| /*- |
| * Copyright 2009 Colin Percival |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * This file was originally written by Colin Percival as part of the Tarsnap |
| * online backup system. |
| */ |
| #include "scrypt_platform.h" |
| |
| #include <sys/types.h> |
| #include <sys/mman.h> |
| |
| #include <emmintrin.h> |
| #include <errno.h> |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #ifdef USE_OPENSSL_PBKDF2 |
| #include <openssl/evp.h> |
| #else |
| #include "sha256.h" |
| #endif |
| #include "sysendian.h" |
| |
| #include "crypto_scrypt.h" |
| |
| static void blkcpy(void *, void *, size_t); |
| static void blkxor(void *, void *, size_t); |
| static void salsa20_8(__m128i *); |
| static void blockmix_salsa8(__m128i *, __m128i *, __m128i *, size_t); |
| static uint64_t integerify(void *, size_t); |
| static void smix(uint8_t *, size_t, uint64_t, void *, void *); |
| |
| static void |
| blkcpy(void * dest, void * src, size_t len) |
| { |
| __m128i * D = dest; |
| __m128i * S = src; |
| size_t L = len / 16; |
| size_t i; |
| |
| for (i = 0; i < L; i++) |
| D[i] = S[i]; |
| } |
| |
| static void |
| blkxor(void * dest, void * src, size_t len) |
| { |
| __m128i * D = dest; |
| __m128i * S = src; |
| size_t L = len / 16; |
| size_t i; |
| |
| for (i = 0; i < L; i++) |
| D[i] = _mm_xor_si128(D[i], S[i]); |
| } |
| |
| /** |
| * salsa20_8(B): |
| * Apply the salsa20/8 core to the provided block. |
| */ |
| static void |
| salsa20_8(__m128i B[4]) |
| { |
| __m128i X0, X1, X2, X3; |
| __m128i T; |
| size_t i; |
| |
| X0 = B[0]; |
| X1 = B[1]; |
| X2 = B[2]; |
| X3 = B[3]; |
| |
| for (i = 0; i < 8; i += 2) { |
| /* Operate on "columns". */ |
| T = _mm_add_epi32(X0, X3); |
| X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 7)); |
| X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 25)); |
| T = _mm_add_epi32(X1, X0); |
| X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9)); |
| X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23)); |
| T = _mm_add_epi32(X2, X1); |
| X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 13)); |
| X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 19)); |
| T = _mm_add_epi32(X3, X2); |
| X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18)); |
| X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14)); |
| |
| /* Rearrange data. */ |
| X1 = _mm_shuffle_epi32(X1, 0x93); |
| X2 = _mm_shuffle_epi32(X2, 0x4E); |
| X3 = _mm_shuffle_epi32(X3, 0x39); |
| |
| /* Operate on "rows". */ |
| T = _mm_add_epi32(X0, X1); |
| X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 7)); |
| X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 25)); |
| T = _mm_add_epi32(X3, X0); |
| X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9)); |
| X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23)); |
| T = _mm_add_epi32(X2, X3); |
| X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 13)); |
| X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 19)); |
| T = _mm_add_epi32(X1, X2); |
| X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18)); |
| X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14)); |
| |
| /* Rearrange data. */ |
| X1 = _mm_shuffle_epi32(X1, 0x39); |
| X2 = _mm_shuffle_epi32(X2, 0x4E); |
| X3 = _mm_shuffle_epi32(X3, 0x93); |
| } |
| |
| B[0] = _mm_add_epi32(B[0], X0); |
| B[1] = _mm_add_epi32(B[1], X1); |
| B[2] = _mm_add_epi32(B[2], X2); |
| B[3] = _mm_add_epi32(B[3], X3); |
| } |
| |
| /** |
| * blockmix_salsa8(Bin, Bout, X, r): |
| * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r |
| * bytes in length; the output Bout must also be the same size. The |
| * temporary space X must be 64 bytes. |
| */ |
| static void |
| blockmix_salsa8(__m128i * Bin, __m128i * Bout, __m128i * X, size_t r) |
| { |
| size_t i; |
| |
| /* 1: X <-- B_{2r - 1} */ |
| blkcpy(X, &Bin[8 * r - 4], 64); |
| |
| /* 2: for i = 0 to 2r - 1 do */ |
| for (i = 0; i < r; i++) { |
| /* 3: X <-- H(X \xor B_i) */ |
| blkxor(X, &Bin[i * 8], 64); |
| salsa20_8(X); |
| |
| /* 4: Y_i <-- X */ |
| /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
| blkcpy(&Bout[i * 4], X, 64); |
| |
| /* 3: X <-- H(X \xor B_i) */ |
| blkxor(X, &Bin[i * 8 + 4], 64); |
| salsa20_8(X); |
| |
| /* 4: Y_i <-- X */ |
| /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
| blkcpy(&Bout[(r + i) * 4], X, 64); |
| } |
| } |
| |
| /** |
| * integerify(B, r): |
| * Return the result of parsing B_{2r-1} as a little-endian integer. |
| */ |
| static uint64_t |
| integerify(void * B, size_t r) |
| { |
| uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64); |
| |
| return (((uint64_t)(X[13]) << 32) + X[0]); |
| } |
| |
| /** |
| * smix(B, r, N, V, XY): |
| * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; |
| * the temporary storage V must be 128rN bytes in length; the temporary |
| * storage XY must be 256r + 64 bytes in length. The value N must be a |
| * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a |
| * multiple of 64 bytes. |
| */ |
| static void |
| smix(uint8_t * B, size_t r, uint64_t N, void * V, void * XY) |
| { |
| __m128i * X = XY; |
| __m128i * Y = (void *)((uintptr_t)(XY) + 128 * r); |
| __m128i * Z = (void *)((uintptr_t)(XY) + 256 * r); |
| uint32_t * X32 = (void *)X; |
| uint64_t i, j; |
| size_t k; |
| |
| /* 1: X <-- B */ |
| for (k = 0; k < 2 * r; k++) { |
| for (i = 0; i < 16; i++) { |
| X32[k * 16 + i] = |
| le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]); |
| } |
| } |
| |
| /* 2: for i = 0 to N - 1 do */ |
| for (i = 0; i < N; i += 2) { |
| /* 3: V_i <-- X */ |
| blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r); |
| |
| /* 4: X <-- H(X) */ |
| blockmix_salsa8(X, Y, Z, r); |
| |
| /* 3: V_i <-- X */ |
| blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r), |
| Y, 128 * r); |
| |
| /* 4: X <-- H(X) */ |
| blockmix_salsa8(Y, X, Z, r); |
| } |
| |
| /* 6: for i = 0 to N - 1 do */ |
| for (i = 0; i < N; i += 2) { |
| /* 7: j <-- Integerify(X) mod N */ |
| j = integerify(X, r) & (N - 1); |
| |
| /* 8: X <-- H(X \xor V_j) */ |
| blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r); |
| blockmix_salsa8(X, Y, Z, r); |
| |
| /* 7: j <-- Integerify(X) mod N */ |
| j = integerify(Y, r) & (N - 1); |
| |
| /* 8: X <-- H(X \xor V_j) */ |
| blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r); |
| blockmix_salsa8(Y, X, Z, r); |
| } |
| |
| /* 10: B' <-- X */ |
| for (k = 0; k < 2 * r; k++) { |
| for (i = 0; i < 16; i++) { |
| le32enc(&B[(k * 16 + (i * 5 % 16)) * 4], |
| X32[k * 16 + i]); |
| } |
| } |
| } |
| |
| /** |
| * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen): |
| * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r, |
| * p, buflen) and write the result into buf. The parameters r, p, and buflen |
| * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N |
| * must be a power of 2 greater than 1. |
| * |
| * Return 0 on success; or -1 on error. |
| */ |
| int |
| crypto_scrypt(const uint8_t * passwd, size_t passwdlen, |
| const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p, |
| uint8_t * buf, size_t buflen) |
| { |
| void * B0, * V0, * XY0; |
| uint8_t * B; |
| uint32_t * V; |
| uint32_t * XY; |
| uint32_t i; |
| |
| /* Sanity-check parameters. */ |
| #if SIZE_MAX > UINT32_MAX |
| if (buflen > (((uint64_t)(1) << 32) - 1) * 32) { |
| errno = EFBIG; |
| goto err0; |
| } |
| #endif |
| if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) { |
| errno = EFBIG; |
| goto err0; |
| } |
| if (((N & (N - 1)) != 0) || (N == 0)) { |
| errno = EINVAL; |
| goto err0; |
| } |
| if ((r > SIZE_MAX / 128 / p) || |
| #if SIZE_MAX / 256 <= UINT32_MAX |
| (r > (SIZE_MAX - 64) / 256) || |
| #endif |
| (N > SIZE_MAX / 128 / r)) { |
| errno = ENOMEM; |
| goto err0; |
| } |
| |
| /* Allocate memory. */ |
| #ifdef HAVE_POSIX_MEMALIGN |
| if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0) |
| goto err0; |
| B = (uint8_t *)(B0); |
| if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0) |
| goto err1; |
| XY = (uint32_t *)(XY0); |
| #ifndef MAP_ANON |
| if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0) |
| goto err2; |
| V = (uint32_t *)(V0); |
| #endif |
| #else |
| if ((B0 = malloc(128 * r * p + 63)) == NULL) |
| goto err0; |
| B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63)); |
| if ((XY0 = malloc(256 * r + 64 + 63)) == NULL) |
| goto err1; |
| XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63)); |
| #ifndef MAP_ANON |
| if ((V0 = malloc(128 * r * N + 63)) == NULL) |
| goto err2; |
| V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63)); |
| #endif |
| #endif |
| #ifdef MAP_ANON |
| if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE, |
| #ifdef MAP_NOCORE |
| MAP_ANON | MAP_PRIVATE | MAP_NOCORE, |
| #else |
| MAP_ANON | MAP_PRIVATE, |
| #endif |
| -1, 0)) == MAP_FAILED) |
| goto err2; |
| V = (uint32_t *)(V0); |
| #endif |
| |
| /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ |
| #ifdef USE_OPENSSL_PBKDF2 |
| PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, salt, saltlen, 1, EVP_sha256(), p * 128 * r, B); |
| #else |
| PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r); |
| #endif |
| |
| /* 2: for i = 0 to p - 1 do */ |
| for (i = 0; i < p; i++) { |
| /* 3: B_i <-- MF(B_i, N) */ |
| smix(&B[i * 128 * r], r, N, V, XY); |
| } |
| |
| /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ |
| #ifdef USE_OPENSSL_PBKDF2 |
| PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, B, p * 128 * r, 1, EVP_sha256(), buflen, buf); |
| #else |
| PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen); |
| #endif |
| |
| /* Free memory. */ |
| #ifdef MAP_ANON |
| if (munmap(V0, 128 * r * N)) |
| goto err2; |
| #else |
| free(V0); |
| #endif |
| free(XY0); |
| free(B0); |
| |
| /* Success! */ |
| return (0); |
| |
| err2: |
| free(XY0); |
| err1: |
| free(B0); |
| err0: |
| /* Failure! */ |
| return (-1); |
| } |