
| 114 | LOCAL(void) |
| 115 | do_flip_v (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 116 | jvirt_barray_ptr *src_coef_arrays, |
| 117 | jvirt_barray_ptr *dst_coef_arrays) |
| 118 | /* Vertical flip */ |
| 119 | { |
| 120 | JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; |
| 121 | int ci, i, j, offset_y; |
| 122 | JBLOCKARRAY src_buffer, dst_buffer; |
| 123 | JBLOCKROW src_row_ptr, dst_row_ptr; |
| 124 | JCOEFPTR src_ptr, dst_ptr; |
| 125 | jpeg_component_info *compptr; |
| 126 | |
| 127 | /* We output into a separate array because we can't touch different |
| 128 | * rows of the source virtual array simultaneously. Otherwise, this |
| 129 | * is a pretty straightforward analog of horizontal flip. |
| 130 | * Within a DCT block, vertical mirroring is done by changing the signs |
| 131 | * of odd-numbered rows. |
| 132 | * Partial iMCUs at the bottom edge are copied verbatim. |
| 133 | */ |
| 134 | MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE); |
| 135 | |
| 136 | for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 137 | compptr = dstinfo->comp_info + ci; |
| 138 | comp_height = MCU_rows * compptr->v_samp_factor; |
| 139 | for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 140 | dst_blk_y += compptr->v_samp_factor) { |
| 141 | dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 142 | ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 143 | (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 144 | if (dst_blk_y < comp_height) { |
| 145 | /* Row is within the mirrorable area. */ |
| 146 | src_buffer = (*srcinfo->mem->access_virt_barray) |
| 147 | ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 148 | comp_height - dst_blk_y - (JDIMENSION) compptr->v_samp_factor, |
| 149 | (JDIMENSION) compptr->v_samp_factor, FALSE); |
| 150 | } else { |
| 151 | /* Bottom-edge blocks will be copied verbatim. */ |
| 152 | src_buffer = (*srcinfo->mem->access_virt_barray) |
| 153 | ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y, |
| 154 | (JDIMENSION) compptr->v_samp_factor, FALSE); |
| 155 | } |
| 156 | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 157 | if (dst_blk_y < comp_height) { |
| 158 | /* Row is within the mirrorable area. */ |
| 159 | dst_row_ptr = dst_buffer[offset_y]; |
| 160 | src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; |
| 161 | for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| 162 | dst_blk_x++) { |
| 163 | dst_ptr = dst_row_ptr[dst_blk_x]; |
| 164 | src_ptr = src_row_ptr[dst_blk_x]; |
| 165 | for (i = 0; i < DCTSIZE; i += 2) { |
| 166 | /* copy even row */ |
| 167 | for (j = 0; j < DCTSIZE; j++) |
| 168 | *dst_ptr++ = *src_ptr++; |
| 169 | /* copy odd row with sign change */ |
| 170 | for (j = 0; j < DCTSIZE; j++) |
| 171 | *dst_ptr++ = - *src_ptr++; |
| 172 | } |
| 173 | } |
| 174 | } else { |
| 175 | /* Just copy row verbatim. */ |
| 176 | jcopy_block_row(src_buffer[offset_y], dst_buffer[offset_y], |
| 177 | compptr->width_in_blocks); |
| 178 | } |
| 179 | } |
| 180 | } |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | |
| 185 | LOCAL(void) |
| 186 | do_transpose (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 187 | jvirt_barray_ptr *src_coef_arrays, |
| 188 | jvirt_barray_ptr *dst_coef_arrays) |
| 189 | /* Transpose source into destination */ |
| 190 | { |
| 191 | JDIMENSION dst_blk_x, dst_blk_y; |
| 192 | int ci, i, j, offset_x, offset_y; |
| 193 | JBLOCKARRAY src_buffer, dst_buffer; |
| 194 | JCOEFPTR src_ptr, dst_ptr; |
| 195 | jpeg_component_info *compptr; |
| 196 | |
| 197 | /* Transposing pixels within a block just requires transposing the |
| 198 | * DCT coefficients. |
| 199 | * Partial iMCUs at the edges require no special treatment; we simply |
| 200 | * process all the available DCT blocks for every component. |
| 201 | */ |
| 202 | for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 203 | compptr = dstinfo->comp_info + ci; |
| 204 | for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 205 | dst_blk_y += compptr->v_samp_factor) { |
| 206 | dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 207 | ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 208 | (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 209 | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 210 | for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| 211 | dst_blk_x += compptr->h_samp_factor) { |
| 212 | src_buffer = (*srcinfo->mem->access_virt_barray) |
| 213 | ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x, |
| 214 | (JDIMENSION) compptr->h_samp_factor, FALSE); |
| 215 | for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
| 216 | src_ptr = src_buffer[offset_x][dst_blk_y + offset_y]; |
| 217 | dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
| 218 | for (i = 0; i < DCTSIZE; i++) |
| 219 | for (j = 0; j < DCTSIZE; j++) |
| 220 | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 221 | } |
| 222 | } |
| 223 | } |
| 224 | } |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | |
| 229 | LOCAL(void) |
| 230 | do_rot_90 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 231 | jvirt_barray_ptr *src_coef_arrays, |
| 232 | jvirt_barray_ptr *dst_coef_arrays) |
| 233 | /* 90 degree rotation is equivalent to |
| 234 | * 1. Transposing the image; |
| 235 | * 2. Horizontal mirroring. |
| 236 | * These two steps are merged into a single processing routine. |
| 237 | */ |
| 238 | { |
| 239 | JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y; |
| 240 | int ci, i, j, offset_x, offset_y; |
| 241 | JBLOCKARRAY src_buffer, dst_buffer; |
| 242 | JCOEFPTR src_ptr, dst_ptr; |
| 243 | jpeg_component_info *compptr; |
| 244 | |
| 245 | /* Because of the horizontal mirror step, we can't process partial iMCUs |
| 246 | * at the (output) right edge properly. They just get transposed and |
| 247 | * not mirrored. |
| 248 | */ |
| 249 | MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE); |
| 250 | |
| 251 | for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 252 | compptr = dstinfo->comp_info + ci; |
| 253 | comp_width = MCU_cols * compptr->h_samp_factor; |
| 254 | for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 255 | dst_blk_y += compptr->v_samp_factor) { |
| 256 | dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 257 | ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 258 | (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 259 | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 260 | for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| 261 | dst_blk_x += compptr->h_samp_factor) { |
| 262 | src_buffer = (*srcinfo->mem->access_virt_barray) |
| 263 | ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x, |
| 264 | (JDIMENSION) compptr->h_samp_factor, FALSE); |
| 265 | for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
| 266 | src_ptr = src_buffer[offset_x][dst_blk_y + offset_y]; |
| 267 | if (dst_blk_x < comp_width) { |
| 268 | /* Block is within the mirrorable area. */ |
| 269 | dst_ptr = dst_buffer[offset_y] |
| 270 | [comp_width - dst_blk_x - offset_x - 1]; |
| 271 | for (i = 0; i < DCTSIZE; i++) { |
| 272 | for (j = 0; j < DCTSIZE; j++) |
| 273 | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 274 | i++; |
| 275 | for (j = 0; j < DCTSIZE; j++) |
| 276 | dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 277 | } |
| 278 | } else { |
| 279 | /* Edge blocks are transposed but not mirrored. */ |
| 280 | dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
| 281 | for (i = 0; i < DCTSIZE; i++) |
| 282 | for (j = 0; j < DCTSIZE; j++) |
| 283 | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 284 | } |
| 285 | } |
| 286 | } |
| 287 | } |
| 288 | } |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | |
| 293 | LOCAL(void) |
| 294 | do_rot_270 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 295 | jvirt_barray_ptr *src_coef_arrays, |
| 296 | jvirt_barray_ptr *dst_coef_arrays) |
| 297 | /* 270 degree rotation is equivalent to |
| 298 | * 1. Horizontal mirroring; |
| 299 | * 2. Transposing the image. |
| 300 | * These two steps are merged into a single processing routine. |
| 301 | */ |
| 302 | { |
| 303 | JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; |
| 304 | int ci, i, j, offset_x, offset_y; |
| 305 | JBLOCKARRAY src_buffer, dst_buffer; |
| 306 | JCOEFPTR src_ptr, dst_ptr; |
| 307 | jpeg_component_info *compptr; |
| 308 | |
| 309 | /* Because of the horizontal mirror step, we can't process partial iMCUs |
| 310 | * at the (output) bottom edge properly. They just get transposed and |
| 311 | * not mirrored. |
| 312 | */ |
| 313 | MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE); |
| 314 | |
| 315 | for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 316 | compptr = dstinfo->comp_info + ci; |
| 317 | comp_height = MCU_rows * compptr->v_samp_factor; |
| 318 | for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 319 | dst_blk_y += compptr->v_samp_factor) { |
| 320 | dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 321 | ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 322 | (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 323 | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 324 | for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| 325 | dst_blk_x += compptr->h_samp_factor) { |
| 326 | src_buffer = (*srcinfo->mem->access_virt_barray) |
| 327 | ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x, |
| 328 | (JDIMENSION) compptr->h_samp_factor, FALSE); |
| 329 | for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
| 330 | dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
| 331 | if (dst_blk_y < comp_height) { |
| 332 | /* Block is within the mirrorable area. */ |
| 333 | src_ptr = src_buffer[offset_x] |
| 334 | [comp_height - dst_blk_y - offset_y - 1]; |
| 335 | for (i = 0; i < DCTSIZE; i++) { |
| 336 | for (j = 0; j < DCTSIZE; j++) { |
| 337 | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 338 | j++; |
| 339 | dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 340 | } |
| 341 | } |
| 342 | } else { |
| 343 | /* Edge blocks are transposed but not mirrored. */ |
| 344 | src_ptr = src_buffer[offset_x][dst_blk_y + offset_y]; |
| 345 | for (i = 0; i < DCTSIZE; i++) |
| 346 | for (j = 0; j < DCTSIZE; j++) |
| 347 | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 348 | } |
| 349 | } |
| 350 | } |
| 351 | } |
| 352 | } |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | |
| 357 | LOCAL(void) |
| 358 | do_rot_180 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 359 | jvirt_barray_ptr *src_coef_arrays, |
| 360 | jvirt_barray_ptr *dst_coef_arrays) |
| 361 | /* 180 degree rotation is equivalent to |
| 362 | * 1. Vertical mirroring; |
| 363 | * 2. Horizontal mirroring. |
| 364 | * These two steps are merged into a single processing routine. |
| 365 | */ |
| 366 | { |
| 367 | JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; |
| 368 | int ci, i, j, offset_y; |
| 369 | JBLOCKARRAY src_buffer, dst_buffer; |
| 370 | JBLOCKROW src_row_ptr, dst_row_ptr; |
| 371 | JCOEFPTR src_ptr, dst_ptr; |
| 372 | jpeg_component_info *compptr; |
| 373 | |
| 374 | MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE); |
| 375 | MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE); |
| 376 | |
| 377 | for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 378 | compptr = dstinfo->comp_info + ci; |
| 379 | comp_width = MCU_cols * compptr->h_samp_factor; |
| 380 | comp_height = MCU_rows * compptr->v_samp_factor; |
| 381 | for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 382 | dst_blk_y += compptr->v_samp_factor) { |
| 383 | dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 384 | ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 385 | (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 386 | if (dst_blk_y < comp_height) { |
| 387 | /* Row is within the vertically mirrorable area. */ |
| 388 | src_buffer = (*srcinfo->mem->access_virt_barray) |
| 389 | ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 390 | comp_height - dst_blk_y - (JDIMENSION) compptr->v_samp_factor, |
| 391 | (JDIMENSION) compptr->v_samp_factor, FALSE); |
| 392 | } else { |
| 393 | /* Bottom-edge rows are only mirrored horizontally. */ |
| 394 | src_buffer = (*srcinfo->mem->access_virt_barray) |
| 395 | ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y, |
| 396 | (JDIMENSION) compptr->v_samp_factor, FALSE); |
| 397 | } |
| 398 | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 399 | if (dst_blk_y < comp_height) { |
| 400 | /* Row is within the mirrorable area. */ |
| 401 | dst_row_ptr = dst_buffer[offset_y]; |
| 402 | src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; |
| 403 | /* Process the blocks that can be mirrored both ways. */ |
| 404 | for (dst_blk_x = 0; dst_blk_x < comp_width; dst_blk_x++) { |
| 405 | dst_ptr = dst_row_ptr[dst_blk_x]; |
| 406 | src_ptr = src_row_ptr[comp_width - dst_blk_x - 1]; |
| 407 | for (i = 0; i < DCTSIZE; i += 2) { |
| 408 | /* For even row, negate every odd column. */ |
| 409 | for (j = 0; j < DCTSIZE; j += 2) { |
| 410 | *dst_ptr++ = *src_ptr++; |
| 411 | *dst_ptr++ = - *src_ptr++; |
| 412 | } |
| 413 | /* For odd row, negate every even column. */ |
| 414 | for (j = 0; j < DCTSIZE; j += 2) { |
| 415 | *dst_ptr++ = - *src_ptr++; |
| 416 | *dst_ptr++ = *src_ptr++; |
| 417 | } |
| 418 | } |
| 419 | } |
| 420 | /* Any remaining right-edge blocks are only mirrored vertically. */ |
| 421 | for (; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { |
| 422 | dst_ptr = dst_row_ptr[dst_blk_x]; |
| 423 | src_ptr = src_row_ptr[dst_blk_x]; |
| 424 | for (i = 0; i < DCTSIZE; i += 2) { |
| 425 | for (j = 0; j < DCTSIZE; j++) |
| 426 | *dst_ptr++ = *src_ptr++; |
| 427 | for (j = 0; j < DCTSIZE; j++) |
| 428 | *dst_ptr++ = - *src_ptr++; |
| 429 | } |
| 430 | } |
| 431 | } else { |
| 432 | /* Remaining rows are just mirrored horizontally. */ |
| 433 | dst_row_ptr = dst_buffer[offset_y]; |
| 434 | src_row_ptr = src_buffer[offset_y]; |
| 435 | /* Process the blocks that can be mirrored. */ |
| 436 | for (dst_blk_x = 0; dst_blk_x < comp_width; dst_blk_x++) { |
| 437 | dst_ptr = dst_row_ptr[dst_blk_x]; |
| 438 | src_ptr = src_row_ptr[comp_width - dst_blk_x - 1]; |
| 439 | for (i = 0; i < DCTSIZE2; i += 2) { |
| 440 | *dst_ptr++ = *src_ptr++; |
| 441 | *dst_ptr++ = - *src_ptr++; |
| 442 | } |
| 443 | } |
| 444 | /* Any remaining right-edge blocks are only copied. */ |
| 445 | for (; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { |
| 446 | dst_ptr = dst_row_ptr[dst_blk_x]; |
| 447 | src_ptr = src_row_ptr[dst_blk_x]; |
| 448 | for (i = 0; i < DCTSIZE2; i++) |
| 449 | *dst_ptr++ = *src_ptr++; |
| 450 | } |
| 451 | } |
| 452 | } |
| 453 | } |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | |
| 458 | LOCAL(void) |
| 459 | do_transverse (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 460 | jvirt_barray_ptr *src_coef_arrays, |
| 461 | jvirt_barray_ptr *dst_coef_arrays) |
| 462 | /* Transverse transpose is equivalent to |
| 463 | * 1. 180 degree rotation; |
| 464 | * 2. Transposition; |
| 465 | * or |
| 466 | * 1. Horizontal mirroring; |
| 467 | * 2. Transposition; |
| 468 | * 3. Horizontal mirroring. |
| 469 | * These steps are merged into a single processing routine. |
| 470 | */ |
| 471 | { |
| 472 | JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; |
| 473 | int ci, i, j, offset_x, offset_y; |
| 474 | JBLOCKARRAY src_buffer, dst_buffer; |
| 475 | JCOEFPTR src_ptr, dst_ptr; |
| 476 | jpeg_component_info *compptr; |
| 477 | |
| 478 | MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE); |
| 479 | MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE); |
| 480 | |
| 481 | for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 482 | compptr = dstinfo->comp_info + ci; |
| 483 | comp_width = MCU_cols * compptr->h_samp_factor; |
| 484 | comp_height = MCU_rows * compptr->v_samp_factor; |
| 485 | for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 486 | dst_blk_y += compptr->v_samp_factor) { |
| 487 | dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 488 | ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 489 | (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 490 | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 491 | for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| 492 | dst_blk_x += compptr->h_samp_factor) { |
| 493 | src_buffer = (*srcinfo->mem->access_virt_barray) |
| 494 | ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x, |
| 495 | (JDIMENSION) compptr->h_samp_factor, FALSE); |
| 496 | for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
| 497 | if (dst_blk_y < comp_height) { |
| 498 | src_ptr = src_buffer[offset_x] |
| 499 | [comp_height - dst_blk_y - offset_y - 1]; |
| 500 | if (dst_blk_x < comp_width) { |
| 501 | /* Block is within the mirrorable area. */ |
| 502 | dst_ptr = dst_buffer[offset_y] |
| 503 | [comp_width - dst_blk_x - offset_x - 1]; |
| 504 | for (i = 0; i < DCTSIZE; i++) { |
| 505 | for (j = 0; j < DCTSIZE; j++) { |
| 506 | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 507 | j++; |
| 508 | dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 509 | } |
| 510 | i++; |
| 511 | for (j = 0; j < DCTSIZE; j++) { |
| 512 | dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 513 | j++; |
| 514 | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 515 | } |
| 516 | } |
| 517 | } else { |
| 518 | /* Right-edge blocks are mirrored in y only */ |
| 519 | dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
| 520 | for (i = 0; i < DCTSIZE; i++) { |
| 521 | for (j = 0; j < DCTSIZE; j++) { |
| 522 | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 523 | j++; |
| 524 | dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 525 | } |
| 526 | } |
| 527 | } |
| 528 | } else { |
| 529 | src_ptr = src_buffer[offset_x][dst_blk_y + offset_y]; |
| 530 | if (dst_blk_x < comp_width) { |
| 531 | /* Bottom-edge blocks are mirrored in x only */ |
| 532 | dst_ptr = dst_buffer[offset_y] |
| 533 | [comp_width - dst_blk_x - offset_x - 1]; |
| 534 | for (i = 0; i < DCTSIZE; i++) { |
| 535 | for (j = 0; j < DCTSIZE; j++) |
| 536 | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 537 | i++; |
| 538 | for (j = 0; j < DCTSIZE; j++) |
| 539 | dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 540 | } |
| 541 | } else { |
| 542 | /* At lower right corner, just transpose, no mirroring */ |
| 543 | dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
| 544 | for (i = 0; i < DCTSIZE; i++) |
| 545 | for (j = 0; j < DCTSIZE; j++) |
| 546 | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 547 | } |
| 548 | } |
| 549 | } |
| 550 | } |
| 551 | } |
| 552 | } |
| 553 | } |
| 554 | } |
| 555 | |
| 556 | |
| 557 | /* Request any required workspace. |
| 558 | * |
| 559 | * We allocate the workspace virtual arrays from the source decompression |
| 560 | * object, so that all the arrays (both the original data and the workspace) |
| 561 | * will be taken into account while making memory management decisions. |
| 562 | * Hence, this routine must be called after jpeg_read_header (which reads |
| 563 | * the image dimensions) and before jpeg_read_coefficients (which realizes |
| 564 | * the source's virtual arrays). |
| 565 | */ |
| 566 | |
| 567 | GLOBAL(void) |
| 568 | jtransform_request_workspace (j_decompress_ptr srcinfo, |
| 569 | jpeg_transform_info *info) |
| 570 | { |
| 571 | jvirt_barray_ptr *coef_arrays = NULL; |
| 572 | jpeg_component_info *compptr; |
| 573 | int ci; |
| 574 | |
| 575 | if (info->force_grayscale && |
| 576 | srcinfo->jpeg_color_space == JCS_YCbCr && |
| 577 | srcinfo->num_components == 3) { |
| 578 | /* We'll only process the first component */ |
| 579 | info->num_components = 1; |
| 580 | } else { |
| 581 | /* Process all the components */ |
| 582 | info->num_components = srcinfo->num_components; |
| 583 | } |
| 584 | |
| 585 | switch (info->transform) { |
| 586 | case JXFORM_NONE: |
| 587 | case JXFORM_FLIP_H: |
| 588 | /* Don't need a workspace array */ |
| 589 | break; |
| 590 | case JXFORM_FLIP_V: |
| 591 | case JXFORM_ROT_180: |
| 592 | /* Need workspace arrays having same dimensions as source image. |
| 593 | * Note that we allocate arrays padded out to the next iMCU boundary, |
| 594 | * so that transform routines need not worry about missing edge blocks. |
| 595 | */ |
| 596 | coef_arrays = (jvirt_barray_ptr *) |
| 597 | (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE, |
| 598 | SIZEOF(jvirt_barray_ptr) * info->num_components); |
| 599 | for (ci = 0; ci < info->num_components; ci++) { |
| 600 | compptr = srcinfo->comp_info + ci; |
| 601 | coef_arrays[ci] = (*srcinfo->mem->request_virt_barray) |
| 602 | ((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE, |
| 603 | (JDIMENSION) jround_up((long) compptr->width_in_blocks, |
| 604 | (long) compptr->h_samp_factor), |
| 605 | (JDIMENSION) jround_up((long) compptr->height_in_blocks, |
| 606 | (long) compptr->v_samp_factor), |
| 607 | (JDIMENSION) compptr->v_samp_factor); |
| 608 | } |
| 609 | break; |
| 610 | case JXFORM_TRANSPOSE: |
| 611 | case JXFORM_TRANSVERSE: |
| 612 | case JXFORM_ROT_90: |
| 613 | case JXFORM_ROT_270: |
| 614 | /* Need workspace arrays having transposed dimensions. |
| 615 | * Note that we allocate arrays padded out to the next iMCU boundary, |
| 616 | * so that transform routines need not worry about missing edge blocks. |
| 617 | */ |
| 618 | coef_arrays = (jvirt_barray_ptr *) |
| 619 | (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE, |
| 620 | SIZEOF(jvirt_barray_ptr) * info->num_components); |
| 621 | for (ci = 0; ci < info->num_components; ci++) { |
| 622 | compptr = srcinfo->comp_info + ci; |
| 623 | coef_arrays[ci] = (*srcinfo->mem->request_virt_barray) |
| 624 | ((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE, |
| 625 | (JDIMENSION) jround_up((long) compptr->height_in_blocks, |
| 626 | (long) compptr->v_samp_factor), |
| 627 | (JDIMENSION) jround_up((long) compptr->width_in_blocks, |
| 628 | (long) compptr->h_samp_factor), |
| 629 | (JDIMENSION) compptr->h_samp_factor); |
| 630 | } |
| 631 | break; |
| 632 | } |
| 633 | info->workspace_coef_arrays = coef_arrays; |
| 634 | } |
| 635 | |
| 636 | |
| 637 | /* Transpose destination image parameters */ |
| 638 | |
| 639 | LOCAL(void) |
| 640 | transpose_critical_parameters (j_compress_ptr dstinfo) |
| 641 | { |
| 642 | int tblno, i, j, ci, itemp; |
| 643 | jpeg_component_info *compptr; |
| 644 | JQUANT_TBL *qtblptr; |
| 645 | JDIMENSION dtemp; |
| 646 | UINT16 qtemp; |
| 647 | |
| 648 | /* Transpose basic image dimensions */ |
| 649 | dtemp = dstinfo->image_width; |
| 650 | dstinfo->image_width = dstinfo->image_height; |
| 651 | dstinfo->image_height = dtemp; |
| 652 | |
| 653 | /* Transpose sampling factors */ |
| 654 | for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 655 | compptr = dstinfo->comp_info + ci; |
| 656 | itemp = compptr->h_samp_factor; |
| 657 | compptr->h_samp_factor = compptr->v_samp_factor; |
| 658 | compptr->v_samp_factor = itemp; |
| 659 | } |
| 660 | |
| 661 | /* Transpose quantization tables */ |
| 662 | for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { |
| 663 | qtblptr = dstinfo->quant_tbl_ptrs[tblno]; |
| 664 | if (qtblptr != NULL) { |
| 665 | for (i = 0; i < DCTSIZE; i++) { |
| 666 | for (j = 0; j < i; j++) { |
| 667 | qtemp = qtblptr->quantval[i*DCTSIZE+j]; |
| 668 | qtblptr->quantval[i*DCTSIZE+j] = qtblptr->quantval[j*DCTSIZE+i]; |
| 669 | qtblptr->quantval[j*DCTSIZE+i] = qtemp; |
| 670 | } |
| 671 | } |
| 672 | } |
| 673 | } |
| 674 | } |
| 675 | |
| 676 | |
| 677 | /* Trim off any partial iMCUs on the indicated destination edge */ |
| 678 | |
| 679 | LOCAL(void) |
| 680 | trim_right_edge (j_compress_ptr dstinfo) |
| 681 | { |
| 682 | int ci, max_h_samp_factor; |
| 683 | JDIMENSION MCU_cols; |
| 684 | |
| 685 | /* We have to compute max_h_samp_factor ourselves, |
| 686 | * because it hasn't been set yet in the destination |
| 687 | * (and we don't want to use the source's value). |
| 688 | */ |
| 689 | max_h_samp_factor = 1; |
| 690 | for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 691 | int h_samp_factor = dstinfo->comp_info[ci].h_samp_factor; |
| 692 | max_h_samp_factor = MAX(max_h_samp_factor, h_samp_factor); |
| 693 | } |
| 694 | MCU_cols = dstinfo->image_width / (max_h_samp_factor * DCTSIZE); |
| 695 | if (MCU_cols > 0) /* can't trim to 0 pixels */ |
| 696 | dstinfo->image_width = MCU_cols * (max_h_samp_factor * DCTSIZE); |
| 697 | } |
| 698 | |
| 699 | LOCAL(void) |
| 700 | trim_bottom_edge (j_compress_ptr dstinfo) |
| 701 | { |
| 702 | int ci, max_v_samp_factor; |
| 703 | JDIMENSION MCU_rows; |
| 704 | |
| 705 | /* We have to compute max_v_samp_factor ourselves, |
| 706 | * because it hasn't been set yet in the destination |
| 707 | * (and we don't want to use the source's value). |
| 708 | */ |
| 709 | max_v_samp_factor = 1; |
| 710 | for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 711 | int v_samp_factor = dstinfo->comp_info[ci].v_samp_factor; |
| 712 | max_v_samp_factor = MAX(max_v_samp_factor, v_samp_factor); |
| 713 | } |
| 714 | MCU_rows = dstinfo->image_height / (max_v_samp_factor * DCTSIZE); |
| 715 | if (MCU_rows > 0) /* can't trim to 0 pixels */ |
| 716 | dstinfo->image_height = MCU_rows * (max_v_samp_factor * DCTSIZE); |
| 717 | } |
| 718 | |
| 719 | |
| 720 | /* Adjust output image parameters as needed. |
| 721 | * |
| 722 | * This must be called after jpeg_copy_critical_parameters() |
| 723 | * and before jpeg_write_coefficients(). |
| 724 | * |
| 725 | * The return value is the set of virtual coefficient arrays to be written |
| 726 | * (either the ones allocated by jtransform_request_workspace, or the |
| 727 | * original source data arrays). The caller will need to pass this value |
| 728 | * to jpeg_write_coefficients(). |
| 729 | */ |
| 730 | |
| 731 | GLOBAL(jvirt_barray_ptr *) |
| 732 | jtransform_adjust_parameters (j_decompress_ptr srcinfo, |
| 733 | j_compress_ptr dstinfo, |
| 734 | jvirt_barray_ptr *src_coef_arrays, |
| 735 | jpeg_transform_info *info) |
| 736 | { |
| 737 | /* If force-to-grayscale is requested, adjust destination parameters */ |
| 738 | if (info->force_grayscale) { |
| 739 | /* We use jpeg_set_colorspace to make sure subsidiary settings get fixed |
| 740 | * properly. Among other things, the target h_samp_factor & v_samp_factor |
| 741 | * will get set to 1, which typically won't match the source. |
| 742 | * In fact we do this even if the source is already grayscale; that |
| 743 | * provides an easy way of coercing a grayscale JPEG with funny sampling |
| 744 | * factors to the customary 1,1. (Some decoders fail on other factors.) |
| 745 | */ |
| 746 | if ((dstinfo->jpeg_color_space == JCS_YCbCr && |
| 747 | dstinfo->num_components == 3) || |
| 748 | (dstinfo->jpeg_color_space == JCS_GRAYSCALE && |
| 749 | dstinfo->num_components == 1)) { |
| 750 | /* We have to preserve the source's quantization table number. */ |
| 751 | int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no; |
| 752 | jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE); |
| 753 | dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no; |
| 754 | } else { |
| 755 | /* Sorry, can't do it */ |
| 756 | ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL); |
| 757 | } |
| 758 | } |
| 759 | |
| 760 | /* Correct the destination's image dimensions etc if necessary */ |
| 761 | switch (info->transform) { |
| 762 | case JXFORM_NONE: |
| 763 | /* Nothing to do */ |
| 764 | break; |
| 765 | case JXFORM_FLIP_H: |
| 766 | if (info->trim) |
| 767 | trim_right_edge(dstinfo); |
| 768 | break; |
| 769 | case JXFORM_FLIP_V: |
| 770 | if (info->trim) |
| 771 | trim_bottom_edge(dstinfo); |
| 772 | break; |
| 773 | case JXFORM_TRANSPOSE: |
| 774 | transpose_critical_parameters(dstinfo); |
| 775 | /* transpose does NOT have to trim anything */ |
| 776 | break; |
| 777 | case JXFORM_TRANSVERSE: |
| 778 | transpose_critical_parameters(dstinfo); |
| 779 | if (info->trim) { |
| 780 | trim_right_edge(dstinfo); |
| 781 | trim_bottom_edge(dstinfo); |
| 782 | } |
| 783 | break; |
| 784 | case JXFORM_ROT_90: |
| 785 | transpose_critical_parameters(dstinfo); |
| 786 | if (info->trim) |
| 787 | trim_right_edge(dstinfo); |
| 788 | break; |
| 789 | case JXFORM_ROT_180: |
| 790 | if (info->trim) { |
| 791 | trim_right_edge(dstinfo); |
| 792 | trim_bottom_edge(dstinfo); |
| 793 | } |
| 794 | break; |
| 795 | case JXFORM_ROT_270: |
| 796 | transpose_critical_parameters(dstinfo); |
| 797 | if (info->trim) |
| 798 | trim_bottom_edge(dstinfo); |
| 799 | break; |
| 800 | } |
| 801 | |
| 802 | /* Return the appropriate output data set */ |
| 803 | if (info->workspace_coef_arrays != NULL) |
| 804 | return info->workspace_coef_arrays; |
| 805 | return src_coef_arrays; |
| 806 | } |
| 807 | |
| 808 | |
| 809 | /* Execute the actual transformation, if any. |
| 810 | * |
| 811 | * This must be called *after* jpeg_write_coefficients, because it depends |
| 812 | * on jpeg_write_coefficients to have computed subsidiary values such as |
| 813 | * the per-component width and height fields in the destination object. |
| 814 | * |
| 815 | * Note that some transformations will modify the source data arrays! |
| 816 | */ |
| 817 | |
| 818 | GLOBAL(void) |
| 819 | jtransform_execute_transformation (j_decompress_ptr srcinfo, |
| 820 | j_compress_ptr dstinfo, |
| 821 | jvirt_barray_ptr *src_coef_arrays, |
| 822 | jpeg_transform_info *info) |
| 823 | { |
| 824 | jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays; |
| 825 | |
| 826 | switch (info->transform) { |
| 827 | case JXFORM_NONE: |
| 828 | break; |
| 829 | case JXFORM_FLIP_H: |
| 830 | do_flip_h(srcinfo, dstinfo, src_coef_arrays); |
| 831 | break; |
| 832 | case JXFORM_FLIP_V: |
| 833 | do_flip_v(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); |
| 834 | break; |
| 835 | case JXFORM_TRANSPOSE: |
| 836 | do_transpose(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); |
| 837 | break; |
| 838 | case JXFORM_TRANSVERSE: |
| 839 | do_transverse(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); |
| 840 | break; |
| 841 | case JXFORM_ROT_90: |
| 842 | do_rot_90(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); |
| 843 | break; |
| 844 | case JXFORM_ROT_180: |
| 845 | do_rot_180(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); |
| 846 | break; |
| 847 | case JXFORM_ROT_270: |
| 848 | do_rot_270(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); |
| 849 | break; |
| 850 | } |
| 851 | } |
| 852 | |
| 853 | #endif /* TRANSFORMS_SUPPORTED */ |
| 854 | |
| 855 | |
| 856 | /* Setup decompression object to save desired markers in memory. |
| 857 | * This must be called before jpeg_read_header() to have the desired effect. |
| 858 | */ |
| 859 | |
| 860 | GLOBAL(void) |
| 861 | jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option) |
| 862 | { |
| 863 | #ifdef SAVE_MARKERS_SUPPORTED |
| 864 | int m; |
| 865 | |
| 866 | /* Save comments except under NONE option */ |
| 867 | if (option != JCOPYOPT_NONE) { |
| 868 | jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF); |
| 869 | } |
| 870 | /* Save all types of APPn markers iff ALL option */ |
| 871 | if (option == JCOPYOPT_ALL) { |
| 872 | for (m = 0; m < 16; m++) |
| 873 | jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF); |
| 874 | } |
| 875 | #endif /* SAVE_MARKERS_SUPPORTED */ |
| 876 | } |
| 877 | |
| 878 | /* Copy markers saved in the given source object to the destination object. |
| 879 | * This should be called just after jpeg_start_compress() or |
| 880 | * jpeg_write_coefficients(). |
| 881 | * Note that those routines will have written the SOI, and also the |
| 882 | * JFIF APP0 or Adobe APP14 markers if selected. |
| 883 | */ |
| 884 | |
| 885 | GLOBAL(void) |
| 886 | jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 887 | JCOPY_OPTION option) |
| 888 | { |
| 889 | jpeg_saved_marker_ptr marker; |
| 890 | |
| 891 | /* In the current implementation, we don't actually need to examine the |
| 892 | * option flag here; we just copy everything that got saved. |
| 893 | * But to avoid confusion, we do not output JFIF and Adobe APP14 markers |
| 894 | * if the encoder library already wrote one. |
| 895 | */ |
| 896 | for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) { |
| 897 | if (dstinfo->write_JFIF_header && |
| 898 | marker->marker == JPEG_APP0 && |
| 899 | marker->data_length >= 5 && |
| 900 | GETJOCTET(marker->data[0]) == 0x4A && |
| 901 | GETJOCTET(marker->data[1]) == 0x46 && |
| 902 | GETJOCTET(marker->data[2]) == 0x49 && |
| 903 | GETJOCTET(marker->data[3]) == 0x46 && |
| 904 | GETJOCTET(marker->data[4]) == 0) |
| 905 | continue; /* reject duplicate JFIF */ |
| 906 | if (dstinfo->write_Adobe_marker && |
| 907 | marker->marker == JPEG_APP0+14 && |
| 908 | marker->data_length >= 5 && |
| 909 | GETJOCTET(marker->data[0]) == 0x41 && |
| 910 | GETJOCTET(marker->data[1]) == 0x64 && |
| 911 | GETJOCTET(marker->data[2]) == 0x6F && |
| 912 | GETJOCTET(marker->data[3]) == 0x62 && |
| 913 | GETJOCTET(marker->data[4]) == 0x65) |
| 914 | continue; /* reject duplicate Adobe */ |
| 915 | #ifdef NEED_FAR_POINTERS |
| 916 | /* We could use jpeg_write_marker if the data weren't FAR... */ |
| 917 | { |
| 918 | unsigned int i; |
| 919 | jpeg_write_m_header(dstinfo, marker->marker, marker->data_length); |
| 920 | for (i = 0; i < marker->data_length; i++) |
| 921 | jpeg_write_m_byte(dstinfo, marker->data[i]); |
| 922 | } |
| 923 | #else |
| 924 | jpeg_write_marker(dstinfo, marker->marker, |
| 925 | marker->data, marker->data_length); |
| 926 | #endif |
| 927 | } |
| 928 | } |