| /* |
| * Copyright (C) 2009 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* |
| * This program constructs binary patches for images -- such as boot.img and recovery.img -- that |
| * consist primarily of large chunks of gzipped data interspersed with uncompressed data. Doing a |
| * naive bsdiff of these files is not useful because small changes in the data lead to large |
| * changes in the compressed bitstream; bsdiff patches of gzipped data are typically as large as |
| * the data itself. |
| * |
| * To patch these usefully, we break the source and target images up into chunks of two types: |
| * "normal" and "gzip". Normal chunks are simply patched using a plain bsdiff. Gzip chunks are |
| * first expanded, then a bsdiff is applied to the uncompressed data, then the patched data is |
| * gzipped using the same encoder parameters. Patched chunks are concatenated together to create |
| * the output file; the output image should be *exactly* the same series of bytes as the target |
| * image used originally to generate the patch. |
| * |
| * To work well with this tool, the gzipped sections of the target image must have been generated |
| * using the same deflate encoder that is available in applypatch, namely, the one in the zlib |
| * library. In practice this means that images should be compressed using the "minigzip" tool |
| * included in the zlib distribution, not the GNU gzip program. |
| * |
| * An "imgdiff" patch consists of a header describing the chunk structure of the file and any |
| * encoding parameters needed for the gzipped chunks, followed by N bsdiff patches, one per chunk. |
| * |
| * For a diff to be generated, the source and target must be in well-formed zip archive format; |
| * or they are image files with the same "chunk" structure: that is, the same number of gzipped and |
| * normal chunks in the same order. Android boot and recovery images currently consist of five |
| * chunks: a small normal header, a gzipped kernel, a small normal section, a gzipped ramdisk, and |
| * finally a small normal footer. |
| * |
| * Caveats: we locate gzipped sections within the source and target images by searching for the |
| * byte sequence 1f8b0800: 1f8b is the gzip magic number; 08 specifies the "deflate" encoding |
| * [the only encoding supported by the gzip standard]; and 00 is the flags byte. We do not |
| * currently support any extra header fields (which would be indicated by a nonzero flags byte). |
| * We also don't handle the case when that byte sequence appears spuriously in the file. (Note |
| * that it would have to occur spuriously within a normal chunk to be a problem.) |
| * |
| * |
| * The imgdiff patch header looks like this: |
| * |
| * "IMGDIFF2" (8) [magic number and version] |
| * chunk count (4) |
| * for each chunk: |
| * chunk type (4) [CHUNK_{NORMAL, GZIP, DEFLATE, RAW}] |
| * if chunk type == CHUNK_NORMAL: |
| * source start (8) |
| * source len (8) |
| * bsdiff patch offset (8) [from start of patch file] |
| * if chunk type == CHUNK_GZIP: (version 1 only) |
| * source start (8) |
| * source len (8) |
| * bsdiff patch offset (8) [from start of patch file] |
| * source expanded len (8) [size of uncompressed source] |
| * target expected len (8) [size of uncompressed target] |
| * gzip level (4) |
| * method (4) |
| * windowBits (4) |
| * memLevel (4) |
| * strategy (4) |
| * gzip header len (4) |
| * gzip header (gzip header len) |
| * gzip footer (8) |
| * if chunk type == CHUNK_DEFLATE: (version 2 only) |
| * source start (8) |
| * source len (8) |
| * bsdiff patch offset (8) [from start of patch file] |
| * source expanded len (8) [size of uncompressed source] |
| * target expected len (8) [size of uncompressed target] |
| * gzip level (4) |
| * method (4) |
| * windowBits (4) |
| * memLevel (4) |
| * strategy (4) |
| * if chunk type == RAW: (version 2 only) |
| * target len (4) |
| * data (target len) |
| * |
| * All integers are little-endian. "source start" and "source len" specify the section of the |
| * input image that comprises this chunk, including the gzip header and footer for gzip chunks. |
| * "source expanded len" is the size of the uncompressed source data. "target expected len" is the |
| * size of the uncompressed data after applying the bsdiff patch. The next five parameters |
| * specify the zlib parameters to be used when compressing the patched data, and the next three |
| * specify the header and footer to be wrapped around the compressed data to create the output |
| * chunk (so that header contents like the timestamp are recreated exactly). |
| * |
| * After the header there are 'chunk count' bsdiff patches; the offset of each from the beginning |
| * of the file is specified in the header. |
| * |
| * This tool can take an optional file of "bonus data". This is an extra file of data that is |
| * appended to chunk #1 after it is compressed (it must be a CHUNK_DEFLATE chunk). The same file |
| * must be available (and passed to applypatch with -b) when applying the patch. This is used to |
| * reduce the size of recovery-from-boot patches by combining the boot image with recovery ramdisk |
| * information that is stored on the system partition. |
| * |
| * When generating the patch between two zip files, this tool has an option "--block-limit" to |
| * split the large source/target files into several pair of pieces, with each piece has at most |
| * *limit* blocks. When this option is used, we also need to output the split info into the file |
| * path specified by "--split-info". |
| * |
| * Format of split info file: |
| * 2 [version of imgdiff] |
| * n [count of split pieces] |
| * <patch_size>, <tgt_size>, <src_range> [size and ranges for split piece#1] |
| * ... |
| * <patch_size>, <tgt_size>, <src_range> [size and ranges for split piece#n] |
| * |
| * To split a pair of large zip files, we walk through the chunks in target zip and search by its |
| * entry_name in the source zip. If the entry_name is non-empty and a matching entry in source |
| * is found, we'll add the source entry to the current split source image; otherwise we'll skip |
| * this chunk and later do bsdiff between all the skipped trunks and the whole split source image. |
| * We move on to the next pair of pieces if the size of the split source image reaches the block |
| * limit. |
| * |
| * After the split, the target pieces are continuous and block aligned, while the source pieces |
| * are mutually exclusive. Some of the source blocks may not be used if there's no matching |
| * entry_name in the target; as a result, they won't be included in any of these split source |
| * images. Then we will generate patches accordingly between each split image pairs; in particular, |
| * the unmatched trunks in the split target will diff against the entire split source image. |
| * |
| * For example: |
| * Input: [src_image, tgt_image] |
| * Split: [src-0, tgt-0; src-1, tgt-1, src-2, tgt-2] |
| * Diff: [ patch-0; patch-1; patch-2] |
| * |
| * Patch: [(src-0, patch-0) = tgt-0; (src-1, patch-1) = tgt-1; (src-2, patch-2) = tgt-2] |
| * Concatenate: [tgt-0 + tgt-1 + tgt-2 = tgt_image] |
| */ |
| |
| #include "applypatch/imgdiff.h" |
| |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <getopt.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include <algorithm> |
| #include <string> |
| #include <vector> |
| |
| #include <android-base/file.h> |
| #include <android-base/logging.h> |
| #include <android-base/memory.h> |
| #include <android-base/parseint.h> |
| #include <android-base/unique_fd.h> |
| #include <bsdiff/bsdiff.h> |
| #include <ziparchive/zip_archive.h> |
| #include <zlib.h> |
| |
| #include "applypatch/imgdiff_image.h" |
| #include "rangeset.h" |
| |
| using android::base::get_unaligned; |
| |
| static constexpr size_t VERSION = 2; |
| |
| // We assume the header "IMGDIFF#" is 8 bytes. |
| static_assert(VERSION <= 9, "VERSION occupies more than one byte."); |
| |
| static constexpr size_t BLOCK_SIZE = 4096; |
| static constexpr size_t BUFFER_SIZE = 0x8000; |
| |
| // If we use this function to write the offset and length (type size_t), their values should not |
| // exceed 2^63; because the signed bit will be casted away. |
| static inline bool Write8(int fd, int64_t value) { |
| return android::base::WriteFully(fd, &value, sizeof(int64_t)); |
| } |
| |
| // Similarly, the value should not exceed 2^31 if we are casting from size_t (e.g. target chunk |
| // size). |
| static inline bool Write4(int fd, int32_t value) { |
| return android::base::WriteFully(fd, &value, sizeof(int32_t)); |
| } |
| |
| // Trim the head or tail to align with the block size. Return false if the chunk has nothing left |
| // after alignment. |
| static bool AlignHead(size_t* start, size_t* length) { |
| size_t residual = (*start % BLOCK_SIZE == 0) ? 0 : BLOCK_SIZE - *start % BLOCK_SIZE; |
| |
| if (*length <= residual) { |
| *length = 0; |
| return false; |
| } |
| |
| // Trim the data in the beginning. |
| *start += residual; |
| *length -= residual; |
| return true; |
| } |
| |
| static bool AlignTail(size_t* start, size_t* length) { |
| size_t residual = (*start + *length) % BLOCK_SIZE; |
| if (*length <= residual) { |
| *length = 0; |
| return false; |
| } |
| |
| // Trim the data in the end. |
| *length -= residual; |
| return true; |
| } |
| |
| // Remove the used blocks from the source chunk to make sure the source ranges are mutually |
| // exclusive after split. Return false if we fail to get the non-overlapped ranges. In such |
| // a case, we'll skip the entire source chunk. |
| static bool RemoveUsedBlocks(size_t* start, size_t* length, const SortedRangeSet& used_ranges) { |
| if (!used_ranges.Overlaps(*start, *length)) { |
| return true; |
| } |
| |
| // TODO find the largest non-overlap chunk. |
| printf("Removing block %s from %zu - %zu\n", used_ranges.ToString().c_str(), *start, |
| *start + *length - 1); |
| |
| // If there's no duplicate entry name, we should only overlap in the head or tail block. Try to |
| // trim both blocks. Skip this source chunk in case it still overlaps with the used ranges. |
| if (AlignHead(start, length) && !used_ranges.Overlaps(*start, *length)) { |
| return true; |
| } |
| if (AlignTail(start, length) && !used_ranges.Overlaps(*start, *length)) { |
| return true; |
| } |
| |
| printf("Failed to remove the overlapped block ranges; skip the source\n"); |
| return false; |
| } |
| |
| static const struct option OPTIONS[] = { |
| { "zip-mode", no_argument, nullptr, 'z' }, |
| { "bonus-file", required_argument, nullptr, 'b' }, |
| { "block-limit", required_argument, nullptr, 0 }, |
| { "debug-dir", required_argument, nullptr, 0 }, |
| { "split-info", required_argument, nullptr, 0 }, |
| { nullptr, 0, nullptr, 0 }, |
| }; |
| |
| ImageChunk::ImageChunk(int type, size_t start, const std::vector<uint8_t>* file_content, |
| size_t raw_data_len, std::string entry_name) |
| : type_(type), |
| start_(start), |
| input_file_ptr_(file_content), |
| raw_data_len_(raw_data_len), |
| compress_level_(6), |
| entry_name_(std::move(entry_name)) { |
| CHECK(file_content != nullptr) << "input file container can't be nullptr"; |
| } |
| |
| const uint8_t* ImageChunk::GetRawData() const { |
| CHECK_LE(start_ + raw_data_len_, input_file_ptr_->size()); |
| return input_file_ptr_->data() + start_; |
| } |
| |
| const uint8_t * ImageChunk::DataForPatch() const { |
| if (type_ == CHUNK_DEFLATE) { |
| return uncompressed_data_.data(); |
| } |
| return GetRawData(); |
| } |
| |
| size_t ImageChunk::DataLengthForPatch() const { |
| if (type_ == CHUNK_DEFLATE) { |
| return uncompressed_data_.size(); |
| } |
| return raw_data_len_; |
| } |
| |
| bool ImageChunk::operator==(const ImageChunk& other) const { |
| if (type_ != other.type_) { |
| return false; |
| } |
| return (raw_data_len_ == other.raw_data_len_ && |
| memcmp(GetRawData(), other.GetRawData(), raw_data_len_) == 0); |
| } |
| |
| void ImageChunk::SetUncompressedData(std::vector<uint8_t> data) { |
| uncompressed_data_ = std::move(data); |
| } |
| |
| bool ImageChunk::SetBonusData(const std::vector<uint8_t>& bonus_data) { |
| if (type_ != CHUNK_DEFLATE) { |
| return false; |
| } |
| uncompressed_data_.insert(uncompressed_data_.end(), bonus_data.begin(), bonus_data.end()); |
| return true; |
| } |
| |
| void ImageChunk::ChangeDeflateChunkToNormal() { |
| if (type_ != CHUNK_DEFLATE) return; |
| type_ = CHUNK_NORMAL; |
| // No need to clear the entry name. |
| uncompressed_data_.clear(); |
| } |
| |
| bool ImageChunk::IsAdjacentNormal(const ImageChunk& other) const { |
| if (type_ != CHUNK_NORMAL || other.type_ != CHUNK_NORMAL) { |
| return false; |
| } |
| return (other.start_ == start_ + raw_data_len_); |
| } |
| |
| void ImageChunk::MergeAdjacentNormal(const ImageChunk& other) { |
| CHECK(IsAdjacentNormal(other)); |
| raw_data_len_ = raw_data_len_ + other.raw_data_len_; |
| } |
| |
| bool ImageChunk::MakePatch(const ImageChunk& tgt, const ImageChunk& src, |
| std::vector<uint8_t>* patch_data, |
| bsdiff::SuffixArrayIndexInterface** bsdiff_cache) { |
| #if defined(__ANDROID__) |
| char ptemp[] = "/data/local/tmp/imgdiff-patch-XXXXXX"; |
| #else |
| char ptemp[] = "/tmp/imgdiff-patch-XXXXXX"; |
| #endif |
| |
| int fd = mkstemp(ptemp); |
| if (fd == -1) { |
| printf("MakePatch failed to create a temporary file: %s\n", strerror(errno)); |
| return false; |
| } |
| close(fd); |
| |
| int r = bsdiff::bsdiff(src.DataForPatch(), src.DataLengthForPatch(), tgt.DataForPatch(), |
| tgt.DataLengthForPatch(), ptemp, bsdiff_cache); |
| if (r != 0) { |
| printf("bsdiff() failed: %d\n", r); |
| return false; |
| } |
| |
| android::base::unique_fd patch_fd(open(ptemp, O_RDONLY)); |
| if (patch_fd == -1) { |
| printf("failed to open %s: %s\n", ptemp, strerror(errno)); |
| return false; |
| } |
| struct stat st; |
| if (fstat(patch_fd, &st) != 0) { |
| printf("failed to stat patch file %s: %s\n", ptemp, strerror(errno)); |
| return false; |
| } |
| |
| size_t sz = static_cast<size_t>(st.st_size); |
| |
| patch_data->resize(sz); |
| if (!android::base::ReadFully(patch_fd, patch_data->data(), sz)) { |
| printf("failed to read \"%s\" %s\n", ptemp, strerror(errno)); |
| unlink(ptemp); |
| return false; |
| } |
| |
| unlink(ptemp); |
| |
| return true; |
| } |
| |
| bool ImageChunk::ReconstructDeflateChunk() { |
| if (type_ != CHUNK_DEFLATE) { |
| printf("attempt to reconstruct non-deflate chunk\n"); |
| return false; |
| } |
| |
| // We only check two combinations of encoder parameters: level 6 (the default) and level 9 |
| // (the maximum). |
| for (int level = 6; level <= 9; level += 3) { |
| if (TryReconstruction(level)) { |
| compress_level_ = level; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Takes the uncompressed data stored in the chunk, compresses it using the zlib parameters stored |
| * in the chunk, and checks that it matches exactly the compressed data we started with (also |
| * stored in the chunk). |
| */ |
| bool ImageChunk::TryReconstruction(int level) { |
| z_stream strm; |
| strm.zalloc = Z_NULL; |
| strm.zfree = Z_NULL; |
| strm.opaque = Z_NULL; |
| strm.avail_in = uncompressed_data_.size(); |
| strm.next_in = uncompressed_data_.data(); |
| int ret = deflateInit2(&strm, level, METHOD, WINDOWBITS, MEMLEVEL, STRATEGY); |
| if (ret < 0) { |
| printf("failed to initialize deflate: %d\n", ret); |
| return false; |
| } |
| |
| std::vector<uint8_t> buffer(BUFFER_SIZE); |
| size_t offset = 0; |
| do { |
| strm.avail_out = buffer.size(); |
| strm.next_out = buffer.data(); |
| ret = deflate(&strm, Z_FINISH); |
| if (ret < 0) { |
| printf("failed to deflate: %d\n", ret); |
| return false; |
| } |
| |
| size_t compressed_size = buffer.size() - strm.avail_out; |
| if (memcmp(buffer.data(), input_file_ptr_->data() + start_ + offset, compressed_size) != 0) { |
| // mismatch; data isn't the same. |
| deflateEnd(&strm); |
| return false; |
| } |
| offset += compressed_size; |
| } while (ret != Z_STREAM_END); |
| deflateEnd(&strm); |
| |
| if (offset != raw_data_len_) { |
| // mismatch; ran out of data before we should have. |
| return false; |
| } |
| return true; |
| } |
| |
| PatchChunk::PatchChunk(const ImageChunk& tgt, const ImageChunk& src, std::vector<uint8_t> data) |
| : type_(tgt.GetType()), |
| source_start_(src.GetStartOffset()), |
| source_len_(src.GetRawDataLength()), |
| source_uncompressed_len_(src.DataLengthForPatch()), |
| target_start_(tgt.GetStartOffset()), |
| target_len_(tgt.GetRawDataLength()), |
| target_uncompressed_len_(tgt.DataLengthForPatch()), |
| target_compress_level_(tgt.GetCompressLevel()), |
| data_(std::move(data)) {} |
| |
| // Construct a CHUNK_RAW patch from the target data directly. |
| PatchChunk::PatchChunk(const ImageChunk& tgt) |
| : type_(CHUNK_RAW), |
| source_start_(0), |
| source_len_(0), |
| source_uncompressed_len_(0), |
| target_start_(tgt.GetStartOffset()), |
| target_len_(tgt.GetRawDataLength()), |
| target_uncompressed_len_(tgt.DataLengthForPatch()), |
| target_compress_level_(tgt.GetCompressLevel()), |
| data_(tgt.DataForPatch(), tgt.DataForPatch() + tgt.DataLengthForPatch()) {} |
| |
| // Return true if raw data is smaller than the patch size. |
| bool PatchChunk::RawDataIsSmaller(const ImageChunk& tgt, size_t patch_size) { |
| size_t target_len = tgt.GetRawDataLength(); |
| return (tgt.GetType() == CHUNK_NORMAL && (target_len <= 160 || target_len < patch_size)); |
| } |
| |
| void PatchChunk::UpdateSourceOffset(const SortedRangeSet& src_range) { |
| if (type_ == CHUNK_DEFLATE) { |
| source_start_ = src_range.GetOffsetInRangeSet(source_start_); |
| } |
| } |
| |
| // Header size: |
| // header_type 4 bytes |
| // CHUNK_NORMAL 8*3 = 24 bytes |
| // CHUNK_DEFLATE 8*5 + 4*5 = 60 bytes |
| // CHUNK_RAW 4 bytes + patch_size |
| size_t PatchChunk::GetHeaderSize() const { |
| switch (type_) { |
| case CHUNK_NORMAL: |
| return 4 + 8 * 3; |
| case CHUNK_DEFLATE: |
| return 4 + 8 * 5 + 4 * 5; |
| case CHUNK_RAW: |
| return 4 + 4 + data_.size(); |
| default: |
| CHECK(false) << "unexpected chunk type: " << type_; // Should not reach here. |
| return 0; |
| } |
| } |
| |
| // Return the offset of the next patch into the patch data. |
| size_t PatchChunk::WriteHeaderToFd(int fd, size_t offset) const { |
| Write4(fd, type_); |
| switch (type_) { |
| case CHUNK_NORMAL: |
| printf("normal (%10zu, %10zu) %10zu\n", target_start_, target_len_, data_.size()); |
| Write8(fd, static_cast<int64_t>(source_start_)); |
| Write8(fd, static_cast<int64_t>(source_len_)); |
| Write8(fd, static_cast<int64_t>(offset)); |
| return offset + data_.size(); |
| case CHUNK_DEFLATE: |
| printf("deflate (%10zu, %10zu) %10zu\n", target_start_, target_len_, data_.size()); |
| Write8(fd, static_cast<int64_t>(source_start_)); |
| Write8(fd, static_cast<int64_t>(source_len_)); |
| Write8(fd, static_cast<int64_t>(offset)); |
| Write8(fd, static_cast<int64_t>(source_uncompressed_len_)); |
| Write8(fd, static_cast<int64_t>(target_uncompressed_len_)); |
| Write4(fd, target_compress_level_); |
| Write4(fd, ImageChunk::METHOD); |
| Write4(fd, ImageChunk::WINDOWBITS); |
| Write4(fd, ImageChunk::MEMLEVEL); |
| Write4(fd, ImageChunk::STRATEGY); |
| return offset + data_.size(); |
| case CHUNK_RAW: |
| printf("raw (%10zu, %10zu)\n", target_start_, target_len_); |
| Write4(fd, static_cast<int32_t>(data_.size())); |
| if (!android::base::WriteFully(fd, data_.data(), data_.size())) { |
| CHECK(false) << "failed to write " << data_.size() << " bytes patch"; |
| } |
| return offset; |
| default: |
| CHECK(false) << "unexpected chunk type: " << type_; |
| return offset; |
| } |
| } |
| |
| size_t PatchChunk::PatchSize() const { |
| if (type_ == CHUNK_RAW) { |
| return GetHeaderSize(); |
| } |
| return GetHeaderSize() + data_.size(); |
| } |
| |
| // Write the contents of |patch_chunks| to |patch_fd|. |
| bool PatchChunk::WritePatchDataToFd(const std::vector<PatchChunk>& patch_chunks, int patch_fd) { |
| // Figure out how big the imgdiff file header is going to be, so that we can correctly compute |
| // the offset of each bsdiff patch within the file. |
| size_t total_header_size = 12; |
| for (const auto& patch : patch_chunks) { |
| total_header_size += patch.GetHeaderSize(); |
| } |
| |
| size_t offset = total_header_size; |
| |
| // Write out the headers. |
| if (!android::base::WriteStringToFd("IMGDIFF" + std::to_string(VERSION), patch_fd)) { |
| printf("failed to write \"IMGDIFF%zu\": %s\n", VERSION, strerror(errno)); |
| return false; |
| } |
| |
| Write4(patch_fd, static_cast<int32_t>(patch_chunks.size())); |
| for (size_t i = 0; i < patch_chunks.size(); ++i) { |
| printf("chunk %zu: ", i); |
| offset = patch_chunks[i].WriteHeaderToFd(patch_fd, offset); |
| } |
| |
| // Append each chunk's bsdiff patch, in order. |
| for (const auto& patch : patch_chunks) { |
| if (patch.type_ == CHUNK_RAW) { |
| continue; |
| } |
| if (!android::base::WriteFully(patch_fd, patch.data_.data(), patch.data_.size())) { |
| printf("failed to write %zu bytes patch to patch_fd\n", patch.data_.size()); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| ImageChunk& Image::operator[](size_t i) { |
| CHECK_LT(i, chunks_.size()); |
| return chunks_[i]; |
| } |
| |
| const ImageChunk& Image::operator[](size_t i) const { |
| CHECK_LT(i, chunks_.size()); |
| return chunks_[i]; |
| } |
| |
| void Image::MergeAdjacentNormalChunks() { |
| size_t merged_last = 0, cur = 0; |
| while (cur < chunks_.size()) { |
| // Look for normal chunks adjacent to the current one. If such chunk exists, extend the |
| // length of the current normal chunk. |
| size_t to_check = cur + 1; |
| while (to_check < chunks_.size() && chunks_[cur].IsAdjacentNormal(chunks_[to_check])) { |
| chunks_[cur].MergeAdjacentNormal(chunks_[to_check]); |
| to_check++; |
| } |
| |
| if (merged_last != cur) { |
| chunks_[merged_last] = std::move(chunks_[cur]); |
| } |
| merged_last++; |
| cur = to_check; |
| } |
| if (merged_last < chunks_.size()) { |
| chunks_.erase(chunks_.begin() + merged_last, chunks_.end()); |
| } |
| } |
| |
| void Image::DumpChunks() const { |
| std::string type = is_source_ ? "source" : "target"; |
| printf("Dumping chunks for %s\n", type.c_str()); |
| for (size_t i = 0; i < chunks_.size(); ++i) { |
| printf("chunk %zu: ", i); |
| chunks_[i].Dump(); |
| } |
| } |
| |
| bool Image::ReadFile(const std::string& filename, std::vector<uint8_t>* file_content) { |
| CHECK(file_content != nullptr); |
| |
| android::base::unique_fd fd(open(filename.c_str(), O_RDONLY)); |
| if (fd == -1) { |
| printf("failed to open \"%s\" %s\n", filename.c_str(), strerror(errno)); |
| return false; |
| } |
| struct stat st; |
| if (fstat(fd, &st) != 0) { |
| printf("failed to stat \"%s\": %s\n", filename.c_str(), strerror(errno)); |
| return false; |
| } |
| |
| size_t sz = static_cast<size_t>(st.st_size); |
| file_content->resize(sz); |
| if (!android::base::ReadFully(fd, file_content->data(), sz)) { |
| printf("failed to read \"%s\" %s\n", filename.c_str(), strerror(errno)); |
| return false; |
| } |
| fd.reset(); |
| |
| return true; |
| } |
| |
| bool ZipModeImage::Initialize(const std::string& filename) { |
| if (!ReadFile(filename, &file_content_)) { |
| return false; |
| } |
| |
| // Omit the trailing zeros before we pass the file to ziparchive handler. |
| size_t zipfile_size; |
| if (!GetZipFileSize(&zipfile_size)) { |
| printf("failed to parse the actual size of %s\n", filename.c_str()); |
| return false; |
| } |
| ZipArchiveHandle handle; |
| int err = OpenArchiveFromMemory(const_cast<uint8_t*>(file_content_.data()), zipfile_size, |
| filename.c_str(), &handle); |
| if (err != 0) { |
| printf("failed to open zip file %s: %s\n", filename.c_str(), ErrorCodeString(err)); |
| CloseArchive(handle); |
| return false; |
| } |
| |
| if (!InitializeChunks(filename, handle)) { |
| CloseArchive(handle); |
| return false; |
| } |
| |
| CloseArchive(handle); |
| return true; |
| } |
| |
| // Iterate the zip entries and compose the image chunks accordingly. |
| bool ZipModeImage::InitializeChunks(const std::string& filename, ZipArchiveHandle handle) { |
| void* cookie; |
| int ret = StartIteration(handle, &cookie, nullptr, nullptr); |
| if (ret != 0) { |
| printf("failed to iterate over entries in %s: %s\n", filename.c_str(), ErrorCodeString(ret)); |
| return false; |
| } |
| |
| // Create a list of deflated zip entries, sorted by offset. |
| std::vector<std::pair<std::string, ZipEntry>> temp_entries; |
| ZipString name; |
| ZipEntry entry; |
| while ((ret = Next(cookie, &entry, &name)) == 0) { |
| if (entry.method == kCompressDeflated || limit_ > 0) { |
| std::string entry_name(name.name, name.name + name.name_length); |
| temp_entries.emplace_back(entry_name, entry); |
| } |
| } |
| |
| if (ret != -1) { |
| printf("Error while iterating over zip entries: %s\n", ErrorCodeString(ret)); |
| return false; |
| } |
| std::sort(temp_entries.begin(), temp_entries.end(), |
| [](auto& entry1, auto& entry2) { return entry1.second.offset < entry2.second.offset; }); |
| |
| EndIteration(cookie); |
| |
| // For source chunks, we don't need to compose chunks for the metadata. |
| if (is_source_) { |
| for (auto& entry : temp_entries) { |
| if (!AddZipEntryToChunks(handle, entry.first, &entry.second)) { |
| printf("Failed to add %s to source chunks\n", entry.first.c_str()); |
| return false; |
| } |
| } |
| |
| // Add the end of zip file (mainly central directory) as a normal chunk. |
| size_t entries_end = 0; |
| if (!temp_entries.empty()) { |
| entries_end = static_cast<size_t>(temp_entries.back().second.offset + |
| temp_entries.back().second.compressed_length); |
| } |
| CHECK_LT(entries_end, file_content_.size()); |
| chunks_.emplace_back(CHUNK_NORMAL, entries_end, &file_content_, |
| file_content_.size() - entries_end); |
| |
| return true; |
| } |
| |
| // For target chunks, add the deflate entries as CHUNK_DEFLATE and the contents between two |
| // deflate entries as CHUNK_NORMAL. |
| size_t pos = 0; |
| size_t nextentry = 0; |
| while (pos < file_content_.size()) { |
| if (nextentry < temp_entries.size() && |
| static_cast<off64_t>(pos) == temp_entries[nextentry].second.offset) { |
| // Add the next zip entry. |
| std::string entry_name = temp_entries[nextentry].first; |
| if (!AddZipEntryToChunks(handle, entry_name, &temp_entries[nextentry].second)) { |
| printf("Failed to add %s to target chunks\n", entry_name.c_str()); |
| return false; |
| } |
| |
| pos += temp_entries[nextentry].second.compressed_length; |
| ++nextentry; |
| continue; |
| } |
| |
| // Use a normal chunk to take all the data up to the start of the next entry. |
| size_t raw_data_len; |
| if (nextentry < temp_entries.size()) { |
| raw_data_len = temp_entries[nextentry].second.offset - pos; |
| } else { |
| raw_data_len = file_content_.size() - pos; |
| } |
| chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, raw_data_len); |
| |
| pos += raw_data_len; |
| } |
| |
| return true; |
| } |
| |
| bool ZipModeImage::AddZipEntryToChunks(ZipArchiveHandle handle, const std::string& entry_name, |
| ZipEntry* entry) { |
| size_t compressed_len = entry->compressed_length; |
| if (compressed_len == 0) return true; |
| |
| // Split the entry into several normal chunks if it's too large. |
| if (limit_ > 0 && compressed_len > limit_) { |
| int count = 0; |
| while (compressed_len > 0) { |
| size_t length = std::min(limit_, compressed_len); |
| std::string name = entry_name + "-" + std::to_string(count); |
| chunks_.emplace_back(CHUNK_NORMAL, entry->offset + limit_ * count, &file_content_, length, |
| name); |
| |
| count++; |
| compressed_len -= length; |
| } |
| } else if (entry->method == kCompressDeflated) { |
| size_t uncompressed_len = entry->uncompressed_length; |
| std::vector<uint8_t> uncompressed_data(uncompressed_len); |
| int ret = ExtractToMemory(handle, entry, uncompressed_data.data(), uncompressed_len); |
| if (ret != 0) { |
| printf("failed to extract %s with size %zu: %s\n", entry_name.c_str(), uncompressed_len, |
| ErrorCodeString(ret)); |
| return false; |
| } |
| ImageChunk curr(CHUNK_DEFLATE, entry->offset, &file_content_, compressed_len, entry_name); |
| curr.SetUncompressedData(std::move(uncompressed_data)); |
| chunks_.push_back(std::move(curr)); |
| } else { |
| chunks_.emplace_back(CHUNK_NORMAL, entry->offset, &file_content_, compressed_len, entry_name); |
| } |
| |
| return true; |
| } |
| |
| // EOCD record |
| // offset 0: signature 0x06054b50, 4 bytes |
| // offset 4: number of this disk, 2 bytes |
| // ... |
| // offset 20: comment length, 2 bytes |
| // offset 22: comment, n bytes |
| bool ZipModeImage::GetZipFileSize(size_t* input_file_size) { |
| if (file_content_.size() < 22) { |
| printf("file is too small to be a zip file\n"); |
| return false; |
| } |
| |
| // Look for End of central directory record of the zip file, and calculate the actual |
| // zip_file size. |
| for (int i = file_content_.size() - 22; i >= 0; i--) { |
| if (file_content_[i] == 0x50) { |
| if (get_unaligned<uint32_t>(&file_content_[i]) == 0x06054b50) { |
| // double-check: this archive consists of a single "disk". |
| CHECK_EQ(get_unaligned<uint16_t>(&file_content_[i + 4]), 0); |
| |
| uint16_t comment_length = get_unaligned<uint16_t>(&file_content_[i + 20]); |
| size_t file_size = i + 22 + comment_length; |
| CHECK_LE(file_size, file_content_.size()); |
| *input_file_size = file_size; |
| return true; |
| } |
| } |
| } |
| |
| // EOCD not found, this file is likely not a valid zip file. |
| return false; |
| } |
| |
| ImageChunk ZipModeImage::PseudoSource() const { |
| CHECK(is_source_); |
| return ImageChunk(CHUNK_NORMAL, 0, &file_content_, file_content_.size()); |
| } |
| |
| const ImageChunk* ZipModeImage::FindChunkByName(const std::string& name, bool find_normal) const { |
| if (name.empty()) { |
| return nullptr; |
| } |
| for (auto& chunk : chunks_) { |
| if (chunk.GetType() != CHUNK_DEFLATE && !find_normal) { |
| continue; |
| } |
| |
| if (chunk.GetEntryName() == name) { |
| return &chunk; |
| } |
| |
| // Edge case when target chunk is split due to size limit but source chunk isn't. |
| if (name == (chunk.GetEntryName() + "-0") || chunk.GetEntryName() == (name + "-0")) { |
| return &chunk; |
| } |
| |
| // TODO handle the .so files with incremental version number. |
| // (e.g. lib/arm64-v8a/libcronet.59.0.3050.4.so) |
| } |
| |
| return nullptr; |
| } |
| |
| ImageChunk* ZipModeImage::FindChunkByName(const std::string& name, bool find_normal) { |
| return const_cast<ImageChunk*>( |
| static_cast<const ZipModeImage*>(this)->FindChunkByName(name, find_normal)); |
| } |
| |
| bool ZipModeImage::CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage* src_image) { |
| for (auto& tgt_chunk : *tgt_image) { |
| if (tgt_chunk.GetType() != CHUNK_DEFLATE) { |
| continue; |
| } |
| |
| ImageChunk* src_chunk = src_image->FindChunkByName(tgt_chunk.GetEntryName()); |
| if (src_chunk == nullptr) { |
| tgt_chunk.ChangeDeflateChunkToNormal(); |
| } else if (tgt_chunk == *src_chunk) { |
| // If two deflate chunks are identical (eg, the kernel has not changed between two builds), |
| // treat them as normal chunks. This makes applypatch much faster -- it can apply a trivial |
| // patch to the compressed data, rather than uncompressing and recompressing to apply the |
| // trivial patch to the uncompressed data. |
| tgt_chunk.ChangeDeflateChunkToNormal(); |
| src_chunk->ChangeDeflateChunkToNormal(); |
| } else if (!tgt_chunk.ReconstructDeflateChunk()) { |
| // We cannot recompress the data and get exactly the same bits as are in the input target |
| // image. Treat the chunk as a normal non-deflated chunk. |
| printf("failed to reconstruct target deflate chunk [%s]; treating as normal\n", |
| tgt_chunk.GetEntryName().c_str()); |
| |
| tgt_chunk.ChangeDeflateChunkToNormal(); |
| src_chunk->ChangeDeflateChunkToNormal(); |
| } |
| } |
| |
| // For zips, we only need merge normal chunks for the target: deflated chunks are matched via |
| // filename, and normal chunks are patched using the entire source file as the source. |
| if (tgt_image->limit_ == 0) { |
| tgt_image->MergeAdjacentNormalChunks(); |
| tgt_image->DumpChunks(); |
| } |
| |
| return true; |
| } |
| |
| // For each target chunk, look for the corresponding source chunk by the zip_entry name. If |
| // found, add the range of this chunk in the original source file to the block aligned source |
| // ranges. Construct the split src & tgt image once the size of source range reaches limit. |
| bool ZipModeImage::SplitZipModeImageWithLimit(const ZipModeImage& tgt_image, |
| const ZipModeImage& src_image, |
| std::vector<ZipModeImage>* split_tgt_images, |
| std::vector<ZipModeImage>* split_src_images, |
| std::vector<SortedRangeSet>* split_src_ranges) { |
| CHECK_EQ(tgt_image.limit_, src_image.limit_); |
| size_t limit = tgt_image.limit_; |
| |
| src_image.DumpChunks(); |
| printf("Splitting %zu tgt chunks...\n", tgt_image.NumOfChunks()); |
| |
| SortedRangeSet used_src_ranges; // ranges used for previous split source images. |
| |
| // Reserve the central directory in advance for the last split image. |
| const auto& central_directory = src_image.cend() - 1; |
| CHECK_EQ(CHUNK_NORMAL, central_directory->GetType()); |
| used_src_ranges.Insert(central_directory->GetStartOffset(), |
| central_directory->DataLengthForPatch()); |
| |
| SortedRangeSet src_ranges; |
| std::vector<ImageChunk> split_src_chunks; |
| std::vector<ImageChunk> split_tgt_chunks; |
| for (auto tgt = tgt_image.cbegin(); tgt != tgt_image.cend(); tgt++) { |
| const ImageChunk* src = src_image.FindChunkByName(tgt->GetEntryName(), true); |
| if (src == nullptr) { |
| split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_, |
| tgt->GetRawDataLength()); |
| continue; |
| } |
| |
| size_t src_offset = src->GetStartOffset(); |
| size_t src_length = src->GetRawDataLength(); |
| |
| CHECK(src_length > 0); |
| CHECK_LE(src_length, limit); |
| |
| // Make sure this source range hasn't been used before so that the src_range pieces don't |
| // overlap with each other. |
| if (!RemoveUsedBlocks(&src_offset, &src_length, used_src_ranges)) { |
| split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_, |
| tgt->GetRawDataLength()); |
| } else if (src_ranges.blocks() * BLOCK_SIZE + src_length <= limit) { |
| src_ranges.Insert(src_offset, src_length); |
| |
| // Add the deflate source chunk if it hasn't been aligned. |
| if (src->GetType() == CHUNK_DEFLATE && src_length == src->GetRawDataLength()) { |
| split_src_chunks.push_back(*src); |
| split_tgt_chunks.push_back(*tgt); |
| } else { |
| // TODO split smarter to avoid alignment of large deflate chunks |
| split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_, |
| tgt->GetRawDataLength()); |
| } |
| } else { |
| ZipModeImage::AddSplitImageFromChunkList(tgt_image, src_image, src_ranges, split_tgt_chunks, |
| split_src_chunks, split_tgt_images, |
| split_src_images); |
| |
| split_tgt_chunks.clear(); |
| split_src_chunks.clear(); |
| used_src_ranges.Insert(src_ranges); |
| split_src_ranges->push_back(std::move(src_ranges)); |
| src_ranges.Clear(); |
| |
| // We don't have enough space for the current chunk; start a new split image and handle |
| // this chunk there. |
| tgt--; |
| } |
| } |
| |
| // TODO Trim it in case the CD exceeds limit too much. |
| src_ranges.Insert(central_directory->GetStartOffset(), central_directory->DataLengthForPatch()); |
| ZipModeImage::AddSplitImageFromChunkList(tgt_image, src_image, src_ranges, split_tgt_chunks, |
| split_src_chunks, split_tgt_images, split_src_images); |
| split_src_ranges->push_back(std::move(src_ranges)); |
| |
| ValidateSplitImages(*split_tgt_images, *split_src_images, *split_src_ranges, |
| tgt_image.file_content_.size()); |
| |
| return true; |
| } |
| |
| void ZipModeImage::AddSplitImageFromChunkList(const ZipModeImage& tgt_image, |
| const ZipModeImage& src_image, |
| const SortedRangeSet& split_src_ranges, |
| const std::vector<ImageChunk>& split_tgt_chunks, |
| const std::vector<ImageChunk>& split_src_chunks, |
| std::vector<ZipModeImage>* split_tgt_images, |
| std::vector<ZipModeImage>* split_src_images) { |
| CHECK(!split_tgt_chunks.empty()); |
| // Target chunks should occupy at least one block. |
| // TODO put a warning and change the type to raw if it happens in extremely rare cases. |
| size_t tgt_size = split_tgt_chunks.back().GetStartOffset() + |
| split_tgt_chunks.back().DataLengthForPatch() - |
| split_tgt_chunks.front().GetStartOffset(); |
| CHECK_GE(tgt_size, BLOCK_SIZE); |
| |
| std::vector<ImageChunk> aligned_tgt_chunks; |
| |
| // Align the target chunks in the beginning with BLOCK_SIZE. |
| size_t i = 0; |
| while (i < split_tgt_chunks.size()) { |
| size_t tgt_start = split_tgt_chunks[i].GetStartOffset(); |
| size_t tgt_length = split_tgt_chunks[i].GetRawDataLength(); |
| |
| // Current ImageChunk is long enough to align. |
| if (AlignHead(&tgt_start, &tgt_length)) { |
| aligned_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt_start, &tgt_image.file_content_, |
| tgt_length); |
| break; |
| } |
| |
| i++; |
| } |
| CHECK_LT(i, split_tgt_chunks.size()); |
| aligned_tgt_chunks.insert(aligned_tgt_chunks.end(), split_tgt_chunks.begin() + i + 1, |
| split_tgt_chunks.end()); |
| CHECK(!aligned_tgt_chunks.empty()); |
| |
| // Add a normal chunk to align the contents in the end. |
| size_t end_offset = |
| aligned_tgt_chunks.back().GetStartOffset() + aligned_tgt_chunks.back().GetRawDataLength(); |
| if (end_offset % BLOCK_SIZE != 0 && end_offset < tgt_image.file_content_.size()) { |
| aligned_tgt_chunks.emplace_back(CHUNK_NORMAL, end_offset, &tgt_image.file_content_, |
| BLOCK_SIZE - (end_offset % BLOCK_SIZE)); |
| } |
| |
| ZipModeImage split_tgt_image(false); |
| split_tgt_image.Initialize(std::move(aligned_tgt_chunks), {}); |
| split_tgt_image.MergeAdjacentNormalChunks(); |
| |
| // Construct the dummy source file based on the src_ranges. |
| std::vector<uint8_t> src_content; |
| for (const auto& r : split_src_ranges) { |
| size_t end = std::min(src_image.file_content_.size(), r.second * BLOCK_SIZE); |
| src_content.insert(src_content.end(), src_image.file_content_.begin() + r.first * BLOCK_SIZE, |
| src_image.file_content_.begin() + end); |
| } |
| |
| // We should not have an empty src in our design; otherwise we will encounter an error in |
| // bsdiff since src_content.data() == nullptr. |
| CHECK(!src_content.empty()); |
| |
| ZipModeImage split_src_image(true); |
| split_src_image.Initialize(split_src_chunks, std::move(src_content)); |
| |
| split_tgt_images->push_back(std::move(split_tgt_image)); |
| split_src_images->push_back(std::move(split_src_image)); |
| } |
| |
| void ZipModeImage::ValidateSplitImages(const std::vector<ZipModeImage>& split_tgt_images, |
| const std::vector<ZipModeImage>& split_src_images, |
| std::vector<SortedRangeSet>& split_src_ranges, |
| size_t total_tgt_size) { |
| CHECK_EQ(split_tgt_images.size(), split_src_images.size()); |
| |
| printf("Validating %zu images\n", split_tgt_images.size()); |
| |
| // Verify that the target image pieces is continuous and can add up to the total size. |
| size_t last_offset = 0; |
| for (const auto& tgt_image : split_tgt_images) { |
| CHECK(!tgt_image.chunks_.empty()); |
| |
| CHECK_EQ(last_offset, tgt_image.chunks_.front().GetStartOffset()); |
| CHECK(last_offset % BLOCK_SIZE == 0); |
| |
| // Check the target chunks within the split image are continuous. |
| for (const auto& chunk : tgt_image.chunks_) { |
| CHECK_EQ(last_offset, chunk.GetStartOffset()); |
| last_offset += chunk.GetRawDataLength(); |
| } |
| } |
| CHECK_EQ(total_tgt_size, last_offset); |
| |
| // Verify that the source ranges are mutually exclusive. |
| CHECK_EQ(split_src_images.size(), split_src_ranges.size()); |
| SortedRangeSet used_src_ranges; |
| for (size_t i = 0; i < split_src_ranges.size(); i++) { |
| CHECK(!used_src_ranges.Overlaps(split_src_ranges[i])) |
| << "src range " << split_src_ranges[i].ToString() << " overlaps " |
| << used_src_ranges.ToString(); |
| used_src_ranges.Insert(split_src_ranges[i]); |
| } |
| } |
| |
| bool ZipModeImage::GeneratePatchesInternal(const ZipModeImage& tgt_image, |
| const ZipModeImage& src_image, |
| std::vector<PatchChunk>* patch_chunks) { |
| printf("Construct patches for %zu chunks...\n", tgt_image.NumOfChunks()); |
| patch_chunks->clear(); |
| |
| bsdiff::SuffixArrayIndexInterface* bsdiff_cache = nullptr; |
| for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) { |
| const auto& tgt_chunk = tgt_image[i]; |
| |
| if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) { |
| patch_chunks->emplace_back(tgt_chunk); |
| continue; |
| } |
| |
| const ImageChunk* src_chunk = (tgt_chunk.GetType() != CHUNK_DEFLATE) |
| ? nullptr |
| : src_image.FindChunkByName(tgt_chunk.GetEntryName()); |
| |
| const auto& src_ref = (src_chunk == nullptr) ? src_image.PseudoSource() : *src_chunk; |
| bsdiff::SuffixArrayIndexInterface** bsdiff_cache_ptr = |
| (src_chunk == nullptr) ? &bsdiff_cache : nullptr; |
| |
| std::vector<uint8_t> patch_data; |
| if (!ImageChunk::MakePatch(tgt_chunk, src_ref, &patch_data, bsdiff_cache_ptr)) { |
| printf("Failed to generate patch, name: %s\n", tgt_chunk.GetEntryName().c_str()); |
| return false; |
| } |
| |
| printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data.size(), |
| tgt_chunk.GetRawDataLength()); |
| |
| if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) { |
| patch_chunks->emplace_back(tgt_chunk); |
| } else { |
| patch_chunks->emplace_back(tgt_chunk, src_ref, std::move(patch_data)); |
| } |
| } |
| delete bsdiff_cache; |
| |
| CHECK_EQ(patch_chunks->size(), tgt_image.NumOfChunks()); |
| return true; |
| } |
| |
| bool ZipModeImage::GeneratePatches(const ZipModeImage& tgt_image, const ZipModeImage& src_image, |
| const std::string& patch_name) { |
| std::vector<PatchChunk> patch_chunks; |
| |
| ZipModeImage::GeneratePatchesInternal(tgt_image, src_image, &patch_chunks); |
| |
| CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size()); |
| |
| android::base::unique_fd patch_fd( |
| open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR)); |
| if (patch_fd == -1) { |
| printf("failed to open \"%s\": %s\n", patch_name.c_str(), strerror(errno)); |
| return false; |
| } |
| |
| return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd); |
| } |
| |
| bool ZipModeImage::GeneratePatches(const std::vector<ZipModeImage>& split_tgt_images, |
| const std::vector<ZipModeImage>& split_src_images, |
| const std::vector<SortedRangeSet>& split_src_ranges, |
| const std::string& patch_name, |
| const std::string& split_info_file, |
| const std::string& debug_dir) { |
| printf("Construct patches for %zu split images...\n", split_tgt_images.size()); |
| |
| android::base::unique_fd patch_fd( |
| open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR)); |
| if (patch_fd == -1) { |
| printf("failed to open \"%s\": %s\n", patch_name.c_str(), strerror(errno)); |
| return false; |
| } |
| |
| std::vector<std::string> split_info_list; |
| for (size_t i = 0; i < split_tgt_images.size(); i++) { |
| std::vector<PatchChunk> patch_chunks; |
| if (!ZipModeImage::GeneratePatchesInternal(split_tgt_images[i], split_src_images[i], |
| &patch_chunks)) { |
| printf("failed to generate split patch\n"); |
| return false; |
| } |
| |
| size_t total_patch_size = 12; |
| for (auto& p : patch_chunks) { |
| p.UpdateSourceOffset(split_src_ranges[i]); |
| total_patch_size += p.PatchSize(); |
| } |
| |
| if (!PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd)) { |
| return false; |
| } |
| |
| size_t split_tgt_size = split_tgt_images[i].chunks_.back().GetStartOffset() + |
| split_tgt_images[i].chunks_.back().GetRawDataLength() - |
| split_tgt_images[i].chunks_.front().GetStartOffset(); |
| std::string split_info = android::base::StringPrintf( |
| "%zu %zu %s", total_patch_size, split_tgt_size, split_src_ranges[i].ToString().c_str()); |
| split_info_list.push_back(split_info); |
| |
| // Write the split source & patch into the debug directory. |
| if (!debug_dir.empty()) { |
| std::string src_name = android::base::StringPrintf("%s/src-%zu", debug_dir.c_str(), i); |
| android::base::unique_fd fd( |
| open(src_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR)); |
| |
| if (fd == -1) { |
| printf("Failed to open %s\n", src_name.c_str()); |
| return false; |
| } |
| if (!android::base::WriteFully(fd, split_src_images[i].PseudoSource().DataForPatch(), |
| split_src_images[i].PseudoSource().DataLengthForPatch())) { |
| printf("Failed to write split source data into %s\n", src_name.c_str()); |
| return false; |
| } |
| |
| std::string patch_name = android::base::StringPrintf("%s/patch-%zu", debug_dir.c_str(), i); |
| fd.reset(open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR)); |
| |
| if (fd == -1) { |
| printf("Failed to open %s\n", patch_name.c_str()); |
| return false; |
| } |
| if (!PatchChunk::WritePatchDataToFd(patch_chunks, fd)) { |
| return false; |
| } |
| } |
| } |
| |
| // Store the split in the following format: |
| // Line 0: imgdiff version# |
| // Line 1: number of pieces |
| // Line 2: patch_size_1 tgt_size_1 src_range_1 |
| // ... |
| // Line n+1: patch_size_n tgt_size_n src_range_n |
| std::string split_info_string = android::base::StringPrintf( |
| "%zu\n%zu\n", VERSION, split_info_list.size()) + android::base::Join(split_info_list, '\n'); |
| if (!android::base::WriteStringToFile(split_info_string, split_info_file)) { |
| printf("failed to write split info to \"%s\": %s\n", split_info_file.c_str(), |
| strerror(errno)); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool ImageModeImage::Initialize(const std::string& filename) { |
| if (!ReadFile(filename, &file_content_)) { |
| return false; |
| } |
| |
| size_t sz = file_content_.size(); |
| size_t pos = 0; |
| while (pos < sz) { |
| // 0x00 no header flags, 0x08 deflate compression, 0x1f8b gzip magic number |
| if (sz - pos >= 4 && get_unaligned<uint32_t>(file_content_.data() + pos) == 0x00088b1f) { |
| // 'pos' is the offset of the start of a gzip chunk. |
| size_t chunk_offset = pos; |
| |
| // The remaining data is too small to be a gzip chunk; treat them as a normal chunk. |
| if (sz - pos < GZIP_HEADER_LEN + GZIP_FOOTER_LEN) { |
| chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, sz - pos); |
| break; |
| } |
| |
| // We need three chunks for the deflated image in total, one normal chunk for the header, |
| // one deflated chunk for the body, and another normal chunk for the footer. |
| chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_HEADER_LEN); |
| pos += GZIP_HEADER_LEN; |
| |
| // We must decompress this chunk in order to discover where it ends, and so we can update |
| // the uncompressed_data of the image body and its length. |
| |
| z_stream strm; |
| strm.zalloc = Z_NULL; |
| strm.zfree = Z_NULL; |
| strm.opaque = Z_NULL; |
| strm.avail_in = sz - pos; |
| strm.next_in = file_content_.data() + pos; |
| |
| // -15 means we are decoding a 'raw' deflate stream; zlib will |
| // not expect zlib headers. |
| int ret = inflateInit2(&strm, -15); |
| if (ret < 0) { |
| printf("failed to initialize inflate: %d\n", ret); |
| return false; |
| } |
| |
| size_t allocated = BUFFER_SIZE; |
| std::vector<uint8_t> uncompressed_data(allocated); |
| size_t uncompressed_len = 0, raw_data_len = 0; |
| do { |
| strm.avail_out = allocated - uncompressed_len; |
| strm.next_out = uncompressed_data.data() + uncompressed_len; |
| ret = inflate(&strm, Z_NO_FLUSH); |
| if (ret < 0) { |
| printf("Warning: inflate failed [%s] at offset [%zu], treating as a normal chunk\n", |
| strm.msg, chunk_offset); |
| break; |
| } |
| uncompressed_len = allocated - strm.avail_out; |
| if (strm.avail_out == 0) { |
| allocated *= 2; |
| uncompressed_data.resize(allocated); |
| } |
| } while (ret != Z_STREAM_END); |
| |
| raw_data_len = sz - strm.avail_in - pos; |
| inflateEnd(&strm); |
| |
| if (ret < 0) { |
| continue; |
| } |
| |
| // The footer contains the size of the uncompressed data. Double-check to make sure that it |
| // matches the size of the data we got when we actually did the decompression. |
| size_t footer_index = pos + raw_data_len + GZIP_FOOTER_LEN - 4; |
| if (sz - footer_index < 4) { |
| printf("Warning: invalid footer position; treating as a nomal chunk\n"); |
| continue; |
| } |
| size_t footer_size = get_unaligned<uint32_t>(file_content_.data() + footer_index); |
| if (footer_size != uncompressed_len) { |
| printf("Warning: footer size %zu != decompressed size %zu; treating as a nomal chunk\n", |
| footer_size, uncompressed_len); |
| continue; |
| } |
| |
| ImageChunk body(CHUNK_DEFLATE, pos, &file_content_, raw_data_len); |
| uncompressed_data.resize(uncompressed_len); |
| body.SetUncompressedData(std::move(uncompressed_data)); |
| chunks_.push_back(std::move(body)); |
| |
| pos += raw_data_len; |
| |
| // create a normal chunk for the footer |
| chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_FOOTER_LEN); |
| |
| pos += GZIP_FOOTER_LEN; |
| } else { |
| // Use a normal chunk to take all the contents until the next gzip chunk (or EOF); we expect |
| // the number of chunks to be small (5 for typical boot and recovery images). |
| |
| // Scan forward until we find a gzip header. |
| size_t data_len = 0; |
| while (data_len + pos < sz) { |
| if (data_len + pos + 4 <= sz && |
| get_unaligned<uint32_t>(file_content_.data() + pos + data_len) == 0x00088b1f) { |
| break; |
| } |
| data_len++; |
| } |
| chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, data_len); |
| |
| pos += data_len; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool ImageModeImage::SetBonusData(const std::vector<uint8_t>& bonus_data) { |
| CHECK(is_source_); |
| if (chunks_.size() < 2 || !chunks_[1].SetBonusData(bonus_data)) { |
| printf("Failed to set bonus data\n"); |
| DumpChunks(); |
| return false; |
| } |
| |
| printf(" using %zu bytes of bonus data\n", bonus_data.size()); |
| return true; |
| } |
| |
| // In Image Mode, verify that the source and target images have the same chunk structure (ie, the |
| // same sequence of deflate and normal chunks). |
| bool ImageModeImage::CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeImage* src_image) { |
| // In image mode, merge the gzip header and footer in with any adjacent normal chunks. |
| tgt_image->MergeAdjacentNormalChunks(); |
| src_image->MergeAdjacentNormalChunks(); |
| |
| if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) { |
| printf("source and target don't have same number of chunks!\n"); |
| tgt_image->DumpChunks(); |
| src_image->DumpChunks(); |
| return false; |
| } |
| for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) { |
| if ((*tgt_image)[i].GetType() != (*src_image)[i].GetType()) { |
| printf("source and target don't have same chunk structure! (chunk %zu)\n", i); |
| tgt_image->DumpChunks(); |
| src_image->DumpChunks(); |
| return false; |
| } |
| } |
| |
| for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) { |
| auto& tgt_chunk = (*tgt_image)[i]; |
| auto& src_chunk = (*src_image)[i]; |
| if (tgt_chunk.GetType() != CHUNK_DEFLATE) { |
| continue; |
| } |
| |
| // If two deflate chunks are identical treat them as normal chunks. |
| if (tgt_chunk == src_chunk) { |
| tgt_chunk.ChangeDeflateChunkToNormal(); |
| src_chunk.ChangeDeflateChunkToNormal(); |
| } else if (!tgt_chunk.ReconstructDeflateChunk()) { |
| // We cannot recompress the data and get exactly the same bits as are in the input target |
| // image, fall back to normal |
| printf("failed to reconstruct target deflate chunk %zu [%s]; treating as normal\n", i, |
| tgt_chunk.GetEntryName().c_str()); |
| tgt_chunk.ChangeDeflateChunkToNormal(); |
| src_chunk.ChangeDeflateChunkToNormal(); |
| } |
| } |
| |
| // For images, we need to maintain the parallel structure of the chunk lists, so do the merging |
| // in both the source and target lists. |
| tgt_image->MergeAdjacentNormalChunks(); |
| src_image->MergeAdjacentNormalChunks(); |
| if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) { |
| // This shouldn't happen. |
| printf("merging normal chunks went awry\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // In image mode, generate patches against the given source chunks and bonus_data; write the |
| // result to |patch_name|. |
| bool ImageModeImage::GeneratePatches(const ImageModeImage& tgt_image, |
| const ImageModeImage& src_image, |
| const std::string& patch_name) { |
| printf("Construct patches for %zu chunks...\n", tgt_image.NumOfChunks()); |
| std::vector<PatchChunk> patch_chunks; |
| patch_chunks.reserve(tgt_image.NumOfChunks()); |
| |
| for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) { |
| const auto& tgt_chunk = tgt_image[i]; |
| const auto& src_chunk = src_image[i]; |
| |
| if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) { |
| patch_chunks.emplace_back(tgt_chunk); |
| continue; |
| } |
| |
| std::vector<uint8_t> patch_data; |
| if (!ImageChunk::MakePatch(tgt_chunk, src_chunk, &patch_data, nullptr)) { |
| printf("Failed to generate patch for target chunk %zu: ", i); |
| return false; |
| } |
| printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data.size(), |
| tgt_chunk.GetRawDataLength()); |
| |
| if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) { |
| patch_chunks.emplace_back(tgt_chunk); |
| } else { |
| patch_chunks.emplace_back(tgt_chunk, src_chunk, std::move(patch_data)); |
| } |
| } |
| |
| CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size()); |
| |
| android::base::unique_fd patch_fd( |
| open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR)); |
| if (patch_fd == -1) { |
| printf("failed to open \"%s\": %s\n", patch_name.c_str(), strerror(errno)); |
| return false; |
| } |
| |
| return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd); |
| } |
| |
| int imgdiff(int argc, const char** argv) { |
| bool zip_mode = false; |
| std::vector<uint8_t> bonus_data; |
| size_t blocks_limit = 0; |
| std::string split_info_file; |
| std::string debug_dir; |
| |
| int opt; |
| int option_index; |
| optind = 1; // Reset the getopt state so that we can call it multiple times for test. |
| |
| while ((opt = getopt_long(argc, const_cast<char**>(argv), "zb:", OPTIONS, &option_index)) != -1) { |
| switch (opt) { |
| case 'z': |
| zip_mode = true; |
| break; |
| case 'b': { |
| android::base::unique_fd fd(open(optarg, O_RDONLY)); |
| if (fd == -1) { |
| printf("failed to open bonus file %s: %s\n", optarg, strerror(errno)); |
| return 1; |
| } |
| struct stat st; |
| if (fstat(fd, &st) != 0) { |
| printf("failed to stat bonus file %s: %s\n", optarg, strerror(errno)); |
| return 1; |
| } |
| |
| size_t bonus_size = st.st_size; |
| bonus_data.resize(bonus_size); |
| if (!android::base::ReadFully(fd, bonus_data.data(), bonus_size)) { |
| printf("failed to read bonus file %s: %s\n", optarg, strerror(errno)); |
| return 1; |
| } |
| break; |
| } |
| case 0: { |
| std::string name = OPTIONS[option_index].name; |
| if (name == "block-limit" && !android::base::ParseUint(optarg, &blocks_limit)) { |
| printf("failed to parse size blocks_limit: %s\n", optarg); |
| return 1; |
| } else if (name == "split-info") { |
| split_info_file = optarg; |
| } else if (name == "debug-dir") { |
| debug_dir = optarg; |
| } |
| break; |
| } |
| default: |
| printf("unexpected opt: %s\n", optarg); |
| return 2; |
| } |
| } |
| |
| if (argc - optind != 3) { |
| printf("usage: %s [options] <src-img> <tgt-img> <patch-file>\n", argv[0]); |
| printf( |
| " -z <zip-mode>, Generate patches in zip mode, src and tgt should be zip files.\n" |
| " -b <bonus-file>, Bonus file in addition to src, image mode only.\n" |
| " --block-limit, For large zips, split the src and tgt based on the block limit;\n" |
| " and generate patches between each pair of pieces. Concatenate these\n" |
| " patches together and output them into <patch-file>.\n" |
| " --split-info, Output the split information (patch_size, tgt_size, src_ranges);\n" |
| " zip mode with block-limit only.\n" |
| " --debug_dir, Debug directory to put the split srcs and patches, zip mode only.\n"); |
| return 2; |
| } |
| |
| if (zip_mode) { |
| ZipModeImage src_image(true, blocks_limit * BLOCK_SIZE); |
| ZipModeImage tgt_image(false, blocks_limit * BLOCK_SIZE); |
| |
| if (!src_image.Initialize(argv[optind])) { |
| return 1; |
| } |
| if (!tgt_image.Initialize(argv[optind + 1])) { |
| return 1; |
| } |
| |
| if (!ZipModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) { |
| return 1; |
| } |
| |
| // TODO save and output the split information so that caller can create split transfer lists |
| // accordingly. |
| |
| // Compute bsdiff patches for each chunk's data (the uncompressed data, in the case of |
| // deflate chunks). |
| if (blocks_limit > 0) { |
| if (split_info_file.empty()) { |
| printf("split-info path cannot be empty when generating patches with a block-limit.\n"); |
| return 1; |
| } |
| |
| std::vector<ZipModeImage> split_tgt_images; |
| std::vector<ZipModeImage> split_src_images; |
| std::vector<SortedRangeSet> split_src_ranges; |
| ZipModeImage::SplitZipModeImageWithLimit(tgt_image, src_image, &split_tgt_images, |
| &split_src_images, &split_src_ranges); |
| |
| if (!ZipModeImage::GeneratePatches(split_tgt_images, split_src_images, split_src_ranges, |
| argv[optind + 2], split_info_file, debug_dir)) { |
| return 1; |
| } |
| |
| } else if (!ZipModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) { |
| return 1; |
| } |
| } else { |
| ImageModeImage src_image(true); |
| ImageModeImage tgt_image(false); |
| |
| if (!src_image.Initialize(argv[optind])) { |
| return 1; |
| } |
| if (!tgt_image.Initialize(argv[optind + 1])) { |
| return 1; |
| } |
| |
| if (!ImageModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) { |
| return 1; |
| } |
| |
| if (!bonus_data.empty() && !src_image.SetBonusData(bonus_data)) { |
| return 1; |
| } |
| |
| if (!ImageModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) { |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |