| /* |
| * Copyright (C) 2010 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* TO DO: |
| * 1. Perhaps keep several copies of the encrypted key, in case something |
| * goes horribly wrong? |
| * |
| */ |
| |
| #include <sys/types.h> |
| #include <sys/wait.h> |
| #include <sys/stat.h> |
| #include <ctype.h> |
| #include <fcntl.h> |
| #include <inttypes.h> |
| #include <unistd.h> |
| #include <stdio.h> |
| #include <sys/ioctl.h> |
| #include <linux/dm-ioctl.h> |
| #include <libgen.h> |
| #include <stdlib.h> |
| #include <sys/param.h> |
| #include <string.h> |
| #include <sys/mount.h> |
| #include <openssl/evp.h> |
| #include <openssl/sha.h> |
| #include <errno.h> |
| //#include <ext4_utils/ext4_crypt.h> |
| //#include <ext4_utils/ext4_utils.h> |
| #include <linux/kdev_t.h> |
| //#include <fs_mgr.h> |
| #include <time.h> |
| #include <math.h> |
| //#include <selinux/selinux.h> |
| #include "cryptfs.h" |
| //#include "secontext.h" |
| #define LOG_TAG "Cryptfs" |
| //#include "cutils/log.h" |
| #include "cutils/properties.h" |
| //#include "cutils/android_reboot.h" |
| //#include "hardware_legacy/power.h" |
| //#include <logwrap/logwrap.h> |
| //#include "ScryptParameters.h" |
| //#include "VolumeManager.h" |
| //#include "VoldUtil.h" |
| //#include "Ext4Crypt.h" |
| //#include "f2fs_sparseblock.h" |
| //#include "EncryptInplace.h" |
| //#include "Process.h" |
| #include "Keymaster.h" |
| #if TW_KEYMASTER_MAX_API == 0 |
| #include <hardware/keymaster.h> |
| #else // so far, all trees that have keymaster >= 1 have keymaster 1 support |
| #include <stdbool.h> |
| #include <openssl/evp.h> |
| #include <openssl/sha.h> |
| #include <hardware/keymaster0.h> |
| #include <hardware/keymaster1.h> |
| #include <hardware/keymaster2.h> |
| #endif |
| //#include "android-base/properties.h" |
| //#include <bootloader_message/bootloader_message.h> |
| #ifdef CONFIG_HW_DISK_ENCRYPTION |
| #include <cryptfs_hw.h> |
| #endif |
| extern "C" { |
| #include <crypto_scrypt.h> |
| } |
| #include <string> |
| #include <vector> |
| |
| #define ALOGE(...) fprintf(stdout, "E:" __VA_ARGS__) |
| #define SLOGE(...) fprintf(stdout, "E:" __VA_ARGS__) |
| #define SLOGW(...) fprintf(stdout, "W:" __VA_ARGS__) |
| #define SLOGI(...) fprintf(stdout, "I:" __VA_ARGS__) |
| #define SLOGD(...) fprintf(stdout, "D:" __VA_ARGS__) |
| |
| #define UNUSED __attribute__((unused)) |
| |
| #define DM_CRYPT_BUF_SIZE 4096 |
| |
| #define HASH_COUNT 2000 |
| |
| #ifndef min /* already defined by windows.h */ |
| #define min(a, b) ((a) < (b) ? (a) : (b)) |
| #endif |
| |
| constexpr size_t INTERMEDIATE_KEY_LEN_BYTES = 16; |
| constexpr size_t INTERMEDIATE_IV_LEN_BYTES = 16; |
| constexpr size_t INTERMEDIATE_BUF_SIZE = |
| (INTERMEDIATE_KEY_LEN_BYTES + INTERMEDIATE_IV_LEN_BYTES); |
| |
| // SCRYPT_LEN is used by struct crypt_mnt_ftr for its intermediate key. |
| static_assert(INTERMEDIATE_BUF_SIZE == SCRYPT_LEN, |
| "Mismatch of intermediate key sizes"); |
| |
| #define KEY_IN_FOOTER "footer" |
| |
| #define DEFAULT_HEX_PASSWORD "64656661756c745f70617373776f7264" |
| #define DEFAULT_PASSWORD "default_password" |
| |
| #define CRYPTO_BLOCK_DEVICE "userdata" |
| |
| #define TABLE_LOAD_RETRIES 10 |
| |
| #define RSA_KEY_SIZE 2048 |
| #define RSA_KEY_SIZE_BYTES (RSA_KEY_SIZE / 8) |
| #define RSA_EXPONENT 0x10001 |
| #define KEYMASTER_CRYPTFS_RATE_LIMIT 1 // Maximum one try per second |
| #define KEY_LEN_BYTES 16 |
| |
| #define RETRY_MOUNT_ATTEMPTS 10 |
| #define RETRY_MOUNT_DELAY_SECONDS 1 |
| |
| #define CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE (1) |
| |
| static unsigned char saved_master_key[MAX_KEY_LEN]; |
| static char *saved_mount_point; |
| static int master_key_saved = 0; |
| static struct crypt_persist_data *persist_data = NULL; |
| |
| static int previous_type; |
| |
| static char key_fname[PROPERTY_VALUE_MAX] = ""; |
| static char real_blkdev[PROPERTY_VALUE_MAX] = ""; |
| static char file_system[PROPERTY_VALUE_MAX] = ""; |
| |
| static void get_blkdev_size(int fd, unsigned long *nr_sec) |
| { |
| if ( (ioctl(fd, BLKGETSIZE, nr_sec)) == -1) { |
| *nr_sec = 0; |
| } |
| } |
| |
| #if TW_KEYMASTER_MAX_API == 0 |
| static int keymaster_init(keymaster_device_t **keymaster_dev) |
| { |
| int rc; |
| |
| const hw_module_t* mod; |
| rc = hw_get_module_by_class(KEYSTORE_HARDWARE_MODULE_ID, NULL, &mod); |
| if (rc) { |
| printf("could not find any keystore module\n"); |
| goto out; |
| } |
| |
| rc = keymaster_open(mod, keymaster_dev); |
| if (rc) { |
| printf("could not open keymaster device in %s (%s)\n", |
| KEYSTORE_HARDWARE_MODULE_ID, strerror(-rc)); |
| goto out; |
| } |
| |
| return 0; |
| |
| out: |
| *keymaster_dev = NULL; |
| return rc; |
| } |
| #else //TW_KEYMASTER_MAX_API == 0 |
| static int keymaster_init(keymaster0_device_t **keymaster0_dev, |
| keymaster1_device_t **keymaster1_dev, |
| keymaster2_device_t **keymaster2_dev) |
| { |
| int rc; |
| |
| const hw_module_t* mod; |
| rc = hw_get_module_by_class(KEYSTORE_HARDWARE_MODULE_ID, NULL, &mod); |
| if (rc) { |
| printf("could not find any keystore module\n"); |
| goto err; |
| } |
| |
| printf("keymaster module name is %s\n", mod->name); |
| printf("keymaster version is %d\n", mod->module_api_version); |
| |
| *keymaster0_dev = NULL; |
| *keymaster1_dev = NULL; |
| *keymaster2_dev = NULL; |
| if (mod->module_api_version == KEYMASTER_MODULE_API_VERSION_2_0) { |
| printf("Found keymaster2 module, using keymaster2 API.\n"); |
| rc = keymaster2_open(mod, keymaster2_dev); |
| } else if (mod->module_api_version == KEYMASTER_MODULE_API_VERSION_1_0) { |
| printf("Found keymaster1 module, using keymaster1 API.\n"); |
| rc = keymaster1_open(mod, keymaster1_dev); |
| } else { |
| printf("Found keymaster0 module, using keymaster0 API.\n"); |
| rc = keymaster0_open(mod, keymaster0_dev); |
| } |
| |
| if (rc) { |
| printf("could not open keymaster device in %s (%s)\n", |
| KEYSTORE_HARDWARE_MODULE_ID, strerror(-rc)); |
| goto err; |
| } |
| |
| return 0; |
| |
| err: |
| *keymaster0_dev = NULL; |
| *keymaster1_dev = NULL; |
| *keymaster2_dev = NULL; |
| return rc; |
| } |
| #endif //TW_KEYMASTER_MAX_API == 0 |
| |
| #ifdef CONFIG_HW_DISK_ENCRYPTION |
| static int scrypt_keymaster(const char *passwd, const unsigned char *salt, |
| unsigned char *ikey, void *params); |
| static void convert_key_to_hex_ascii(const unsigned char *master_key, |
| unsigned int keysize, char *master_key_ascii); |
| static int test_mount_hw_encrypted_fs(struct crypt_mnt_ftr* crypt_ftr, |
| const char *passwd, const char *mount_point, const char *label); |
| int cryptfs_check_passwd_hw(char *passwd); |
| int cryptfs_get_master_key(struct crypt_mnt_ftr* ftr, const char* password, |
| unsigned char* master_key); |
| |
| static void convert_key_to_hex_ascii_for_upgrade(const unsigned char *master_key, |
| unsigned int keysize, char *master_key_ascii) |
| { |
| unsigned int i, a; |
| unsigned char nibble; |
| |
| for (i = 0, a = 0; i < keysize; i++, a += 2) { |
| /* For each byte, write out two ascii hex digits */ |
| nibble = (master_key[i] >> 4) & 0xf; |
| master_key_ascii[a] = nibble + (nibble > 9 ? 0x57 : 0x30); |
| |
| nibble = master_key[i] & 0xf; |
| master_key_ascii[a + 1] = nibble + (nibble > 9 ? 0x57 : 0x30); |
| } |
| |
| /* Add the null termination */ |
| master_key_ascii[a] = '\0'; |
| } |
| |
| static int get_keymaster_hw_fde_passwd(const char* passwd, unsigned char* newpw, |
| unsigned char* salt, |
| const struct crypt_mnt_ftr *ftr) |
| { |
| /* if newpw updated, return 0 |
| * if newpw not updated return -1 |
| */ |
| int rc = -1; |
| |
| if (should_use_keymaster()) { |
| if (scrypt_keymaster(passwd, salt, newpw, (void*)ftr)) { |
| SLOGE("scrypt failed"); |
| } else { |
| rc = 0; |
| } |
| } |
| |
| return rc; |
| } |
| |
| static int verify_hw_fde_passwd(const char *passwd, struct crypt_mnt_ftr* crypt_ftr) |
| { |
| unsigned char newpw[32] = {0}; |
| int key_index; |
| SLOGI("starting verify_hw_fde_passwd\n"); |
| if (get_keymaster_hw_fde_passwd(passwd, newpw, crypt_ftr->salt, crypt_ftr)) |
| key_index = set_hw_device_encryption_key(passwd, |
| (char*) crypt_ftr->crypto_type_name); |
| else |
| key_index = set_hw_device_encryption_key((const char*)newpw, |
| (char*) crypt_ftr->crypto_type_name); |
| return key_index; |
| } |
| |
| static int verify_and_update_hw_fde_passwd(const char *passwd, |
| struct crypt_mnt_ftr* crypt_ftr) |
| { |
| char* new_passwd = NULL; |
| unsigned char newpw[32] = {0}; |
| int key_index = -1; |
| int passwd_updated = -1; |
| int ascii_passwd_updated = (crypt_ftr->flags & CRYPT_ASCII_PASSWORD_UPDATED); |
| |
| key_index = verify_hw_fde_passwd(passwd, crypt_ftr); |
| if (key_index < 0) { |
| ++crypt_ftr->failed_decrypt_count; |
| |
| if (ascii_passwd_updated) { |
| SLOGI("Ascii password was updated"); |
| } else { |
| /* Code in else part would execute only once: |
| * When device is upgraded from L->M release. |
| * Once upgraded, code flow should never come here. |
| * L release passed actual password in hex, so try with hex |
| * Each nible of passwd was encoded as a byte, so allocate memory |
| * twice of password len plus one more byte for null termination |
| */ |
| if (crypt_ftr->crypt_type == CRYPT_TYPE_DEFAULT) { |
| new_passwd = (char*)malloc(strlen(DEFAULT_HEX_PASSWORD) + 1); |
| if (new_passwd == NULL) { |
| SLOGE("System out of memory. Password verification incomplete"); |
| goto out; |
| } |
| strlcpy(new_passwd, DEFAULT_HEX_PASSWORD, strlen(DEFAULT_HEX_PASSWORD) + 1); |
| } else { |
| new_passwd = (char*)malloc(strlen(passwd) * 2 + 1); |
| if (new_passwd == NULL) { |
| SLOGE("System out of memory. Password verification incomplete"); |
| goto out; |
| } |
| convert_key_to_hex_ascii_for_upgrade((const unsigned char*)passwd, |
| strlen(passwd), new_passwd); |
| } |
| key_index = set_hw_device_encryption_key((const char*)new_passwd, |
| (char*) crypt_ftr->crypto_type_name); |
| if (key_index >=0) { |
| crypt_ftr->failed_decrypt_count = 0; |
| SLOGI("Hex password verified...will try to update with Ascii value"); |
| /* Before updating password, tie that with keymaster to tie with ROT */ |
| |
| if (get_keymaster_hw_fde_passwd(passwd, newpw, |
| crypt_ftr->salt, crypt_ftr)) { |
| passwd_updated = update_hw_device_encryption_key(new_passwd, |
| passwd, (char*)crypt_ftr->crypto_type_name); |
| } else { |
| passwd_updated = update_hw_device_encryption_key(new_passwd, |
| (const char*)newpw, (char*)crypt_ftr->crypto_type_name); |
| } |
| |
| if (passwd_updated >= 0) { |
| crypt_ftr->flags |= CRYPT_ASCII_PASSWORD_UPDATED; |
| SLOGI("Ascii password recorded and updated"); |
| } else { |
| SLOGI("Passwd verified, could not update...Will try next time"); |
| } |
| } else { |
| ++crypt_ftr->failed_decrypt_count; |
| } |
| free(new_passwd); |
| } |
| } else { |
| if (!ascii_passwd_updated) |
| crypt_ftr->flags |= CRYPT_ASCII_PASSWORD_UPDATED; |
| } |
| out: |
| // update footer before leaving |
| //put_crypt_ftr_and_key(crypt_ftr); |
| return key_index; |
| } |
| #endif |
| |
| void set_partition_data(const char* block_device, const char* key_location, const char* fs) |
| { |
| strcpy(key_fname, key_location); |
| strcpy(real_blkdev, block_device); |
| strcpy(file_system, fs); |
| } |
| |
| /* This signs the given object using the keymaster key. */ |
| static int keymaster_sign_object(struct crypt_mnt_ftr *ftr, |
| const unsigned char *object, |
| const size_t object_size, |
| unsigned char **signature, |
| size_t *signature_size) |
| { |
| SLOGI("TWRP keymaster max API: %i\n", TW_KEYMASTER_MAX_API); |
| unsigned char to_sign[RSA_KEY_SIZE_BYTES]; |
| size_t to_sign_size = sizeof(to_sign); |
| memset(to_sign, 0, RSA_KEY_SIZE_BYTES); |
| |
| // To sign a message with RSA, the message must satisfy two |
| // constraints: |
| // |
| // 1. The message, when interpreted as a big-endian numeric value, must |
| // be strictly less than the public modulus of the RSA key. Note |
| // that because the most significant bit of the public modulus is |
| // guaranteed to be 1 (else it's an (n-1)-bit key, not an n-bit |
| // key), an n-bit message with most significant bit 0 always |
| // satisfies this requirement. |
| // |
| // 2. The message must have the same length in bits as the public |
| // modulus of the RSA key. This requirement isn't mathematically |
| // necessary, but is necessary to ensure consistency in |
| // implementations. |
| switch (ftr->kdf_type) { |
| case KDF_SCRYPT_KEYMASTER_UNPADDED: |
| // This is broken: It produces a message which is shorter than |
| // the public modulus, failing criterion 2. |
| memcpy(to_sign, object, object_size); |
| to_sign_size = object_size; |
| SLOGI("Signing unpadded object\n"); |
| break; |
| case KDF_SCRYPT_KEYMASTER_BADLY_PADDED: |
| // This is broken: Since the value of object is uniformly |
| // distributed, it produces a message that is larger than the |
| // public modulus with probability 0.25. |
| memcpy(to_sign, object, min(RSA_KEY_SIZE_BYTES, object_size)); |
| SLOGI("Signing end-padded object\n"); |
| break; |
| case KDF_SCRYPT_KEYMASTER: |
| // This ensures the most significant byte of the signed message |
| // is zero. We could have zero-padded to the left instead, but |
| // this approach is slightly more robust against changes in |
| // object size. However, it's still broken (but not unusably |
| // so) because we really should be using a proper deterministic |
| // RSA padding function, such as PKCS1. |
| memcpy(to_sign + 1, object, min((size_t)RSA_KEY_SIZE_BYTES - 1, object_size)); |
| SLOGI("Signing safely-padded object"); |
| break; |
| default: |
| SLOGE("Unknown KDF type %d", ftr->kdf_type); |
| return -1; |
| } |
| |
| int rc = -1; |
| |
| #if TW_KEYMASTER_MAX_API >= 1 |
| keymaster0_device_t *keymaster0_dev = 0; |
| keymaster1_device_t *keymaster1_dev = 0; |
| keymaster2_device_t *keymaster2_dev = 0; |
| if (keymaster_init(&keymaster0_dev, &keymaster1_dev, &keymaster2_dev)) { |
| #else |
| keymaster_device_t *keymaster0_dev = 0; |
| if (keymaster_init(&keymaster0_dev)) { |
| #endif |
| printf("Failed to init keymaster 0/1\n"); |
| goto initfail; |
| } |
| if (keymaster0_dev) { |
| keymaster_rsa_sign_params_t params; |
| params.digest_type = DIGEST_NONE; |
| params.padding_type = PADDING_NONE; |
| |
| rc = keymaster0_dev->sign_data(keymaster0_dev, |
| ¶ms, |
| ftr->keymaster_blob, |
| ftr->keymaster_blob_size, |
| to_sign, |
| to_sign_size, |
| signature, |
| signature_size); |
| goto out; |
| } |
| #if TW_KEYMASTER_MAX_API >= 1 |
| else if (keymaster1_dev) { |
| keymaster_key_blob_t key = { ftr->keymaster_blob, ftr->keymaster_blob_size }; |
| keymaster_key_param_t params[] = { |
| keymaster_param_enum(KM_TAG_PADDING, KM_PAD_NONE), |
| keymaster_param_enum(KM_TAG_DIGEST, KM_DIGEST_NONE), |
| }; |
| keymaster_key_param_set_t param_set = { params, sizeof(params)/sizeof(*params) }; |
| keymaster_operation_handle_t op_handle; |
| keymaster_error_t error = keymaster1_dev->begin(keymaster1_dev, KM_PURPOSE_SIGN, &key, |
| ¶m_set, NULL /* out_params */, |
| &op_handle); |
| if (error == KM_ERROR_KEY_RATE_LIMIT_EXCEEDED) { |
| // Key usage has been rate-limited. Wait a bit and try again. |
| sleep(KEYMASTER_CRYPTFS_RATE_LIMIT); |
| error = keymaster1_dev->begin(keymaster1_dev, KM_PURPOSE_SIGN, &key, |
| ¶m_set, NULL /* out_params */, |
| &op_handle); |
| } |
| if (error != KM_ERROR_OK) { |
| printf("Error starting keymaster signature transaction: %d\n", error); |
| rc = -1; |
| goto out; |
| } |
| |
| keymaster_blob_t input = { to_sign, to_sign_size }; |
| size_t input_consumed; |
| error = keymaster1_dev->update(keymaster1_dev, op_handle, NULL /* in_params */, |
| &input, &input_consumed, NULL /* out_params */, |
| NULL /* output */); |
| if (error != KM_ERROR_OK) { |
| printf("Error sending data to keymaster signature transaction: %d\n", error); |
| rc = -1; |
| goto out; |
| } |
| if (input_consumed != to_sign_size) { |
| // This should never happen. If it does, it's a bug in the keymaster implementation. |
| printf("Keymaster update() did not consume all data.\n"); |
| keymaster1_dev->abort(keymaster1_dev, op_handle); |
| rc = -1; |
| goto out; |
| } |
| |
| keymaster_blob_t tmp_sig; |
| error = keymaster1_dev->finish(keymaster1_dev, op_handle, NULL /* in_params */, |
| NULL /* verify signature */, NULL /* out_params */, |
| &tmp_sig); |
| if (error != KM_ERROR_OK) { |
| printf("Error finishing keymaster signature transaction: %d\n", error); |
| rc = -1; |
| goto out; |
| } |
| |
| *signature = (uint8_t*)tmp_sig.data; |
| *signature_size = tmp_sig.data_length; |
| rc = 0; |
| } |
| else if (keymaster2_dev) { |
| keymaster_key_blob_t key = { ftr->keymaster_blob, ftr->keymaster_blob_size }; |
| keymaster_key_param_t params[] = { |
| keymaster_param_enum(KM_TAG_PADDING, KM_PAD_NONE), |
| keymaster_param_enum(KM_TAG_DIGEST, KM_DIGEST_NONE), |
| }; |
| keymaster_key_param_set_t param_set = { params, sizeof(params)/sizeof(*params) }; |
| keymaster_operation_handle_t op_handle; |
| keymaster_key_param_t config_params[] = { |
| // Set these to crazy values so we don't need to synchronize |
| // the recovery with system updates. |
| // key upgrades will be required; it will be upgraded in-memory |
| keymaster_param_int(KM_TAG_OS_VERSION, 999999), |
| keymaster_param_int(KM_TAG_OS_PATCHLEVEL, 209912), |
| }; |
| keymaster_key_param_set_t config_param_set = { config_params, sizeof(config_params)/sizeof(*config_params) }; |
| keymaster2_dev->configure(keymaster2_dev, &config_param_set); |
| keymaster_error_t error = keymaster2_dev->begin(keymaster2_dev, KM_PURPOSE_SIGN, &key, |
| ¶m_set, NULL /* out_params */, |
| &op_handle); |
| if (error == KM_ERROR_KEY_RATE_LIMIT_EXCEEDED) { |
| // Key usage has been rate-limited. Wait a bit and try again. |
| sleep(KEYMASTER_CRYPTFS_RATE_LIMIT); |
| error = keymaster2_dev->begin(keymaster2_dev, KM_PURPOSE_SIGN, &key, |
| ¶m_set, NULL /* out_params */, |
| &op_handle); |
| } |
| |
| if (error == KM_ERROR_KEY_REQUIRES_UPGRADE) { |
| // Upgrade key in-memory if required |
| // Do not actually write it back; just keep it in memory |
| const keymaster_key_blob_t key_to_upd = key; |
| keymaster2_dev->upgrade_key(keymaster2_dev, &key_to_upd, &config_param_set, &key); |
| error = keymaster2_dev->begin(keymaster2_dev, KM_PURPOSE_SIGN, &key, |
| ¶m_set, NULL /* out_params */, |
| &op_handle); |
| } |
| |
| if (error != KM_ERROR_OK) { |
| printf("Error starting keymaster signature transaction: %d\n", error); |
| rc = -1; |
| goto out; |
| } |
| |
| keymaster_blob_t input = { to_sign, to_sign_size }; |
| size_t input_consumed; |
| error = keymaster2_dev->update(keymaster2_dev, op_handle, NULL /* in_params */, |
| &input, &input_consumed, NULL /* out_params */, |
| NULL /* output */); |
| if (error != KM_ERROR_OK) { |
| printf("Error sending data to keymaster signature transaction: %d\n", error); |
| rc = -1; |
| goto out; |
| } |
| if (input_consumed != to_sign_size) { |
| // This should never happen. If it does, it's a bug in the keymaster implementation. |
| printf("Keymaster update() did not consume all data.\n"); |
| keymaster2_dev->abort(keymaster2_dev, op_handle); |
| rc = -1; |
| goto out; |
| } |
| |
| keymaster_blob_t tmp_sig; |
| error = keymaster2_dev->finish(keymaster2_dev, op_handle, NULL /* in_params */, |
| NULL, NULL /* verify signature */, NULL /* out_params */, |
| &tmp_sig); |
| if (error != KM_ERROR_OK) { |
| printf("Error finishing keymaster signature transaction: %d\n", error); |
| rc = -1; |
| goto out; |
| } |
| |
| *signature = (uint8_t*)tmp_sig.data; |
| *signature_size = tmp_sig.data_length; |
| rc = 0; |
| } |
| #endif // TW_KEYMASTER_API >= 1 |
| |
| out: |
| #if TW_KEYMASTER_MAX_API >= 1 |
| if (keymaster1_dev) |
| keymaster1_close(keymaster1_dev); |
| #endif |
| if (keymaster0_dev) |
| #if TW_KEYMASTER_MAX_API >= 1 |
| keymaster0_close(keymaster0_dev); |
| #else |
| keymaster_close(keymaster0_dev); |
| #endif |
| |
| if (rc == 0) |
| return 0; // otherwise we'll try for a newer keymaster API |
| |
| initfail: |
| #if TW_KEYMASTER_MAX_API == 3 |
| return keymaster_sign_object_for_cryptfs_scrypt(ftr->keymaster_blob, ftr->keymaster_blob_size, |
| KEYMASTER_CRYPTFS_RATE_LIMIT, to_sign, to_sign_size, signature, signature_size, |
| ftr->keymaster_blob, KEYMASTER_BLOB_SIZE, &ftr->keymaster_blob_size); |
| #endif //TW_KEYMASTER_MAX_API == 3 |
| #if TW_KEYMASTER_MAX_API >= 4 |
| for (int c = 1;c <= 20;c++) { // 20 tries are enough for signing keymaster |
| if (c > 2) |
| usleep(5000); // if failed in two tries lets rest |
| auto result = keymaster_sign_object_for_cryptfs_scrypt( |
| ftr->keymaster_blob, ftr->keymaster_blob_size, KEYMASTER_CRYPTFS_RATE_LIMIT, to_sign, |
| to_sign_size, signature, signature_size); |
| switch (result) { |
| case KeymasterSignResult::ok: |
| return 0; |
| case KeymasterSignResult::upgrade: |
| break; |
| default: |
| return -1; |
| } |
| SLOGD("Upgrading key\n"); |
| if (keymaster_upgrade_key_for_cryptfs_scrypt( |
| RSA_KEY_SIZE, RSA_EXPONENT, KEYMASTER_CRYPTFS_RATE_LIMIT, ftr->keymaster_blob, |
| ftr->keymaster_blob_size, ftr->keymaster_blob, KEYMASTER_BLOB_SIZE, |
| &ftr->keymaster_blob_size) != 0) { |
| SLOGE("Failed to upgrade key\n"); |
| return -1; |
| } |
| /*if (put_crypt_ftr_and_key(ftr) != 0) { |
| SLOGE("Failed to write upgraded key to disk"); |
| }*/ |
| SLOGD("Key upgraded successfully\n"); |
| } |
| #endif |
| return -1; |
| } |
| |
| static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags) |
| { |
| memset(io, 0, dataSize); |
| io->data_size = dataSize; |
| io->data_start = sizeof(struct dm_ioctl); |
| io->version[0] = 4; |
| io->version[1] = 0; |
| io->version[2] = 0; |
| io->flags = flags; |
| if (name) { |
| strlcpy(io->name, name, sizeof(io->name)); |
| } |
| } |
| |
| namespace { |
| |
| struct CryptoType; |
| |
| // Use to get the CryptoType in use on this device. |
| const CryptoType &get_crypto_type(); |
| |
| struct CryptoType { |
| // We should only be constructing CryptoTypes as part of |
| // supported_crypto_types[]. We do it via this pseudo-builder pattern, |
| // which isn't pure or fully protected as a concession to being able to |
| // do it all at compile time. Add new CryptoTypes in |
| // supported_crypto_types[] below. |
| constexpr CryptoType() : CryptoType(nullptr, nullptr, 0xFFFFFFFF) {} |
| constexpr CryptoType set_keysize(uint32_t size) const { |
| return CryptoType(this->property_name, this->crypto_name, size); |
| } |
| constexpr CryptoType set_property_name(const char *property) const { |
| return CryptoType(property, this->crypto_name, this->keysize); |
| } |
| constexpr CryptoType set_crypto_name(const char *crypto) const { |
| return CryptoType(this->property_name, crypto, this->keysize); |
| } |
| |
| constexpr const char *get_property_name() const { return property_name; } |
| constexpr const char *get_crypto_name() const { return crypto_name; } |
| constexpr uint32_t get_keysize() const { return keysize; } |
| |
| private: |
| const char *property_name; |
| const char *crypto_name; |
| uint32_t keysize; |
| |
| constexpr CryptoType(const char *property, const char *crypto, |
| uint32_t ksize) |
| : property_name(property), crypto_name(crypto), keysize(ksize) {} |
| friend const CryptoType &get_crypto_type(); |
| static const CryptoType &get_device_crypto_algorithm(); |
| }; |
| |
| // We only want to parse this read-only property once. But we need to wait |
| // until the system is initialized before we can read it. So we use a static |
| // scoped within this function to get it only once. |
| const CryptoType &get_crypto_type() { |
| static CryptoType crypto_type = CryptoType::get_device_crypto_algorithm(); |
| return crypto_type; |
| } |
| |
| constexpr CryptoType default_crypto_type = CryptoType() |
| .set_property_name("AES-128-CBC") |
| .set_crypto_name("aes-cbc-essiv:sha256") |
| .set_keysize(16); |
| |
| constexpr CryptoType supported_crypto_types[] = { |
| default_crypto_type, |
| CryptoType() |
| .set_property_name("Speck128/128-XTS") |
| .set_crypto_name("speck128-xts-plain64") |
| .set_keysize(32), |
| // Add new CryptoTypes here. Order is not important. |
| }; |
| |
| |
| // ---------- START COMPILE-TIME SANITY CHECK BLOCK ------------------------- |
| // We confirm all supported_crypto_types have a small enough keysize and |
| // had both set_property_name() and set_crypto_name() called. |
| |
| template <typename T, size_t N> |
| constexpr size_t array_length(T (&)[N]) { return N; } |
| |
| constexpr bool indexOutOfBoundsForCryptoTypes(size_t index) { |
| return (index >= array_length(supported_crypto_types)); |
| } |
| |
| constexpr bool isValidCryptoType(const CryptoType &crypto_type) { |
| return ((crypto_type.get_property_name() != nullptr) && |
| (crypto_type.get_crypto_name() != nullptr) && |
| (crypto_type.get_keysize() <= MAX_KEY_LEN)); |
| } |
| |
| // Note in C++11 that constexpr functions can only have a single line. |
| // So our code is a bit convoluted (using recursion instead of a loop), |
| // but it's asserting at compile time that all of our key lengths are valid. |
| constexpr bool validateSupportedCryptoTypes(size_t index) { |
| return indexOutOfBoundsForCryptoTypes(index) || |
| (isValidCryptoType(supported_crypto_types[index]) && |
| validateSupportedCryptoTypes(index + 1)); |
| } |
| |
| static_assert(validateSupportedCryptoTypes(0), |
| "We have a CryptoType with keysize > MAX_KEY_LEN or which was " |
| "incompletely constructed."); |
| // ---------- END COMPILE-TIME SANITY CHECK BLOCK ------------------------- |
| |
| |
| // Don't call this directly, use get_crypto_type(), which caches this result. |
| const CryptoType &CryptoType::get_device_crypto_algorithm() { |
| constexpr char CRYPT_ALGO_PROP[] = "ro.crypto.fde_algorithm"; |
| char paramstr[PROPERTY_VALUE_MAX]; |
| |
| property_get(CRYPT_ALGO_PROP, paramstr, |
| default_crypto_type.get_property_name()); |
| for (auto const &ctype : supported_crypto_types) { |
| if (strcmp(paramstr, ctype.get_property_name()) == 0) { |
| return ctype; |
| } |
| } |
| ALOGE("Invalid name (%s) for %s. Defaulting to %s\n", paramstr, |
| CRYPT_ALGO_PROP, default_crypto_type.get_property_name()); |
| return default_crypto_type; |
| } |
| |
| } // namespace |
| |
| #define SCRYPT_PROP "ro.crypto.scrypt_params" |
| #define SCRYPT_DEFAULTS "15:3:1" |
| |
| bool parse_scrypt_parameters(const char* paramstr, int *Nf, int *rf, int *pf) { |
| int params[3] = {}; |
| char *token; |
| char *saveptr; |
| int i; |
| |
| /* |
| * The token we're looking for should be three integers separated by |
| * colons (e.g., "12:8:1"). Scan the property to make sure it matches. |
| */ |
| for (i = 0, token = strtok_r(const_cast<char *>(paramstr), ":", &saveptr); |
| token != nullptr && i < 3; |
| i++, token = strtok_r(nullptr, ":", &saveptr)) { |
| char *endptr; |
| params[i] = strtol(token, &endptr, 10); |
| |
| /* |
| * Check that there was a valid number and it's 8-bit. |
| */ |
| if ((*token == '\0') || (*endptr != '\0') || params[i] < 0 || params[i] > 255) { |
| return false; |
| } |
| } |
| if (token != nullptr) { |
| return false; |
| } |
| *Nf = params[0]; *rf = params[1]; *pf = params[2]; |
| return true; |
| } |
| |
| uint32_t cryptfs_get_keysize() { |
| return get_crypto_type().get_keysize(); |
| } |
| |
| const char *cryptfs_get_crypto_name() { |
| return get_crypto_type().get_crypto_name(); |
| } |
| |
| static int get_crypt_ftr_info(char **metadata_fname, off64_t *off) |
| { |
| static int cached_data = 0; |
| static off64_t cached_off = 0; |
| static char cached_metadata_fname[PROPERTY_VALUE_MAX] = ""; |
| int fd; |
| //char key_loc[PROPERTY_VALUE_MAX]; |
| //char real_blkdev[PROPERTY_VALUE_MAX]; |
| int rc = -1; |
| |
| if (!cached_data) { |
| //fs_mgr_get_crypt_info(fstab_default, key_loc, real_blkdev, sizeof(key_loc)); |
| |
| if (!strcmp(key_fname, KEY_IN_FOOTER)) { |
| if ( (fd = open(real_blkdev, O_RDWR|O_CLOEXEC)) < 0) { |
| SLOGE("Cannot open real block device %s\n", real_blkdev); |
| return -1; |
| } |
| |
| unsigned long nr_sec = 0; |
| get_blkdev_size(fd, &nr_sec); |
| if (nr_sec != 0) { |
| /* If it's an encrypted Android partition, the last 16 Kbytes contain the |
| * encryption info footer and key, and plenty of bytes to spare for future |
| * growth. |
| */ |
| strlcpy(cached_metadata_fname, real_blkdev, sizeof(cached_metadata_fname)); |
| cached_off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET; |
| cached_data = 1; |
| } else { |
| SLOGE("Cannot get size of block device %s\n", real_blkdev); |
| } |
| close(fd); |
| } else { |
| strlcpy(cached_metadata_fname, key_fname, sizeof(cached_metadata_fname)); |
| cached_off = 0; |
| cached_data = 1; |
| } |
| } |
| |
| if (cached_data) { |
| if (metadata_fname) { |
| *metadata_fname = cached_metadata_fname; |
| } |
| if (off) { |
| *off = cached_off; |
| } |
| rc = 0; |
| } |
| |
| return rc; |
| } |
| |
| static int get_crypt_ftr_and_key(struct crypt_mnt_ftr *crypt_ftr) |
| { |
| int fd; |
| unsigned int cnt; |
| off64_t starting_off; |
| int rc = -1; |
| char *fname = NULL; |
| struct stat statbuf; |
| |
| if (get_crypt_ftr_info(&fname, &starting_off)) { |
| SLOGE("Unable to get crypt_ftr_info\n"); |
| return -1; |
| } |
| if (fname[0] != '/') { |
| SLOGE("fde::get_crypt_ftr_and_key::Unexpected value for crypto key location: %s\n", fname); |
| return -1; |
| } |
| if ( (fd = open(fname, O_RDWR|O_CLOEXEC)) < 0) { |
| SLOGE("Cannot open footer file %s for get\n", fname); |
| return -1; |
| } |
| |
| /* Make sure it's 16 Kbytes in length */ |
| fstat(fd, &statbuf); |
| if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) { |
| SLOGE("footer file %s is not the expected size!\n", fname); |
| goto errout; |
| } |
| |
| /* Seek to the start of the crypt footer */ |
| if (lseek64(fd, starting_off, SEEK_SET) == -1) { |
| SLOGE("Cannot seek to real block device footer\n"); |
| goto errout; |
| } |
| |
| if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) { |
| SLOGE("Cannot read real block device footer\n"); |
| goto errout; |
| } |
| |
| if (crypt_ftr->magic != CRYPT_MNT_MAGIC) { |
| SLOGE("Bad magic for real block device %s\n", fname); |
| goto errout; |
| } |
| |
| if (crypt_ftr->major_version != CURRENT_MAJOR_VERSION) { |
| SLOGE("Cannot understand major version %d real block device footer; expected %d\n", |
| crypt_ftr->major_version, CURRENT_MAJOR_VERSION); |
| goto errout; |
| } |
| |
| // We risk buffer overflows with oversized keys, so we just reject them. |
| // 0-sized keys are problematic (essentially by-passing encryption), and |
| // AES-CBC key wrapping only works for multiples of 16 bytes. |
| if ((crypt_ftr->keysize == 0) || ((crypt_ftr->keysize % 16) != 0) || |
| (crypt_ftr->keysize > MAX_KEY_LEN)) { |
| SLOGE("Invalid keysize (%u) for block device %s; Must be non-zero, " |
| "divisible by 16, and <= %d\n", crypt_ftr->keysize, fname, |
| MAX_KEY_LEN); |
| goto errout; |
| } |
| |
| if (crypt_ftr->minor_version > CURRENT_MINOR_VERSION) { |
| SLOGW("Warning: crypto footer minor version %d, expected <= %d, continuing...\n", |
| crypt_ftr->minor_version, CURRENT_MINOR_VERSION); |
| } |
| |
| /* Success! */ |
| rc = 0; |
| |
| errout: |
| close(fd); |
| return rc; |
| } |
| |
| int cryptfs_check_footer() |
| { |
| int rc = -1; |
| struct crypt_mnt_ftr crypt_ftr; |
| |
| rc = get_crypt_ftr_and_key(&crypt_ftr); |
| |
| return rc; |
| } |
| |
| /* Convert a binary key of specified length into an ascii hex string equivalent, |
| * without the leading 0x and with null termination |
| */ |
| static void convert_key_to_hex_ascii(const unsigned char *master_key, |
| unsigned int keysize, char *master_key_ascii) { |
| unsigned int i, a; |
| unsigned char nibble; |
| |
| for (i=0, a=0; i<keysize; i++, a+=2) { |
| /* For each byte, write out two ascii hex digits */ |
| nibble = (master_key[i] >> 4) & 0xf; |
| master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30); |
| |
| nibble = master_key[i] & 0xf; |
| master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30); |
| } |
| |
| /* Add the null termination */ |
| master_key_ascii[a] = '\0'; |
| |
| } |
| |
| static int load_crypto_mapping_table(struct crypt_mnt_ftr *crypt_ftr, |
| const unsigned char *master_key, const char *real_blk_name, |
| const char *name, int fd, const char *extra_params) { |
| alignas(struct dm_ioctl) char buffer[DM_CRYPT_BUF_SIZE]; |
| struct dm_ioctl *io; |
| struct dm_target_spec *tgt; |
| char *crypt_params; |
| // We need two ASCII characters to represent each byte, and need space for |
| // the '\0' terminator. |
| char master_key_ascii[MAX_KEY_LEN * 2 + 1]; |
| size_t buff_offset; |
| int i; |
| |
| io = (struct dm_ioctl *) buffer; |
| |
| /* Load the mapping table for this device */ |
| tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)]; |
| |
| ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); |
| io->target_count = 1; |
| tgt->status = 0; |
| tgt->sector_start = 0; |
| tgt->length = crypt_ftr->fs_size; |
| crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec); |
| buff_offset = crypt_params - buffer; |
| SLOGI( |
| "Creating crypto dev \"%s\"; cipher=%s, keysize=%u, real_dev=%s, len=%llu, params=\"%s\"\n", |
| name, crypt_ftr->crypto_type_name, crypt_ftr->keysize, real_blk_name, tgt->length * 512, |
| extra_params); |
| |
| #ifdef CONFIG_HW_DISK_ENCRYPTION |
| if(is_hw_disk_encryption((char*)crypt_ftr->crypto_type_name)) { |
| strlcpy(tgt->target_type, "req-crypt",DM_MAX_TYPE_NAME); |
| if (is_ice_enabled()) |
| convert_key_to_hex_ascii(master_key, sizeof(int), master_key_ascii); |
| else |
| convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii); |
| } |
| else { |
| convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii); |
| strlcpy(tgt->target_type, "crypt", DM_MAX_TYPE_NAME); |
| } |
| snprintf(crypt_params, sizeof(buffer) - buff_offset, "%s %s 0 %s 0 %s 0", |
| crypt_ftr->crypto_type_name, master_key_ascii, |
| real_blk_name, extra_params); |
| |
| SLOGI("target_type = %s", tgt->target_type); |
| SLOGI("real_blk_name = %s, extra_params = %s", real_blk_name, extra_params); |
| #else |
| convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii); |
| strlcpy(tgt->target_type, "crypt", DM_MAX_TYPE_NAME); |
| snprintf(crypt_params, sizeof(buffer) - buff_offset, "%s %s 0 %s 0 %s", |
| crypt_ftr->crypto_type_name, master_key_ascii, real_blk_name, |
| extra_params); |
| #endif |
| |
| crypt_params += strlen(crypt_params) + 1; |
| crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */ |
| tgt->next = crypt_params - buffer; |
| |
| for (i = 0; i < TABLE_LOAD_RETRIES; i++) { |
| int ret = ioctl(fd, DM_TABLE_LOAD, io); |
| if (!ret) { |
| SLOGI("ioctl err: %d", ret); |
| break; |
| } |
| usleep(500000); |
| } |
| |
| if (i == TABLE_LOAD_RETRIES) { |
| /* We failed to load the table, return an error */ |
| return -1; |
| } else { |
| return i + 1; |
| } |
| } |
| |
| static int get_dm_crypt_version(int fd, const char *name, int *version) |
| { |
| char buffer[DM_CRYPT_BUF_SIZE]; |
| struct dm_ioctl *io; |
| struct dm_target_versions *v; |
| |
| io = (struct dm_ioctl *) buffer; |
| |
| ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); |
| |
| if (ioctl(fd, DM_LIST_VERSIONS, io)) { |
| return -1; |
| } |
| |
| /* Iterate over the returned versions, looking for name of "crypt". |
| * When found, get and return the version. |
| */ |
| v = (struct dm_target_versions *) &buffer[sizeof(struct dm_ioctl)]; |
| while (v->next) { |
| #ifdef CONFIG_HW_DISK_ENCRYPTION |
| if (! strcmp(v->name, "crypt") || ! strcmp(v->name, "req-crypt")) { |
| #else |
| if (! strcmp(v->name, "crypt")) { |
| #endif |
| /* We found the crypt driver, return the version, and get out */ |
| version[0] = v->version[0]; |
| version[1] = v->version[1]; |
| version[2] = v->version[2]; |
| return 0; |
| } |
| v = (struct dm_target_versions *)(((char *)v) + v->next); |
| } |
| |
| return -1; |
| } |
| |
| #ifndef CONFIG_HW_DISK_ENCRYPTION |
| static std::string extra_params_as_string(const std::vector<std::string>& extra_params_vec) { |
| if (extra_params_vec.empty()) return ""; |
| char temp[10]; |
| snprintf(temp, sizeof(temp), "%zd", extra_params_vec.size()); |
| std::string extra_params = temp; //std::to_string(extra_params_vec.size()); |
| for (const auto& p : extra_params_vec) { |
| extra_params.append(" "); |
| extra_params.append(p); |
| } |
| return extra_params; |
| } |
| #endif |
| |
| static int create_crypto_blk_dev(struct crypt_mnt_ftr* crypt_ftr, const unsigned char* master_key, |
| const char* real_blk_name, char* crypto_blk_name, const char* name, |
| uint32_t flags) { |
| char buffer[DM_CRYPT_BUF_SIZE]; |
| struct dm_ioctl* io; |
| unsigned int minor; |
| int fd = 0; |
| int err; |
| int retval = -1; |
| int version[3]; |
| int load_count; |
| #ifdef CONFIG_HW_DISK_ENCRYPTION |
| char encrypted_state[PROPERTY_VALUE_MAX] = {0}; |
| char progress[PROPERTY_VALUE_MAX] = {0}; |
| const char *extra_params; |
| #else |
| std::vector<std::string> extra_params_vec; |
| #endif |
| |
| if ((fd = open("/dev/device-mapper", O_RDWR | O_CLOEXEC)) < 0) { |
| SLOGE("Cannot open device-mapper\n"); |
| goto errout; |
| } |
| |
| io = (struct dm_ioctl*)buffer; |
| |
| ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); |
| err = ioctl(fd, DM_DEV_CREATE, io); |
| if (err) { |
| SLOGE("Cannot create dm-crypt device %s: %s\n", name, strerror(errno)); |
| goto errout; |
| } |
| |
| /* Get the device status, in particular, the name of it's device file */ |
| ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); |
| if (ioctl(fd, DM_DEV_STATUS, io)) { |
| SLOGE("Cannot retrieve dm-crypt device status\n"); |
| goto errout; |
| } |
| minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00); |
| snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor); |
| |
| #ifdef CONFIG_HW_DISK_ENCRYPTION |
| if(is_hw_disk_encryption((char*)crypt_ftr->crypto_type_name)) { |
| /* Set fde_enabled if either FDE completed or in-progress */ |
| property_get("ro.crypto.state", encrypted_state, ""); /* FDE completed */ |
| property_get("vold.encrypt_progress", progress, ""); /* FDE in progress */ |
| if (!strcmp(encrypted_state, "encrypted") || strcmp(progress, "")) { |
| if (is_ice_enabled()) { |
| if (flags & CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE) |
| extra_params = "fde_enabled ice allow_encrypt_override"; |
| else |
| extra_params = "fde_enabled ice"; |
| } else { |
| if (flags & CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE) |
| extra_params = "fde_enabled allow_encrypt_override"; |
| else |
| extra_params = "fde_enabled"; |
| } |
| } else { |
| if (flags & CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE) |
| extra_params = "fde_enabled allow_encrypt_override"; |
| else |
| extra_params = "fde_enabled"; |
| } |
| } else { |
| extra_params = ""; |
| if (! get_dm_crypt_version(fd, name, version)) { |
| /* Support for allow_discards was added in version 1.11.0 */ |
| if ((version[0] >= 2) || ((version[0] == 1) && (version[1] >= 11))) { |
| if (flags & CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE) |
| extra_params = "2 allow_discards allow_encrypt_override"; |
| else |
| extra_params = "1 allow_discards"; |
| SLOGI("Enabling support for allow_discards in dmcrypt.\n"); |
| } |
| } |
| } |
| load_count = load_crypto_mapping_table(crypt_ftr, master_key, real_blk_name, name, fd, |
| extra_params); |
| #else |
| if (!get_dm_crypt_version(fd, name, version)) { |
| /* Support for allow_discards was added in version 1.11.0 */ |
| if ((version[0] >= 2) || ((version[0] == 1) && (version[1] >= 11))) { |
| extra_params_vec.push_back(std::string("allow_discards")); // Used to be extra_params_vec.emplace_back("allow_discards"); but this won't compile in 5.1 trees |
| } |
| } |
| if (flags & CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE) { |
| extra_params_vec.push_back(std::string("allow_encrypt_override")); // Used to be extra_params_vec.emplace_back("allow_encrypt_override"); but this won't compile in 5.1 trees |
| } |
| load_count = load_crypto_mapping_table(crypt_ftr, master_key, real_blk_name, name, fd, |
| extra_params_as_string(extra_params_vec).c_str()); |
| #endif |
| if (load_count < 0) { |
| SLOGE("Cannot load dm-crypt mapping table.\n"); |
| goto errout; |
| } else if (load_count > 1) { |
| SLOGI("Took %d tries to load dmcrypt table.\n", load_count); |
| } |
| |
| /* Resume this device to activate it */ |
| ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); |
| |
| if (ioctl(fd, DM_DEV_SUSPEND, io)) { |
| SLOGE("Cannot resume the dm-crypt device\n"); |
| goto errout; |
| } |
| |
| /* We made it here with no errors. Woot! */ |
| retval = 0; |
| |
| errout: |
| close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */ |
| |
| return retval; |
| } |
| |
| int delete_crypto_blk_dev(const char *name) |
| { |
| int fd; |
| char buffer[DM_CRYPT_BUF_SIZE]; |
| struct dm_ioctl *io; |
| int retval = -1; |
| |
| if ((fd = open("/dev/device-mapper", O_RDWR|O_CLOEXEC)) < 0 ) { |
| SLOGE("Cannot open device-mapper\n"); |
| goto errout; |
| } |
| |
| io = (struct dm_ioctl *) buffer; |
| |
| ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); |
| if (ioctl(fd, DM_DEV_REMOVE, io)) { |
| SLOGE("Cannot remove dm-crypt device\n"); |
| goto errout; |
| } |
| |
| /* We made it here with no errors. Woot! */ |
| retval = 0; |
| |
| errout: |
| close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */ |
| |
| return retval; |
| |
| } |
| |
| static int pbkdf2(const char *passwd, const unsigned char *salt, |
| unsigned char *ikey, void *params UNUSED) |
| { |
| SLOGI("Using pbkdf2 for cryptfs KDF\n"); |
| |
| /* Turn the password into a key and IV that can decrypt the master key */ |
| return PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, SALT_LEN, |
| HASH_COUNT, INTERMEDIATE_BUF_SIZE, |
| ikey) != 1; |
| } |
| |
| static int scrypt(const char *passwd, const unsigned char *salt, |
| unsigned char *ikey, void *params) |
| { |
| SLOGI("Using scrypt for cryptfs KDF\n"); |
| |
| struct crypt_mnt_ftr *ftr = (struct crypt_mnt_ftr *) params; |
| |
| int N = 1 << ftr->N_factor; |
| int r = 1 << ftr->r_factor; |
| int p = 1 << ftr->p_factor; |
| |
| /* Turn the password into a key and IV that can decrypt the master key */ |
| crypto_scrypt((const uint8_t*)passwd, strlen(passwd), |
| salt, SALT_LEN, N, r, p, ikey, |
| INTERMEDIATE_BUF_SIZE); |
| |
| return 0; |
| } |
| |
| static int scrypt_keymaster(const char *passwd, const unsigned char *salt, |
| unsigned char *ikey, void *params) |
| { |
| SLOGI("Using scrypt with keymaster for cryptfs KDF\n"); |
| |
| int rc; |
| size_t signature_size; |
| unsigned char* signature; |
| struct crypt_mnt_ftr *ftr = (struct crypt_mnt_ftr *) params; |
| |
| int N = 1 << ftr->N_factor; |
| int r = 1 << ftr->r_factor; |
| int p = 1 << ftr->p_factor; |
| |
| rc = crypto_scrypt((const uint8_t*)passwd, strlen(passwd), |
| salt, SALT_LEN, N, r, p, ikey, |
| INTERMEDIATE_BUF_SIZE); |
| |
| if (rc) { |
| SLOGE("scrypt failed"); |
| return -1; |
| } |
| |
| if (keymaster_sign_object(ftr, ikey, INTERMEDIATE_BUF_SIZE, |
| &signature, &signature_size)) { |
| SLOGE("Keymaster signing failed"); |
| return -1; |
| } |
| |
| rc = crypto_scrypt(signature, signature_size, salt, SALT_LEN, |
| N, r, p, ikey, INTERMEDIATE_BUF_SIZE); |
| free(signature); |
| |
| if (rc) { |
| SLOGE("scrypt failed"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int decrypt_master_key_aux(const char *passwd, unsigned char *salt, |
| const unsigned char *encrypted_master_key, |
| size_t keysize, |
| unsigned char *decrypted_master_key, |
| kdf_func kdf, void *kdf_params, |
| unsigned char** intermediate_key, |
| size_t* intermediate_key_size) |
| { |
| unsigned char ikey[INTERMEDIATE_BUF_SIZE] = { 0 }; |
| EVP_CIPHER_CTX d_ctx; |
| int decrypted_len, final_len; |
| |
| /* Turn the password into an intermediate key and IV that can decrypt the |
| master key */ |
| if (kdf(passwd, salt, ikey, kdf_params)) { |
| SLOGE("kdf failed"); |
| return -1; |
| } |
| |
| /* Initialize the decryption engine */ |
| EVP_CIPHER_CTX_init(&d_ctx); |
| if (! EVP_DecryptInit_ex(&d_ctx, EVP_aes_128_cbc(), NULL, ikey, ikey+INTERMEDIATE_KEY_LEN_BYTES)) { |
| return -1; |
| } |
| EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */ |
| /* Decrypt the master key */ |
| if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len, |
| encrypted_master_key, keysize)) { |
| return -1; |
| } |
| if (! EVP_DecryptFinal_ex(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) { |
| return -1; |
| } |
| |
| if (decrypted_len + final_len != static_cast<int>(keysize)) { |
| return -1; |
| } |
| |
| /* Copy intermediate key if needed by params */ |
| if (intermediate_key && intermediate_key_size) { |
| *intermediate_key = (unsigned char*) malloc(INTERMEDIATE_KEY_LEN_BYTES); |
| if (*intermediate_key) { |
| memcpy(*intermediate_key, ikey, INTERMEDIATE_KEY_LEN_BYTES); |
| *intermediate_key_size = INTERMEDIATE_KEY_LEN_BYTES; |
| } |
| } |
| |
| EVP_CIPHER_CTX_cleanup(&d_ctx); |
| |
| return 0; |
| } |
| |
| static void get_kdf_func(struct crypt_mnt_ftr *ftr, kdf_func *kdf, void** kdf_params) |
| { |
| if (ftr->kdf_type == KDF_SCRYPT_KEYMASTER) { |
| *kdf = scrypt_keymaster; |
| *kdf_params = ftr; |
| } else if (ftr->kdf_type == KDF_SCRYPT) { |
| *kdf = scrypt; |
| *kdf_params = ftr; |
| } else { |
| *kdf = pbkdf2; |
| *kdf_params = NULL; |
| } |
| } |
| |
| static int decrypt_master_key(const char *passwd, unsigned char *decrypted_master_key, |
| struct crypt_mnt_ftr *crypt_ftr, |
| unsigned char** intermediate_key, |
| size_t* intermediate_key_size) |
| { |
| kdf_func kdf; |
| void *kdf_params; |
| int ret; |
| |
| get_kdf_func(crypt_ftr, &kdf, &kdf_params); |
| ret = decrypt_master_key_aux(passwd, crypt_ftr->salt, crypt_ftr->master_key, |
| crypt_ftr->keysize, |
| decrypted_master_key, kdf, kdf_params, |
| intermediate_key, intermediate_key_size); |
| if (ret != 0) { |
| SLOGW("failure decrypting master key"); |
| } |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_HW_DISK_ENCRYPTION |
| static int test_mount_hw_encrypted_fs(struct crypt_mnt_ftr* crypt_ftr, |
| const char *passwd, const char *mount_point, const char *label) |
| { |
| /* Allocate enough space for a 256 bit key, but we may use less */ |
| unsigned char decrypted_master_key[32]; |
| char crypto_blkdev[MAXPATHLEN]; |
| //char real_blkdev[MAXPATHLEN]; |
| unsigned int orig_failed_decrypt_count; |
| int rc = 0; |
| |
| SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr->fs_size); |
| orig_failed_decrypt_count = crypt_ftr->failed_decrypt_count; |
| |
| //fs_mgr_get_crypt_info(fstab_default, 0, real_blkdev, sizeof(real_blkdev)); |
| |
| int key_index = 0; |
| if(is_hw_disk_encryption((char*)crypt_ftr->crypto_type_name)) { |
| key_index = verify_and_update_hw_fde_passwd(passwd, crypt_ftr); |
| if (key_index < 0) { |
| rc = -1; |
| goto errout; |
| } |
| else { |
| if (is_ice_enabled()) { |
| #ifndef CONFIG_HW_DISK_ENCRYPT_PERF |
| if (create_crypto_blk_dev(crypt_ftr, (unsigned char*)&key_index, |
| real_blkdev, crypto_blkdev, label, 0)) { |
| SLOGE("Error creating decrypted block device"); |
| rc = -1; |
| goto errout; |
| } |
| #endif |
| } else { |
| if (create_crypto_blk_dev(crypt_ftr, decrypted_master_key, |
| real_blkdev, crypto_blkdev, label, 0)) { |
| SLOGE("Error creating decrypted block device"); |
| rc = -1; |
| goto errout; |
| } |
| } |
| } |
| } |
| |
| if (rc == 0) { |
| /* Save the name of the crypto block device |
| * so we can mount it when restarting the framework. */ |
| #ifdef CONFIG_HW_DISK_ENCRYPT_PERF |
| if (!is_ice_enabled()) |
| #endif |
| property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev); |
| master_key_saved = 1; |
| } |
| |
| errout: |
| return rc; |
| } |
| #endif |
| |
| static int try_mount_multiple_fs(const char *crypto_blkdev, |
| const char *mount_point, |
| const char *file_system) |
| { |
| if (!mount(crypto_blkdev, mount_point, file_system, 0, NULL)) |
| return 0; |
| if (strcmp(file_system, "ext4") && |
| !mount(crypto_blkdev, mount_point, "ext4", 0, NULL)) |
| return 0; |
| if (strcmp(file_system, "f2fs") && |
| !mount(crypto_blkdev, mount_point, "f2fs", 0, NULL)) |
| return 0; |
| return 1; |
| } |
| |
| static int test_mount_encrypted_fs(struct crypt_mnt_ftr* crypt_ftr, |
| const char *passwd, const char *mount_point, const char *label) |
| { |
| unsigned char decrypted_master_key[MAX_KEY_LEN]; |
| char crypto_blkdev[MAXPATHLEN]; |
| //char real_blkdev[MAXPATHLEN]; |
| char tmp_mount_point[64]; |
| unsigned int orig_failed_decrypt_count; |
| int rc; |
| int use_keymaster = 0; |
| unsigned char* intermediate_key = 0; |
| size_t intermediate_key_size = 0; |
| int N = 1 << crypt_ftr->N_factor; |
| int r = 1 << crypt_ftr->r_factor; |
| int p = 1 << crypt_ftr->p_factor; |
| |
| SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr->fs_size); |
| orig_failed_decrypt_count = crypt_ftr->failed_decrypt_count; |
| |
| if (! (crypt_ftr->flags & CRYPT_MNT_KEY_UNENCRYPTED) ) { |
| if (decrypt_master_key(passwd, decrypted_master_key, crypt_ftr, |
| &intermediate_key, &intermediate_key_size)) { |
| SLOGE("Failed to decrypt master key\n"); |
| rc = -1; |
| goto errout; |
| } |
| } |
| |
| //fs_mgr_get_crypt_info(fstab_default, 0, real_blkdev, sizeof(real_blkdev)); |
| |
| // Create crypto block device - all (non fatal) code paths |
| // need it |
| if (create_crypto_blk_dev(crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev, label, 0)) { |
| SLOGE("Error creating decrypted block device\n"); |
| rc = -1; |
| goto errout; |
| } |
| |
| /* Work out if the problem is the password or the data */ |
| unsigned char scrypted_intermediate_key[sizeof(crypt_ftr-> |
| scrypted_intermediate_key)]; |
| |
| rc = crypto_scrypt(intermediate_key, intermediate_key_size, |
| crypt_ftr->salt, sizeof(crypt_ftr->salt), |
| N, r, p, scrypted_intermediate_key, |
| sizeof(scrypted_intermediate_key)); |
| |
| // Does the key match the crypto footer? |
| if (rc == 0 && memcmp(scrypted_intermediate_key, |
| crypt_ftr->scrypted_intermediate_key, |
| sizeof(scrypted_intermediate_key)) == 0) { |
| SLOGI("Password matches"); |
| rc = 0; |
| } else { |
| /* Try mounting the file system anyway, just in case the problem's with |
| * the footer, not the key. */ |
| snprintf(tmp_mount_point, sizeof(tmp_mount_point), "%s/tmp_mnt", |
| mount_point); |
| mkdir(tmp_mount_point, 0755); |
| if (try_mount_multiple_fs(crypto_blkdev, tmp_mount_point, file_system)) { |
| SLOGE("Error temp mounting decrypted block device\n"); |
| delete_crypto_blk_dev(label); |
| |
| rc = -1; |
| } else { |
| /* Success! */ |
| SLOGI("Password did not match but decrypted drive mounted - continue"); |
| umount(tmp_mount_point); |
| rc = 0; |
| } |
| } |
| |
| if (rc == 0) { |
| /* Save the name of the crypto block device |
| * so we can mount it when restarting the framework. */ |
| property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev); |
| |
| /* Also save a the master key so we can reencrypted the key |
| * the key when we want to change the password on it. */ |
| memcpy(saved_master_key, decrypted_master_key, crypt_ftr->keysize); |
| saved_mount_point = strdup(mount_point); |
| master_key_saved = 1; |
| SLOGD("%s(): Master key saved\n", __FUNCTION__); |
| rc = 0; |
| } |
| |
| errout: |
| if (intermediate_key) { |
| memset(intermediate_key, 0, intermediate_key_size); |
| free(intermediate_key); |
| } |
| return rc; |
| } |
| |
| /* |
| * Called by vold when it's asked to mount an encrypted external |
| * storage volume. The incoming partition has no crypto header/footer, |
| * as any metadata is been stored in a separate, small partition. We |
| * assume it must be using our same crypt type and keysize. |
| * |
| * out_crypto_blkdev must be MAXPATHLEN. |
| */ |
| int cryptfs_setup_ext_volume(const char* label, const char* real_blkdev, |
| const unsigned char* key, int keysize, char* out_crypto_blkdev) { |
| int fd = open(real_blkdev, O_RDONLY|O_CLOEXEC); |
| if (fd == -1) { |
| SLOGE("Failed to open %s: %s", real_blkdev, strerror(errno)); |
| return -1; |
| } |
| |
| unsigned long nr_sec = 0; |
| get_blkdev_size(fd, &nr_sec); |
| close(fd); |
| |
| if (nr_sec == 0) { |
| SLOGE("Failed to get size of %s: %s", real_blkdev, strerror(errno)); |
| return -1; |
| } |
| |
| struct crypt_mnt_ftr ext_crypt_ftr; |
| memset(&ext_crypt_ftr, 0, sizeof(ext_crypt_ftr)); |
| ext_crypt_ftr.fs_size = nr_sec; |
| ext_crypt_ftr.keysize = cryptfs_get_keysize(); |
| strlcpy((char*) ext_crypt_ftr.crypto_type_name, cryptfs_get_crypto_name(), |
| MAX_CRYPTO_TYPE_NAME_LEN); |
| uint32_t flags = 0; |
| /*if (e4crypt_is_native() && |
| android::base::GetBoolProperty("ro.crypto.allow_encrypt_override", false)) |
| flags |= CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE;*/ |
| |
| return create_crypto_blk_dev(&ext_crypt_ftr, key, real_blkdev, out_crypto_blkdev, label, flags); |
| } |
| |
| /* |
| * Called by vold when it's asked to unmount an encrypted external |
| * storage volume. |
| */ |
| int cryptfs_revert_ext_volume(const char* label) { |
| return delete_crypto_blk_dev(label); |
| } |
| |
| int check_unmounted_and_get_ftr(struct crypt_mnt_ftr* crypt_ftr) |
| { |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if ( master_key_saved || strcmp(encrypted_state, "encrypted") ) { |
| SLOGE("encrypted fs already validated or not running with encryption," |
| " aborting"); |
| return -1; |
| } |
| |
| if (get_crypt_ftr_and_key(crypt_ftr)) { |
| SLOGE("Error getting crypt footer and key"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_HW_DISK_ENCRYPTION |
| int cryptfs_check_passwd_hw(const char* passwd) |
| { |
| struct crypt_mnt_ftr crypt_ftr; |
| int rc; |
| unsigned char master_key[KEY_LEN_BYTES]; |
| /* get key */ |
| if (get_crypt_ftr_and_key(&crypt_ftr)) { |
| SLOGE("Error getting crypt footer and key"); |
| return -1; |
| } |
| |
| /* |
| * in case of manual encryption (from GUI), the encryption is done with |
| * default password |
| */ |
| if (crypt_ftr.flags & CRYPT_FORCE_COMPLETE) { |
| /* compare scrypted_intermediate_key with stored scrypted_intermediate_key |
| * which was created with actual password before reboot. |
| */ |
| rc = cryptfs_get_master_key(&crypt_ftr, passwd, master_key); |
| if (rc) { |
| SLOGE("password doesn't match"); |
| return rc; |
| } |
| |
| rc = test_mount_hw_encrypted_fs(&crypt_ftr, DEFAULT_PASSWORD, |
| DATA_MNT_POINT, CRYPTO_BLOCK_DEVICE); |
| |
| if (rc) { |
| SLOGE("Default password did not match on reboot encryption"); |
| return rc; |
| } |
| } else { |
| rc = test_mount_hw_encrypted_fs(&crypt_ftr, passwd, |
| DATA_MNT_POINT, CRYPTO_BLOCK_DEVICE); |
| SLOGE("test mount returned %i\n", rc); |
| } |
| |
| return rc; |
| } |
| #endif |
| |
| int cryptfs_check_passwd(const char *passwd) |
| { |
| /*if (e4crypt_is_native()) { |
| SLOGE("cryptfs_check_passwd not valid for file encryption"); |
| return -1; |
| }*/ |
| |
| struct crypt_mnt_ftr crypt_ftr; |
| int rc; |
| |
| rc = check_unmounted_and_get_ftr(&crypt_ftr); |
| if (rc) { |
| SLOGE("Could not get footer"); |
| return rc; |
| } |
| |
| #ifdef CONFIG_HW_DISK_ENCRYPTION |
| if (is_hw_disk_encryption((char*)crypt_ftr.crypto_type_name)) |
| return cryptfs_check_passwd_hw(passwd); |
| #endif |
| |
| rc = test_mount_encrypted_fs(&crypt_ftr, passwd, |
| DATA_MNT_POINT, CRYPTO_BLOCK_DEVICE); |
| |
| if (rc) { |
| SLOGE("Password did not match"); |
| return rc; |
| } |
| |
| if (crypt_ftr.flags & CRYPT_FORCE_COMPLETE) { |
| // Here we have a default actual password but a real password |
| // we must test against the scrypted value |
| // First, we must delete the crypto block device that |
| // test_mount_encrypted_fs leaves behind as a side effect |
| delete_crypto_blk_dev(CRYPTO_BLOCK_DEVICE); |
| rc = test_mount_encrypted_fs(&crypt_ftr, DEFAULT_PASSWORD, |
| DATA_MNT_POINT, CRYPTO_BLOCK_DEVICE); |
| if (rc) { |
| SLOGE("Default password did not match on reboot encryption"); |
| return rc; |
| } |
| } |
| |
| return rc; |
| } |
| |
| int cryptfs_verify_passwd(const char *passwd) |
| { |
| struct crypt_mnt_ftr crypt_ftr; |
| unsigned char decrypted_master_key[MAX_KEY_LEN]; |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| int rc; |
| |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if (strcmp(encrypted_state, "encrypted") ) { |
| SLOGE("device not encrypted, aborting"); |
| return -2; |
| } |
| |
| if (!master_key_saved) { |
| SLOGE("encrypted fs not yet mounted, aborting"); |
| return -1; |
| } |
| |
| if (!saved_mount_point) { |
| SLOGE("encrypted fs failed to save mount point, aborting"); |
| return -1; |
| } |
| |
| if (get_crypt_ftr_and_key(&crypt_ftr)) { |
| SLOGE("Error getting crypt footer and key\n"); |
| return -1; |
| } |
| |
| if (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) { |
| /* If the device has no password, then just say the password is valid */ |
| rc = 0; |
| } else { |
| #ifdef CONFIG_HW_DISK_ENCRYPTION |
| if(is_hw_disk_encryption((char*)crypt_ftr.crypto_type_name)) { |
| if (verify_hw_fde_passwd(passwd, &crypt_ftr) >= 0) |
| rc = 0; |
| else |
| rc = -1; |
| } else { |
| decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0); |
| if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) { |
| /* They match, the password is correct */ |
| rc = 0; |
| } else { |
| /* If incorrect, sleep for a bit to prevent dictionary attacks */ |
| sleep(1); |
| rc = 1; |
| } |
| } |
| #else |
| decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0); |
| if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) { |
| /* They match, the password is correct */ |
| rc = 0; |
| } else { |
| /* If incorrect, sleep for a bit to prevent dictionary attacks */ |
| sleep(1); |
| rc = 1; |
| } |
| #endif |
| } |
| |
| return rc; |
| } |
| |
| /* Returns type of the password, default, pattern, pin or password. |
| */ |
| int cryptfs_get_password_type(void) |
| { |
| struct crypt_mnt_ftr crypt_ftr; |
| |
| if (get_crypt_ftr_and_key(&crypt_ftr)) { |
| SLOGE("Error getting crypt footer and key\n"); |
| return -1; |
| } |
| |
| if (crypt_ftr.flags & CRYPT_INCONSISTENT_STATE) { |
| return -1; |
| } |
| |
| return crypt_ftr.crypt_type; |
| } |
| |
| int cryptfs_get_master_key(struct crypt_mnt_ftr* ftr, const char* password, |
| unsigned char* master_key) |
| { |
| int rc; |
| |
| unsigned char* intermediate_key = 0; |
| size_t intermediate_key_size = 0; |
| |
| if (password == 0 || *password == 0) { |
| password = DEFAULT_PASSWORD; |
| } |
| |
| rc = decrypt_master_key(password, master_key, ftr, &intermediate_key, |
| &intermediate_key_size); |
| |
| if (rc) { |
| SLOGE("Can't calculate intermediate key"); |
| return rc; |
| } |
| |
| int N = 1 << ftr->N_factor; |
| int r = 1 << ftr->r_factor; |
| int p = 1 << ftr->p_factor; |
| |
| unsigned char scrypted_intermediate_key[sizeof(ftr->scrypted_intermediate_key)]; |
| |
| rc = crypto_scrypt(intermediate_key, intermediate_key_size, |
| ftr->salt, sizeof(ftr->salt), N, r, p, |
| scrypted_intermediate_key, |
| sizeof(scrypted_intermediate_key)); |
| |
| free(intermediate_key); |
| |
| if (rc) { |
| SLOGE("Can't scrypt intermediate key"); |
| return rc; |
| } |
| |
| return memcmp(scrypted_intermediate_key, ftr->scrypted_intermediate_key, |
| intermediate_key_size); |
| } |
| |