blob: 18e4e8a18db10ccc7ad0d7b2c3adc99f618ff60d [file] [log] [blame]
Dees_Troy51a0e822012-09-05 15:24:24 -04001/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/*
18 * This is a fast-and-accurate implementation of inverse Discrete Cosine
19 * Transform (IDCT) for ARMv6+. It also performs dequantization of the input
20 * coefficients just like other methods.
21 *
22 * This implementation is based on the scaled 1-D DCT algorithm proposed by
23 * Arai, Agui, and Nakajima. The following code is based on the figure 4-8
24 * on page 52 of the JPEG textbook by Pennebaker and Mitchell. Coefficients
25 * are (almost) directly mapped into registers.
26 *
27 * The accuracy is achieved by using SMULWy and SMLAWy instructions. Both
28 * multiply 32 bits by 16 bits and store the top 32 bits of the result. It
29 * makes 32-bit fixed-point arithmetic possible without overflow. That is
30 * why jpeg_idct_ifast(), which is written in C, cannot be improved.
31 *
32 * More tricks are used to gain more speed. First of all, we use as many
33 * registers as possible. ARM processor has 16 registers including sp (r13)
34 * and pc (r15), so only 14 registers can be used without limitations. In
35 * general, we let r0 to r7 hold the coefficients; r10 and r11 hold four
36 * 16-bit constants; r12 and r14 hold two of the four arguments; and r8 hold
37 * intermediate value. In the second pass, r9 is the loop counter. In the
38 * first pass, r8 to r11 are used to hold quantization values, so the loop
39 * counter is held by sp. Yes, the stack pointer. Since it must be aligned
40 * to 4-byte boundary all the time, we align it to 32-byte boundary and use
41 * bit 3 to bit 5. As the result, we actually use 14.1 registers. :-)
42 *
43 * Second, we rearrange quantization values to access them sequentially. The
44 * table is first transposed, and the new columns are placed in the order of
45 * 7, 5, 1, 3, 0, 2, 4, 6. Thus we can use LDMDB to load four values at a
46 * time. Rearranging coefficients also helps, but that requires to change a
47 * dozen of files, which seems not worth it. In addition, we choose to scale
48 * up quantization values by 13 bits, so the coefficients are scaled up by
49 * 16 bits after both passes. Then we can pack and saturate them two at a
50 * time using PKHTB and USAT16 instructions.
51 *
52 * Third, we reorder the instructions to avoid bubbles in the pipeline. This
53 * is done by hand accroding to the cycle timings and the interlock behavior
54 * described in the technical reference manual of ARM1136JF-S. We also take
55 * advantage of dual issue processors by interleaving instructions with
56 * dependencies. It has been benchmarked on four devices and all the results
57 * showed distinguishable improvements. Note that PLD instructions actually
58 * slow things down, so they are removed at the last minute. In the future,
59 * this might be futher improved using a system profiler.
60 */
61
62#ifdef __arm__
63#include <machine/cpu-features.h>
64#endif
65
66#if __ARM_ARCH__ >= 6
67
68// void armv6_idct(short *coefs, int *quans, unsigned char *rows, int col)
69 .arm
70 .text
71 .align
72 .global armv6_idct
73 .func armv6_idct
74
75armv6_idct:
76 // Push everything except sp (r13) and pc (r15).
77 stmdb sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, r14}
78
79 // r12 = quans, r14 = coefs.
80 sub r4, sp, #236
81 bic sp, r4, #31
82 add r5, sp, #224
83 add r12, r1, #256
84 stm r5, {r2, r3, r4}
85 add r14, r0, #16
86
87pass1_head:
88 // Load quantization values. (q[0, 2, 4, 6])
89 ldmdb r12!, {r8, r9, r10, r11}
90
91 // Load coefficients. (c[4, 1, 2, 3, 0, 5, 6, 7])
92 ldrsh r4, [r14, #-2] !
93 ldrsh r1, [r14, #16]
94 ldrsh r2, [r14, #32]
95 ldrsh r3, [r14, #48]
96 ldrsh r0, [r14, #64]
97 ldrsh r5, [r14, #80]
98 ldrsh r6, [r14, #96]
99 ldrsh r7, [r14, #112]
100
101 // r4 = q[0] * c[0];
102 mul r4, r8, r4
103
104 // Check if ACs are all zero.
105 cmp r0, #0
106 orreqs r8, r1, r2
107 orreqs r8, r3, r5
108 orreqs r8, r6, r7
109 beq pass1_zero
110
111 // Step 1: Dequantizations.
112
113 // r2 = q[2] * c[2];
114 // r0 = q[4] * c[4] + r4;
115 // r6 = q[6] * c[6] + r2;
116 mul r2, r9, r2
117 mla r0, r10, r0, r4
118 mla r6, r11, r6, r2
119
120 // Load quantization values. (q[7, 5, 1, 3])
121 ldmdb r12!, {r8, r9, r10, r11}
122
123 // r4 = r4 * 2 - r0 = -(r0 - r4 * 2);
124 // r2 = r2 * 2 - r6 = -(r6 - r2 * 2);
125 rsb r4, r0, r4, lsl #1
126 rsb r2, r6, r2, lsl #1
127
128 // r7 = q[7] * c[7];
129 // r5 = q[5] * c[5];
130 // r1 = q[1] * c[1] + r7;
131 // r3 = q[3] * c[3] + r5;
132 mul r7, r8, r7
133 mul r5, r9, r5
134 mla r1, r10, r1, r7
135 mla r3, r11, r3, r5
136
137 // Load constants.
138 ldrd r10, constants
139
140 // Step 2: Rotations and Butterflies.
141
142 // r7 = r1 - r7 * 2;
143 // r1 = r1 - r3;
144 // r5 = r5 * 2 - r3 = -(r3 - r5 * 2);
145 // r3 = r1 + r3 * 2;
146 // r8 = r5 + r7;
147 sub r7, r1, r7, lsl #1
148 sub r1, r1, r3
149 rsb r5, r3, r5, lsl #1
150 add r3, r1, r3, lsl #1
151 add r8, r5, r7
152
153 // r2 = r2 * 1.41421 = r2 * 27146 / 65536 + r2;
154 // r8 = r8 * 1.84776 / 8 = r8 * 15137 / 65536;
155 // r1 = r1 * 1.41421 = r1 * 27146 / 65536 + r1;
156 smlawt r2, r2, r10, r2
157 smulwb r8, r8, r10
158 smlawt r1, r1, r10, r1
159
160 // r0 = r0 + r6;
161 // r2 = r2 - r6;
162 // r6 = r0 - r6 * 2;
163 add r0, r0, r6
164 sub r2, r2, r6
165 sub r6, r0, r6, lsl #1
166
167 // r5 = r5 * -2.61313 / 8 + r8 = r5 * -21407 / 65536 + r8;
168 // r8 = r7 * -1.08239 / 8 + r8 = r7 * -8867 / 65536 + r8;
169 smlawt r5, r5, r11, r8
170 smlawb r8, r7, r11, r8
171
172 // r4 = r4 + r2;
173 // r0 = r0 + r3;
174 // r2 = r4 - r2 * 2;
175 add r4, r4, r2
176 add r0, r0, r3
177 sub r2, r4, r2, lsl #1
178
179 // r7 = r5 * 8 - r3 = -(r3 - r5 * 8);
180 // r3 = r0 - r3 * 2;
181 // r1 = r1 - r7;
182 // r4 = r4 + r7;
183 // r5 = r8 * 8 - r1 = -(r1 - r8 * 8);
184 // r7 = r4 - r7 * 2;
185 rsb r7, r3, r5, lsl #3
186 sub r3, r0, r3, lsl #1
187 sub r1, r1, r7
188 add r4, r4, r7
189 rsb r5, r1, r8, lsl #3
190 sub r7, r4, r7, lsl #1
191
192 // r2 = r2 + r1;
193 // r6 = r6 + r5;
194 // r1 = r2 - r1 * 2;
195 // r5 = r6 - r5 * 2;
196 add r2, r2, r1
197 add r6, r6, r5
198 sub r1, r2, r1, lsl #1
199 sub r5, r6, r5, lsl #1
200
201 // Step 3: Reorder and Save.
202
203 str r0, [sp, #-4] !
204 str r4, [sp, #32]
205 str r2, [sp, #64]
206 str r6, [sp, #96]
207 str r5, [sp, #128]
208 str r1, [sp, #160]
209 str r7, [sp, #192]
210 str r3, [sp, #224]
211 b pass1_tail
212
213 // Precomputed 16-bit constants: 27146, 15137, -21407, -8867.
214 // Put them in the middle since LDRD only accepts offsets from -255 to 255.
215 .align 3
216constants:
217 .word 0x6a0a3b21
218 .word 0xac61dd5d
219
220pass1_zero:
221 str r4, [sp, #-4] !
222 str r4, [sp, #32]
223 str r4, [sp, #64]
224 str r4, [sp, #96]
225 str r4, [sp, #128]
226 str r4, [sp, #160]
227 str r4, [sp, #192]
228 str r4, [sp, #224]
229 sub r12, r12, #16
230
231pass1_tail:
232 ands r9, sp, #31
233 bne pass1_head
234
235 // r12 = rows, r14 = col.
236 ldr r12, [sp, #256]
237 ldr r14, [sp, #260]
238
239 // Load constants.
240 ldrd r10, constants
241
242pass2_head:
243 // Load coefficients. (c[0, 1, 2, 3, 4, 5, 6, 7])
244 ldmia sp!, {r0, r1, r2, r3, r4, r5, r6, r7}
245
246 // r0 = r0 + 0x00808000;
247 add r0, r0, #0x00800000
248 add r0, r0, #0x00008000
249
250 // Step 1: Analog to the first pass.
251
252 // r0 = r0 + r4;
253 // r6 = r6 + r2;
254 add r0, r0, r4
255 add r6, r6, r2
256
257 // r4 = r0 - r4 * 2;
258 // r2 = r2 * 2 - r6 = -(r6 - r2 * 2);
259 sub r4, r0, r4, lsl #1
260 rsb r2, r6, r2, lsl #1
261
262 // r1 = r1 + r7;
263 // r3 = r3 + r5;
264 add r1, r1, r7
265 add r3, r3, r5
266
267 // Step 2: Rotations and Butterflies.
268
269 // r7 = r1 - r7 * 2;
270 // r1 = r1 - r3;
271 // r5 = r5 * 2 - r3 = -(r3 - r5 * 2);
272 // r3 = r1 + r3 * 2;
273 // r8 = r5 + r7;
274 sub r7, r1, r7, lsl #1
275 sub r1, r1, r3
276 rsb r5, r3, r5, lsl #1
277 add r3, r1, r3, lsl #1
278 add r8, r5, r7
279
280 // r2 = r2 * 1.41421 = r2 * 27146 / 65536 + r2;
281 // r8 = r8 * 1.84776 / 8 = r8 * 15137 / 65536;
282 // r1 = r1 * 1.41421 = r1 * 27146 / 65536 + r1;
283 smlawt r2, r2, r10, r2
284 smulwb r8, r8, r10
285 smlawt r1, r1, r10, r1
286
287 // r0 = r0 + r6;
288 // r2 = r2 - r6;
289 // r6 = r0 - r6 * 2;
290 add r0, r0, r6
291 sub r2, r2, r6
292 sub r6, r0, r6, lsl #1
293
294 // r5 = r5 * -2.61313 / 8 + r8 = r5 * -21407 / 65536 + r8;
295 // r8 = r7 * -1.08239 / 8 + r8 = r7 * -8867 / 65536 + r8;
296 smlawt r5, r5, r11, r8
297 smlawb r8, r7, r11, r8
298
299 // r4 = r4 + r2;
300 // r0 = r0 + r3;
301 // r2 = r4 - r2 * 2;
302 add r4, r4, r2
303 add r0, r0, r3
304 sub r2, r4, r2, lsl #1
305
306 // r7 = r5 * 8 - r3 = -(r3 - r5 * 8);
307 // r3 = r0 - r3 * 2;
308 // r1 = r1 - r7;
309 // r4 = r4 + r7;
310 // r5 = r8 * 8 - r1 = -(r1 - r8 * 8);
311 // r7 = r4 - r7 * 2;
312 rsb r7, r3, r5, lsl #3
313 sub r3, r0, r3, lsl #1
314 sub r1, r1, r7
315 add r4, r4, r7
316 rsb r5, r1, r8, lsl #3
317 sub r7, r4, r7, lsl #1
318
319 // r2 = r2 + r1;
320 // r6 = r6 + r5;
321 // r1 = r2 - r1 * 2;
322 // r5 = r6 - r5 * 2;
323 add r2, r2, r1
324 add r6, r6, r5
325 sub r1, r2, r1, lsl #1
326 sub r5, r6, r5, lsl #1
327
328 // Step 3: Reorder and Save.
329
330 // Load output pointer.
331 ldr r8, [r12], #4
332
333 // For little endian: r6, r2, r4, r0, r3, r7, r1, r5.
334 pkhtb r6, r6, r4, asr #16
335 pkhtb r2, r2, r0, asr #16
336 pkhtb r3, r3, r1, asr #16
337 pkhtb r7, r7, r5, asr #16
338 usat16 r6, #8, r6
339 usat16 r2, #8, r2
340 usat16 r3, #8, r3
341 usat16 r7, #8, r7
342 orr r0, r2, r6, lsl #8
343 orr r1, r7, r3, lsl #8
344
345#ifdef __ARMEB__
346 // Reverse bytes for big endian.
347 rev r0, r0
348 rev r1, r1
349#endif
350
351 // Use STR instead of STRD to support unaligned access.
352 str r0, [r8, r14] !
353 str r1, [r8, #4]
354
355pass2_tail:
356 adds r9, r9, #0x10000000
357 bpl pass2_head
358
359 ldr sp, [sp, #8]
360 add sp, sp, #236
361
362 ldmia sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, r14}
363 bx lr
364 .endfunc
365
366#endif