blob: 2dab1664616a6cf1b9ae94c1757b7411b2cc324a [file] [log] [blame]
/*
* Copyright (C) 2016 The Team Win Recovery Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Decrypt.h"
#include "Ext4Crypt.h"
#include <map>
#include <string>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#ifndef HAVE_LIBKEYUTILS
#include "key_control.h"
#else
#include <keyutils.h>
#endif
#ifdef HAVE_SYNTH_PWD_SUPPORT
#include "Weaver1.h"
#include "cutils/properties.h"
#include <openssl/sha.h>
#include <openssl/aes.h>
#include <openssl/evp.h>
#include <openssl/rand.h>
#include <dirent.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <sys/types.h>
#include <fstream>
#include <ext4_utils/ext4_crypt.h>
#include <keystore/IKeystoreService.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <keystore/keystore.h>
#include <keystore/authorization_set.h>
#include <algorithm>
extern "C" {
#include "crypto_scrypt.h"
}
#else
#include "ext4_crypt.h"
#endif //ifdef HAVE_SYNTH_PWD_SUPPORT
#ifdef HAVE_GATEKEEPER1
#include <android/hardware/gatekeeper/1.0/IGatekeeper.h>
#else
#include <hardware/gatekeeper.h>
#endif
#include "HashPassword.h"
#include <android-base/file.h>
// Store main DE raw ref / policy
extern std::string de_raw_ref;
extern std::map<userid_t, std::string> s_de_key_raw_refs;
extern std::map<userid_t, std::string> s_ce_key_raw_refs;
static bool lookup_ref_key_internal(std::map<userid_t, std::string>& key_map, const char* policy, userid_t* user_id) {
for (std::map<userid_t, std::string>::iterator it=key_map.begin(); it!=key_map.end(); ++it) {
if (strncmp(it->second.c_str(), policy, it->second.size()) == 0) {
*user_id = it->first;
return true;
}
}
return false;
}
extern "C" bool lookup_ref_key(const char* policy, char* policy_type) {
userid_t user_id = 0;
if (strncmp(de_raw_ref.c_str(), policy, de_raw_ref.size()) == 0) {
strcpy(policy_type, "1DK");
return true;
}
if (!lookup_ref_key_internal(s_de_key_raw_refs, policy, &user_id)) {
if (!lookup_ref_key_internal(s_ce_key_raw_refs, policy, &user_id)) {
return false;
} else
sprintf(policy_type, "1CE%d", user_id);
} else
sprintf(policy_type, "1DE%d", user_id);
return true;
}
extern "C" bool lookup_ref_tar(const char* policy_type, char* policy) {
if (strncmp(policy_type, "1", 1) != 0) {
printf("Unexpected version %c\n", policy_type[0]);
return false;
}
const char* ptr = policy_type + 1; // skip past the version number
if (strncmp(ptr, "DK", 2) == 0) {
strncpy(policy, de_raw_ref.data(), de_raw_ref.size());
return true;
}
userid_t user_id = atoi(ptr + 2);
std::string raw_ref;
if (*ptr == 'D') {
if (lookup_key_ref(s_de_key_raw_refs, user_id, &raw_ref)) {
strncpy(policy, raw_ref.data(), raw_ref.size());
} else
return false;
} else if (*ptr == 'C') {
if (lookup_key_ref(s_ce_key_raw_refs, user_id, &raw_ref)) {
strncpy(policy, raw_ref.data(), raw_ref.size());
} else
return false;
} else {
printf("unknown policy type '%s'\n", policy_type);
return false;
}
return true;
}
#ifndef HAVE_GATEKEEPER1
int gatekeeper_device_initialize(gatekeeper_device_t **dev) {
int ret;
const hw_module_t *mod;
ret = hw_get_module_by_class(GATEKEEPER_HARDWARE_MODULE_ID, NULL, &mod);
if (ret!=0) {
printf("failed to get hw module\n");
return ret;
}
ret = gatekeeper_open(mod, dev);
if (ret!=0)
printf("failed to open gatekeeper\n");
return ret;
}
#endif //ifndef HAVE_GATEKEEPER1
bool Decrypt_DE() {
if (!e4crypt_initialize_global_de()) { // this deals with the overarching device encryption
printf("e4crypt_initialize_global_de returned fail\n");
return false;
}
if (!e4crypt_init_user0()) {
printf("e4crypt_init_user0 returned fail\n");
return false;
}
return true;
}
#ifdef HAVE_SYNTH_PWD_SUPPORT
// Crappy functions for debugging, please ignore unless you need to debug
/*void output_hex(const std::string& in) {
const char *buf = in.data();
char hex[in.size() * 2 + 1];
unsigned int index;
for (index = 0; index < in.size(); index++)
sprintf(&hex[2 * index], "%02X", buf[index]);
printf("%s", hex);
}
void output_hex(const char* buf, const int size) {
char hex[size * 2 + 1];
int index;
for (index = 0; index < size; index++)
sprintf(&hex[2 * index], "%02X", buf[index]);
printf("%s", hex);
}
void output_hex(const unsigned char* buf, const int size) {
char hex[size * 2 + 1];
int index;
for (index = 0; index < size; index++)
sprintf(&hex[2 * index], "%02X", buf[index]);
printf("%s", hex);
}
void output_hex(std::vector<uint8_t>* vec) {
char hex[3];
unsigned int index;
for (index = 0; index < vec->size(); index++) {
sprintf(&hex[0], "%02X", vec->at(index));
printf("%s", hex);
}
}*/
/* An alternative is to use:
* sqlite3 /data/system/locksettings.db "SELECT value FROM locksettings WHERE name='sp-handle' AND user=0;"
* but we really don't want to include the 1.1MB libsqlite in TWRP. We scan the spblob folder for the
* password data file (*.pwd) and get the handle from the filename instead. This is a replacement for
* https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/LockSettingsService.java#2017
* We never use this data as an actual long. We always use it as a string. */
bool Find_Handle(const std::string& spblob_path, std::string& handle_str) {
DIR* dir = opendir(spblob_path.c_str());
if (!dir) {
printf("Error opening '%s'\n", spblob_path.c_str());
return false;
}
struct dirent* de = 0;
while ((de = readdir(dir)) != 0) {
if (strcmp(de->d_name, ".") == 0 || strcmp(de->d_name, "..") == 0)
continue;
size_t len = strlen(de->d_name);
if (len <= 4)
continue;
char* p = de->d_name;
p += len - 4;
if (strncmp(p, ".pwd", 4) == 0) {
handle_str = de->d_name;
handle_str = handle_str.substr(0, len - 4);
//*handle = strtoull(handle_str.c_str(), 0 , 16);
closedir(dir);
return true;
}
}
closedir(dir);
return false;
}
// The password data is stored in big endian and has to be swapped on little endian ARM
template <class T>
void endianswap(T *objp) {
unsigned char *memp = reinterpret_cast<unsigned char*>(objp);
std::reverse(memp, memp + sizeof(T));
}
/* This is the structure of the data in the password data (*.pwd) file which the structure can be found
* https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java#187 */
struct password_data_struct {
int password_type;
unsigned char scryptN;
unsigned char scryptR;
unsigned char scryptP;
int salt_len;
void* salt;
int handle_len;
void* password_handle;
};
/* C++ replacement for
* https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java#764 */
bool Get_Password_Data(const std::string& spblob_path, const std::string& handle_str, password_data_struct *pwd) {
std::string pwd_file = spblob_path + handle_str + ".pwd";
std::string pwd_data;
if (!android::base::ReadFileToString(pwd_file, &pwd_data)) {
printf("Failed to read '%s'\n", pwd_file.c_str());
return false;
}
//output_hex(pwd_data.data(), pwd_data.size());printf("\n");
const int* intptr = (const int*)pwd_data.data();
pwd->password_type = *intptr;
endianswap(&pwd->password_type);
//printf("password type %i\n", pwd->password_type); // 2 was PIN, 1 for pattern, 2 also for password, -1 for default password
const unsigned char* byteptr = (const unsigned char*)pwd_data.data() + sizeof(int);
pwd->scryptN = *byteptr;
byteptr++;
pwd->scryptR = *byteptr;
byteptr++;
pwd->scryptP = *byteptr;
byteptr++;
intptr = (const int*)byteptr;
pwd->salt_len = *intptr;
endianswap(&pwd->salt_len);
if (pwd->salt_len != 0) {
pwd->salt = malloc(pwd->salt_len);
if (!pwd->salt) {
printf("Get_Password_Data malloc salt\n");
return false;
}
memcpy(pwd->salt, intptr + 1, pwd->salt_len);
} else {
printf("Get_Password_Data salt_len is 0\n");
return false;
}
return true;
}
/* C++ replacement for
* https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java#765
* called here
* https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java#1050 */
bool Get_Password_Token(const password_data_struct *pwd, const std::string& Password, unsigned char* password_token) {
if (!password_token) {
printf("password_token is null\n");
return false;
}
unsigned int N = 1 << pwd->scryptN;
unsigned int r = 1 << pwd->scryptR;
unsigned int p = 1 << pwd->scryptP;
//printf("N %i r %i p %i\n", N, r, p);
int ret = crypto_scrypt(reinterpret_cast<const uint8_t*>(Password.data()), Password.size(),
reinterpret_cast<const uint8_t*>(pwd->salt), pwd->salt_len,
N, r, p,
password_token, 32);
if (ret != 0) {
printf("scrypt error\n");
return false;
}
return true;
}
// Data structure for the *.weaver file, see Get_Weaver_Data below
struct weaver_data_struct {
unsigned char version;
int slot;
};
/* C++ replacement for
* https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java#501
* called here
* https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java#768 */
bool Get_Weaver_Data(const std::string& spblob_path, const std::string& handle_str, weaver_data_struct *wd) {
std::string weaver_file = spblob_path + handle_str + ".weaver";
std::string weaver_data;
if (!android::base::ReadFileToString(weaver_file, &weaver_data)) {
printf("Failed to read '%s'\n", weaver_file.c_str());
return false;
}
//output_hex(weaver_data.data(), weaver_data.size());printf("\n");
const unsigned char* byteptr = (const unsigned char*)weaver_data.data();
wd->version = *byteptr;
//printf("weaver version %i\n", wd->version);
const int* intptr = (const int*)weaver_data.data() + sizeof(unsigned char);
wd->slot = *intptr;
//endianswap(&wd->slot); not needed
//printf("weaver slot %i\n", wd->slot);
return true;
}
namespace android {
// On Android 8.0 for some reason init can't seem to completely stop keystore
// so we have to kill it too if it doesn't die on its own.
static void kill_keystore() {
DIR* dir = opendir("/proc");
if (dir) {
struct dirent* de = 0;
while ((de = readdir(dir)) != 0) {
if (strcmp(de->d_name, ".") == 0 || strcmp(de->d_name, "..") == 0)
continue;
int pid = -1;
int ret = sscanf(de->d_name, "%d", &pid);
if (ret == 1) {
char cmdpath[PATH_MAX];
sprintf(cmdpath, "/proc/%d/cmdline", pid);
FILE* file = fopen(cmdpath, "r");
size_t task_size = PATH_MAX;
char task[PATH_MAX];
char* p = task;
if (getline(&p, &task_size, file) > 0) {
if (strstr(task, "keystore") != 0) {
printf("keystore pid %d found, sending kill.\n", pid);
kill(pid, SIGINT);
usleep(5000);
kill(pid, SIGKILL);
}
}
fclose(file);
}
}
closedir(dir);
}
}
// The keystore holds a file open on /data so we have to stop / kill it
// if we want to be able to unmount /data for things like formatting.
static void stop_keystore() {
printf("Stopping keystore...\n");
property_set("ctl.stop", "keystore");
usleep(5000);
kill_keystore();
}
/* These next 2 functions try to get the keystore service 50 times because
* the keystore is not always ready when TWRP boots */
sp<IBinder> getKeystoreBinder() {
sp<IServiceManager> sm = defaultServiceManager();
return sm->getService(String16("android.security.keystore"));
}
sp<IBinder> getKeystoreBinderRetry() {
printf("Starting keystore...\n");
property_set("ctl.start", "keystore");
int retry_count = 50;
sp<IBinder> binder = getKeystoreBinder();
while (binder == NULL && retry_count) {
printf("Waiting for keystore service... %i\n", retry_count--);
sleep(1);
binder = getKeystoreBinder();
}
return binder;
}
namespace keystore {
#define SYNTHETIC_PASSWORD_VERSION 1
#define SYNTHETIC_PASSWORD_PASSWORD_BASED 0
#define SYNTHETIC_PASSWORD_KEY_PREFIX "USRSKEY_synthetic_password_"
/* The keystore alias subid is sometimes the same as the handle, but not always.
* In the case of handle 0c5303fd2010fe29, the alias subid used c5303fd2010fe29
* without the leading 0. We could try to parse the data from a previous
* keystore request, but I think this is an easier solution because there
* is little to no documentation on the format of data we get back from
* the keystore in this instance. We also want to copy everything to a temp
* folder so that any key upgrades that might take place do not actually
* upgrade the keys on the data partition. We rename all 1000 uid files to 0
* to pass the keystore permission checks. */
bool Find_Keystore_Alias_SubID_And_Prep_Files(const userid_t user_id, std::string& keystoreid) {
char path_c[PATH_MAX];
sprintf(path_c, "/data/misc/keystore/user_%d", user_id);
char user_dir[PATH_MAX];
sprintf(user_dir, "user_%d", user_id);
std::string source_path = "/data/misc/keystore/";
source_path += user_dir;
mkdir("/tmp/misc", 0755);
mkdir("/tmp/misc/keystore", 0755);
std::string destination_path = "/tmp/misc/keystore/";
destination_path += user_dir;
if (mkdir(destination_path.c_str(), 0755) && errno != EEXIST) {
printf("failed to mkdir '%s' %s\n", destination_path.c_str(), strerror(errno));
return false;
}
destination_path += "/";
DIR* dir = opendir(source_path.c_str());
if (!dir) {
printf("Error opening '%s'\n", source_path.c_str());
return false;
}
source_path += "/";
struct dirent* de = 0;
size_t prefix_len = strlen(SYNTHETIC_PASSWORD_KEY_PREFIX);
bool found_subid = false;
while ((de = readdir(dir)) != 0) {
if (strcmp(de->d_name, ".") == 0 || strcmp(de->d_name, "..") == 0)
continue;
if (!found_subid) {
size_t len = strlen(de->d_name);
if (len <= prefix_len)
continue;
if (!strstr(de->d_name, SYNTHETIC_PASSWORD_KEY_PREFIX))
continue;
std::string file = de->d_name;
std::size_t found = file.find_last_of("_");
if (found != std::string::npos) {
keystoreid = file.substr(found + 1);
printf("keystoreid: '%s'\n", keystoreid.c_str());
found_subid = true;
}
}
std::string src = source_path;
src += de->d_name;
std::ifstream srcif(src.c_str(), std::ios::binary);
std::string dst = destination_path;
dst += de->d_name;
std::size_t source_uid = dst.find("1000");
if (source_uid != std::string::npos)
dst.replace(source_uid, 4, "0");
std::ofstream dstof(dst.c_str(), std::ios::binary);
printf("copying '%s' to '%s'\n", src.c_str(), dst.c_str());
dstof << srcif.rdbuf();
srcif.close();
dstof.close();
}
closedir(dir);
return found_subid;
}
/* C++ replacement for function of the same name
* https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java#867
* returning an empty string indicates an error */
std::string unwrapSyntheticPasswordBlob(const std::string& spblob_path, const std::string& handle_str, const userid_t user_id, const void* application_id, const size_t application_id_size) {
std::string disk_decryption_secret_key = "";
std::string keystore_alias_subid;
if (!Find_Keystore_Alias_SubID_And_Prep_Files(user_id, keystore_alias_subid)) {
printf("failed to scan keystore alias subid and prep keystore files\n");
return disk_decryption_secret_key;
}
// First get the keystore service
sp<IBinder> binder = getKeystoreBinderRetry();
sp<IKeystoreService> service = interface_cast<IKeystoreService>(binder);
if (service == NULL) {
printf("error: could not connect to keystore service\n");
return disk_decryption_secret_key;
}
// Read the data from the .spblob file per: https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java#869
std::string spblob_file = spblob_path + handle_str + ".spblob";
std::string spblob_data;
if (!android::base::ReadFileToString(spblob_file, &spblob_data)) {
printf("Failed to read '%s'\n", spblob_file.c_str());
return disk_decryption_secret_key;
}
const unsigned char* byteptr = (const unsigned char*)spblob_data.data();
if (*byteptr != SYNTHETIC_PASSWORD_VERSION) {
printf("SYNTHETIC_PASSWORD_VERSION does not match\n");
return disk_decryption_secret_key;
}
byteptr++;
if (*byteptr != SYNTHETIC_PASSWORD_PASSWORD_BASED) {
printf("spblob data is not SYNTHETIC_PASSWORD_PASSWORD_BASED\n");
return disk_decryption_secret_key;
}
byteptr++; // Now we're pointing to the blob data itself
/* We're now going to handle decryptSPBlob: https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordCrypto.java#115
* Called from https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java#879
* This small function ends up being quite a headache. The call to get data from the keystore basically is not needed in TWRP at this time.
* The keystore data seems to be the serialized data from an entire class in Java. Specifically I think it represents:
* https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/keystore/java/android/security/keystore/AndroidKeyStoreCipherSpiBase.java
* or perhaps
* https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/keystore/java/android/security/keystore/AndroidKeyStoreAuthenticatedAESCipherSpi.java
* but the only things we "need" from this keystore are a user ID and the keyAlias which ends up being USRSKEY_synthetic_password_{handle_str}
* the latter of which we already have. We may need to figure out how to get the user ID if we ever support decrypting mulitple users.
* There are 2 calls to a Java decrypt funcion that is overloaded. These 2 calls go in completely different directions despite the seemingly
* similar use of decrypt() and decrypt parameters. To figure out where things were going, I added logging to:
* https://android.googlesource.com/platform/libcore/+/android-8.0.0_r23/ojluni/src/main/java/javax/crypto/Cipher.java#2575
* Logger.global.severe("Cipher tryCombinations " + prov.getName() + " - " + prov.getInfo());
* To make logging work in libcore, import java.util.logging.Logger; and either set a better logging level or modify the framework to log everything
* regardless of logging level. This will give you some strings that you can grep for and find the actual crypto provider in use. In our case there were
* 2 different providers in use. The first stage to get the intermediate key used:
* https://android.googlesource.com/platform/external/conscrypt/+/android-8.0.0_r23/common/src/main/java/org/conscrypt/OpenSSLProvider.java
* which is a pretty straight-forward OpenSSL implementation of AES/GCM/NoPadding. */
// First we personalize as seen https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordCrypto.java#102
void* personalized_application_id = PersonalizedHashBinary(PERSONALISATION_APPLICATION_ID, (const char*)application_id, application_id_size);
if (!personalized_application_id) {
printf("malloc personalized_application_id\n");
return disk_decryption_secret_key;
}
//printf("personalized application id: "); output_hex((unsigned char*)personalized_application_id, SHA512_DIGEST_LENGTH); printf("\n");
// Now we'll decrypt using openssl AES/GCM/NoPadding
OpenSSL_add_all_ciphers();
int actual_size=0, final_size=0;
EVP_CIPHER_CTX *d_ctx = EVP_CIPHER_CTX_new();
const unsigned char* iv = (const unsigned char*)byteptr; // The IV is the first 12 bytes of the spblob
//printf("iv: "); output_hex((const unsigned char*)iv, 12); printf("\n");
const unsigned char* cipher_text = (const unsigned char*)byteptr + 12; // The cipher text comes immediately after the IV
//printf("cipher_text: "); output_hex((const unsigned char*)cipher_text, spblob_data.size() - 2 - 12); printf("\n");
const unsigned char* key = (const unsigned char*)personalized_application_id; // The key is the now personalized copy of the application ID
//printf("key: "); output_hex((const unsigned char*)key, 32); printf("\n");
EVP_DecryptInit(d_ctx, EVP_aes_256_gcm(), key, iv);
std::vector<unsigned char> intermediate_key;
intermediate_key.resize(spblob_data.size() - 2 - 12, '\0');
EVP_DecryptUpdate(d_ctx, &intermediate_key[0], &actual_size, cipher_text, spblob_data.size() - 2 - 12);
unsigned char tag[AES_BLOCK_SIZE];
EVP_CIPHER_CTX_ctrl(d_ctx, EVP_CTRL_GCM_SET_TAG, 16, tag);
EVP_DecryptFinal_ex(d_ctx, &intermediate_key[actual_size], &final_size);
EVP_CIPHER_CTX_free(d_ctx);
free(personalized_application_id);
//printf("spblob_data size: %lu actual_size %i, final_size: %i\n", spblob_data.size(), actual_size, final_size);
intermediate_key.resize(actual_size + final_size - 16, '\0');// not sure why we have to trim the size by 16 as I don't see where this is done in Java side
//printf("intermediate key: "); output_hex((const unsigned char*)intermediate_key.data(), intermediate_key.size()); printf("\n");
int32_t ret;
/* We only need a keyAlias which is USRSKEY_synthetic_password_b6f71045af7bd042 which we find and a uid which is -1 or 1000, I forget which
* as the key data will be read again by the begin function later via the keystore.
* The data is in a hidl_vec format which consists of a type and a value. */
/*::keystore::hidl_vec<uint8_t> data;
std::string keystoreid = SYNTHETIC_PASSWORD_KEY_PREFIX;
keystoreid += handle_str;
ret = service->get(String16(keystoreid.c_str()), user_id, &data);
if (ret < 0) {
printf("Could not connect to keystore service %i\n", ret);
return disk_decryption_secret_key;
} else if (ret != 1 /*android::keystore::ResponseCode::NO_ERROR*//*) {
printf("keystore error: (%d)\n", /*responses[ret],*//* ret);
return disk_decryption_secret_key;
} else {
printf("keystore returned: "); output_hex(&data[0], data.size()); printf("\n");
}*/
// Now we'll break up the intermediate key into the IV (first 12 bytes) and the cipher text (the rest of it).
std::vector<unsigned char> nonce = intermediate_key;
nonce.resize(12);
intermediate_key.erase (intermediate_key.begin(),intermediate_key.begin()+12);
//printf("nonce: "); output_hex((const unsigned char*)nonce.data(), nonce.size()); printf("\n");
//printf("cipher text: "); output_hex((const unsigned char*)intermediate_key.data(), intermediate_key.size()); printf("\n");
/* Now we will begin the second decrypt call found in
* https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordCrypto.java#122
* This time we will use https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/keystore/java/android/security/keystore/AndroidKeyStoreCipherSpiBase.java
* and https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/keystore/java/android/security/keystore/AndroidKeyStoreAuthenticatedAESCipherSpi.java
* First we set some algorithm parameters as seen in two places:
* https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/keystore/java/android/security/keystore/AndroidKeyStoreAuthenticatedAESCipherSpi.java#297
* https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/keystore/java/android/security/keystore/AndroidKeyStoreAuthenticatedAESCipherSpi.java#216 */
size_t maclen = 128;
::keystore::AuthorizationSetBuilder begin_params;
begin_params.Authorization(::keystore::TAG_ALGORITHM, ::keystore::Algorithm::AES);
begin_params.Authorization(::keystore::TAG_BLOCK_MODE, ::keystore::BlockMode::GCM);
begin_params.Padding(::keystore::PaddingMode::NONE);
begin_params.Authorization(::keystore::TAG_NONCE, nonce);
begin_params.Authorization(::keystore::TAG_MAC_LENGTH, maclen);
//keymasterArgs.addEnum(KeymasterDefs.KM_TAG_ALGORITHM, KeymasterDefs.KM_ALGORITHM_AES);
//keymasterArgs.addEnum(KeymasterDefs.KM_TAG_BLOCK_MODE, mKeymasterBlockMode);
//keymasterArgs.addEnum(KeymasterDefs.KM_TAG_PADDING, mKeymasterPadding);
//keymasterArgs.addUnsignedInt(KeymasterDefs.KM_TAG_MAC_LENGTH, mTagLengthBits);
::keystore::hidl_vec<uint8_t> entropy; // No entropy is needed for decrypt
entropy.resize(0);
std::string keystore_alias = SYNTHETIC_PASSWORD_KEY_PREFIX;
keystore_alias += keystore_alias_subid;
String16 keystore_alias16(keystore_alias.c_str());
::keystore::KeyPurpose purpose = ::keystore::KeyPurpose::DECRYPT;
OperationResult begin_result;
// These parameters are mostly driven by the cipher.init call https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordCrypto.java#63
service->begin(binder, keystore_alias16, purpose, true, begin_params.hidl_data(), entropy, -1, &begin_result);
ret = begin_result.resultCode;
if (ret != 1 /*android::keystore::ResponseCode::NO_ERROR*/) {
printf("keystore begin error: (%d)\n", /*responses[ret],*/ ret);
return disk_decryption_secret_key;
} else {
//printf("keystore begin operation successful\n");
}
::keystore::hidl_vec<::keystore::KeyParameter> empty_params;
empty_params.resize(0);
OperationResult update_result;
// The cipher.doFinal call triggers an update to the keystore followed by a finish https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordCrypto.java#64
// See also https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/keystore/java/android/security/keystore/KeyStoreCryptoOperationChunkedStreamer.java#208
service->update(begin_result.token, empty_params, intermediate_key, &update_result);
ret = update_result.resultCode;
if (ret != 1 /*android::keystore::ResponseCode::NO_ERROR*/) {
printf("keystore update error: (%d)\n", /*responses[ret],*/ ret);
return disk_decryption_secret_key;
} else {
//printf("keystore update operation successful\n");
//printf("keystore update returned: "); output_hex(&update_result.data[0], update_result.data.size()); printf("\n"); // this ends up being the synthetic password
}
// We must use the data in update_data.data before we call finish below or the data will be gone
// The payload data from the keystore update is further personalized at https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java#153
// We now have the disk decryption key!
disk_decryption_secret_key = PersonalizedHash(PERSONALIZATION_FBE_KEY, (const char*)&update_result.data[0], update_result.data.size());
//printf("disk_decryption_secret_key: '%s'\n", disk_decryption_secret_key.c_str());
::keystore::hidl_vec<uint8_t> signature;
OperationResult finish_result;
service->finish(begin_result.token, empty_params, signature, entropy, &finish_result);
ret = finish_result.resultCode;
if (ret != 1 /*android::keystore::ResponseCode::NO_ERROR*/) {
printf("keystore finish error: (%d)\n", /*responses[ret],*/ ret);
return disk_decryption_secret_key;
} else {
//printf("keystore finish operation successful\n");
}
stop_keystore();
return disk_decryption_secret_key;
}
}}
#define PASSWORD_TOKEN_SIZE 32
bool Free_Return(bool retval, void* weaver_key, void* pwd_salt) {
if (weaver_key)
free(weaver_key);
if (pwd_salt)
free(pwd_salt);
return retval;
}
/* Decrypt_User_Synth_Pass is the TWRP C++ equivalent to spBasedDoVerifyCredential
* https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/LockSettingsService.java#1998 */
bool Decrypt_User_Synth_Pass(const userid_t user_id, const std::string& Password) {
bool retval = false;
void* weaver_key = NULL;
password_data_struct pwd;
pwd.salt = NULL;
std::string secret; // this will be the disk decryption key that is sent to vold
std::string token = "!"; // there is no token used for this kind of decrypt, key escrow is handled by weaver
int flags = FLAG_STORAGE_DE;
if (user_id == 0)
flags = FLAG_STORAGE_DE;
else
flags = FLAG_STORAGE_CE;
char spblob_path_char[PATH_MAX];
sprintf(spblob_path_char, "/data/system_de/%d/spblob/", user_id);
std::string spblob_path = spblob_path_char;
long handle = 0;
std::string handle_str;
// Get the handle: https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/LockSettingsService.java#2017
if (!Find_Handle(spblob_path, handle_str)) {
printf("Error getting handle\n");
return Free_Return(retval, weaver_key, pwd.salt);
}
printf("Handle is '%s'\n", handle_str.c_str());
// Now we begin driving unwrapPasswordBasedSyntheticPassword from: https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java#758
// First we read the password data which contains scrypt parameters
if (!Get_Password_Data(spblob_path, handle_str, &pwd)) {
printf("Failed to Get_Password_Data\n");
return Free_Return(retval, weaver_key, pwd.salt);
}
//printf("pwd N %i R %i P %i salt ", pwd.scryptN, pwd.scryptR, pwd.scryptP); output_hex((char*)pwd.salt, pwd.salt_len); printf("\n");
unsigned char password_token[PASSWORD_TOKEN_SIZE];
//printf("Password: '%s'\n", Password.c_str());
// The password token is the password scrypted with the parameters from the password data file
if (!Get_Password_Token(&pwd, Password, &password_token[0])) {
printf("Failed to Get_Password_Token\n");
return Free_Return(retval, weaver_key, pwd.salt);
}
//output_hex(&password_token[0], PASSWORD_TOKEN_SIZE);printf("\n");
// BEGIN PIXEL 2 WEAVER
// Get the weaver data from the .weaver file which tells us which slot to use when we ask weaver for the escrowed key
// https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java#768
weaver_data_struct wd;
if (!Get_Weaver_Data(spblob_path, handle_str, &wd)) {
printf("Failed to get weaver data\n");
// Fail over to gatekeeper path for Pixel 1???
return Free_Return(retval, weaver_key, pwd.salt);
}
// The weaver key is the the password token prefixed with "weaver-key" padded to 128 with nulls with the password token appended then SHA512
// https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java#1059
weaver_key = PersonalizedHashBinary(PERSONALISATION_WEAVER_KEY, (char*)&password_token[0], PASSWORD_TOKEN_SIZE);
if (!weaver_key) {
printf("malloc error getting weaver_key\n");
return Free_Return(retval, weaver_key, pwd.salt);
}
// Now we start driving weaverVerify: https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java#343
// Called from https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java#776
android::vold::Weaver weaver;
if (!weaver) {
printf("Failed to get weaver service\n");
return Free_Return(retval, weaver_key, pwd.salt);
}
// Get the key size from weaver service
uint32_t weaver_key_size = 0;
if (!weaver.GetKeySize(&weaver_key_size)) {
printf("Failed to get weaver key size\n");
return Free_Return(retval, weaver_key, pwd.salt);
} else {
//printf("weaver key size is %u\n", weaver_key_size);
}
//printf("weaver key: "); output_hex((unsigned char*)weaver_key, weaver_key_size); printf("\n");
// Send the slot from the .weaver file, the computed weaver key, and get the escrowed key data
std::vector<uint8_t> weaver_payload;
// TODO: we should return more information about the status including time delays before the next retry
if (!weaver.WeaverVerify(wd.slot, weaver_key, &weaver_payload)) {
printf("failed to weaver verify\n");
return Free_Return(retval, weaver_key, pwd.salt);
}
//printf("weaver payload: "); output_hex(&weaver_payload); printf("\n");
// Done with weaverVerify
// Now we will compute the application ID
// https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java#964
// Called from https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java#780
// The escrowed weaver key data is prefixed with "weaver-pwd" padded to 128 with nulls with the weaver payload appended then SHA512
void* weaver_secret = PersonalizedHashBinary(PERSONALISATION_WEAVER_PASSWORD, (const char*)weaver_payload.data(), weaver_payload.size());
//printf("weaver secret: "); output_hex((unsigned char*)weaver_secret, SHA512_DIGEST_LENGTH); printf("\n");
// The application ID is the password token and weaver secret appended to each other
char application_id[PASSWORD_TOKEN_SIZE + SHA512_DIGEST_LENGTH];
memcpy((void*)&application_id[0], (void*)&password_token[0], PASSWORD_TOKEN_SIZE);
memcpy((void*)&application_id[PASSWORD_TOKEN_SIZE], weaver_secret, SHA512_DIGEST_LENGTH);
//printf("application ID: "); output_hex((unsigned char*)application_id, PASSWORD_TOKEN_SIZE + SHA512_DIGEST_LENGTH); printf("\n");
// END PIXEL 2 WEAVER
// Now we will handle https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java#816
// Plus we will include the last bit that computes the disk decrypt key found in:
// https://android.googlesource.com/platform/frameworks/base/+/android-8.0.0_r23/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java#153
secret = android::keystore::unwrapSyntheticPasswordBlob(spblob_path, handle_str, user_id, (const void*)&application_id[0], PASSWORD_TOKEN_SIZE + SHA512_DIGEST_LENGTH);
if (!secret.size()) {
printf("failed to unwrapSyntheticPasswordBlob\n");
return Free_Return(retval, weaver_key, pwd.salt);
}
if (!e4crypt_unlock_user_key(user_id, 0, token.c_str(), secret.c_str())) {
printf("e4crypt_unlock_user_key returned fail\n");
return Free_Return(retval, weaver_key, pwd.salt);
}
if (!e4crypt_prepare_user_storage(nullptr, user_id, 0, flags)) {
printf("failed to e4crypt_prepare_user_storage\n");
return Free_Return(retval, weaver_key, pwd.salt);
}
printf("Decrypted Successfully!\n");
retval = true;
return Free_Return(retval, weaver_key, pwd.salt);
}
#endif //HAVE_SYNTH_PWD_SUPPORT
int Get_Password_Type(const userid_t user_id, std::string& filename) {
struct stat st;
char spblob_path_char[PATH_MAX];
sprintf(spblob_path_char, "/data/system_de/%d/spblob/", user_id);
if (stat(spblob_path_char, &st) == 0) {
#ifdef HAVE_SYNTH_PWD_SUPPORT
printf("Using synthetic password method\n");
std::string spblob_path = spblob_path_char;
std::string handle_str;
if (!Find_Handle(spblob_path, handle_str)) {
printf("Error getting handle\n");
return 0;
}
printf("Handle is '%s'\n", handle_str.c_str());
password_data_struct pwd;
if (!Get_Password_Data(spblob_path, handle_str, &pwd)) {
printf("Failed to Get_Password_Data\n");
return 0;
}
if (pwd.password_type == 1) // In Android this means pattern
return 2; // In TWRP this means pattern
else if (pwd.password_type == 2) // In Android this means PIN or password
return 1; // In TWRP this means PIN or password
return 0; // We'll try the default password
#else
printf("Synthetic password support not present in TWRP\n");
return -1;
#endif
}
std::string path;
if (user_id == 0) {
path = "/data/system/";
} else {
char user_id_str[5];
sprintf(user_id_str, "%i", user_id);
path = "/data/system/users/";
path += user_id_str;
path += "/";
}
filename = path + "gatekeeper.password.key";
if (stat(filename.c_str(), &st) == 0 && st.st_size > 0)
return 1;
filename = path + "gatekeeper.pattern.key";
if (stat(filename.c_str(), &st) == 0 && st.st_size > 0)
return 2;
printf("Unable to locate gatekeeper password file '%s'\n", filename.c_str());
filename = "";
return 0;
}
bool Decrypt_User(const userid_t user_id, const std::string& Password) {
uint8_t *auth_token;
uint32_t auth_token_len;
int ret;
struct stat st;
if (user_id > 9999) {
printf("user_id is too big\n");
return false;
}
std::string filename;
bool Default_Password = (Password == "!");
if (Get_Password_Type(user_id, filename) == 0 && !Default_Password) {
printf("Unknown password type\n");
return false;
}
int flags = FLAG_STORAGE_DE;
if (user_id == 0)
flags = FLAG_STORAGE_DE;
else
flags = FLAG_STORAGE_CE;
if (Default_Password) {
if (!e4crypt_unlock_user_key(user_id, 0, "!", "!")) {
printf("e4crypt_unlock_user_key returned fail\n");
return false;
}
if (!e4crypt_prepare_user_storage(nullptr, user_id, 0, flags)) {
printf("failed to e4crypt_prepare_user_storage\n");
return false;
}
printf("Decrypted Successfully!\n");
return true;
}
if (stat("/data/system_de/0/spblob", &st) == 0) {
#ifdef HAVE_SYNTH_PWD_SUPPORT
printf("Using synthetic password method\n");
return Decrypt_User_Synth_Pass(user_id, Password);
#else
printf("Synthetic password support not present in TWRP\n");
return false;
#endif
}
printf("password filename is '%s'\n", filename.c_str());
if (stat(filename.c_str(), &st) != 0) {
printf("error stat'ing key file: %s\n", strerror(errno));
return false;
}
std::string handle;
if (!android::base::ReadFileToString(filename, &handle)) {
printf("Failed to read '%s'\n", filename.c_str());
return false;
}
bool should_reenroll;
#ifdef HAVE_GATEKEEPER1
bool request_reenroll = false;
android::sp<android::hardware::gatekeeper::V1_0::IGatekeeper> gk_device;
gk_device = ::android::hardware::gatekeeper::V1_0::IGatekeeper::getService();
if (gk_device == nullptr)
return false;
android::hardware::hidl_vec<uint8_t> curPwdHandle;
curPwdHandle.setToExternal(const_cast<uint8_t *>((const uint8_t *)handle.c_str()), st.st_size);
android::hardware::hidl_vec<uint8_t> enteredPwd;
enteredPwd.setToExternal(const_cast<uint8_t *>((const uint8_t *)Password.c_str()), Password.size());
android::hardware::Return<void> hwRet =
gk_device->verify(user_id, 0 /* challange */,
curPwdHandle,
enteredPwd,
[&ret, &request_reenroll, &auth_token, &auth_token_len]
(const android::hardware::gatekeeper::V1_0::GatekeeperResponse &rsp) {
ret = static_cast<int>(rsp.code); // propagate errors
if (rsp.code >= android::hardware::gatekeeper::V1_0::GatekeeperStatusCode::STATUS_OK) {
auth_token = new uint8_t[rsp.data.size()];
auth_token_len = rsp.data.size();
memcpy(auth_token, rsp.data.data(), auth_token_len);
request_reenroll = (rsp.code == android::hardware::gatekeeper::V1_0::GatekeeperStatusCode::STATUS_REENROLL);
ret = 0; // all success states are reported as 0
} else if (rsp.code == android::hardware::gatekeeper::V1_0::GatekeeperStatusCode::ERROR_RETRY_TIMEOUT && rsp.timeout > 0) {
ret = rsp.timeout;
}
}
);
if (!hwRet.isOk()) {
return false;
}
#else
gatekeeper_device_t *gk_device;
ret = gatekeeper_device_initialize(&gk_device);
if (ret!=0)
return false;
ret = gk_device->verify(gk_device, user_id, 0, (const uint8_t *)handle.c_str(), st.st_size,
(const uint8_t *)Password.c_str(), (uint32_t)Password.size(), &auth_token, &auth_token_len,
&should_reenroll);
if (ret !=0) {
printf("failed to verify\n");
return false;
}
#endif
char token_hex[(auth_token_len*2)+1];
token_hex[(auth_token_len*2)] = 0;
uint32_t i;
for (i=0;i<auth_token_len;i++) {
sprintf(&token_hex[2*i], "%02X", auth_token[i]);
}
// The secret is "Android FBE credential hash" plus appended 0x00 to reach 128 bytes then append the user's password then feed that to sha512sum
std::string secret = HashPassword(Password);
if (!e4crypt_unlock_user_key(user_id, 0, token_hex, secret.c_str())) {
printf("e4crypt_unlock_user_key returned fail\n");
return false;
}
if (!e4crypt_prepare_user_storage(nullptr, user_id, 0, flags)) {
printf("failed to e4crypt_prepare_user_storage\n");
return false;
}
printf("Decrypted Successfully!\n");
return true;
}