blob: f30e43694df716d8eaeb4936df807675e8448040 [file] [log] [blame]
/*
Copyright 2014 to 2020 TeamWin
This file is part of TWRP/TeamWin Recovery Project.
TWRP is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
TWRP is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with TWRP. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/vfs.h>
#include <unistd.h>
#include <map>
#include <vector>
#include <dirent.h>
#include <time.h>
#include <errno.h>
#include <fcntl.h>
#include <grp.h>
#include <pwd.h>
#include <zlib.h>
#include <iostream>
#include <iomanip>
#include <sys/wait.h>
#include <linux/fs.h>
#include <sys/mount.h>
#include <sys/poll.h>
#include <sys/socket.h>
#include <linux/types.h>
#include <linux/netlink.h>
#include <android-base/chrono_utils.h>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <android-base/strings.h>
#include <fstab/fstab.h>
#include <fs_avb/fs_avb.h>
#include <fs_mgr.h>
#include <fs_mgr_dm_linear.h>
#include <fs_mgr_overlayfs.h>
#include <libgsi/libgsi.h>
#include <liblp/liblp.h>
#include "variables.h"
#include "twcommon.h"
#include "partitions.hpp"
#include "data.hpp"
#include "twrp-functions.hpp"
#include "fixContexts.hpp"
#include "exclude.hpp"
#include "set_metadata.h"
#include "tw_atomic.hpp"
#include "gui/gui.hpp"
#include "progresstracking.hpp"
#include "twrpDigestDriver.hpp"
#include "twrpRepacker.hpp"
#include "adbbu/libtwadbbu.hpp"
#ifdef TW_HAS_MTP
#ifdef TW_HAS_LEGACY_MTP
#include "mtp/legacy/mtp_MtpServer.hpp"
#include "mtp/legacy/twrpMtp.hpp"
#include "mtp/legacy/MtpMessage.hpp"
#else
#include "mtp/ffs/mtp_MtpServer.hpp"
#include "mtp/ffs/twrpMtp.hpp"
#include "mtp/ffs/MtpMessage.hpp"
#endif
#endif
extern "C" {
#include "cutils/properties.h"
#include "gui/gui.h"
}
#ifdef TW_INCLUDE_CRYPTO
#include "crypto/fde/cryptfs.h"
#include "gui/rapidxml.hpp"
#include "gui/pages.hpp"
#ifdef TW_INCLUDE_FBE
#include "crypto/ext4crypt/Decrypt.h"
#ifdef TW_INCLUDE_FBE_METADATA_DECRYPT
#ifdef USE_FSCRYPT
#include "crypto/fscrypt/MetadataCrypt.h"
#else
#include "crypto/ext4crypt/MetadataCrypt.h"
#endif
#endif
#endif
#ifdef TW_CRYPTO_USE_SYSTEM_VOLD
#include "crypto/vold_decrypt/vold_decrypt.h"
#endif
#endif
#ifdef AB_OTA_UPDATER
#include <hardware/hardware.h>
#include <hardware/boot_control.h>
#endif
using android::fs_mgr::Fstab;
using android::fs_mgr::FstabEntry;
extern bool datamedia;
std::vector<users_struct> Users_List;
TWPartitionManager::TWPartitionManager(void) {
mtp_was_enabled = false;
mtp_write_fd = -1;
uevent_pfd.fd = -1;
stop_backup.set_value(0);
#ifdef AB_OTA_UPDATER
char slot_suffix[PROPERTY_VALUE_MAX];
property_get("ro.boot.slot_suffix", slot_suffix, "error");
if (strcmp(slot_suffix, "error") == 0)
property_get("ro.boot.slot", slot_suffix, "error");
Active_Slot_Display = "";
if (strcmp(slot_suffix, "_a") == 0 || strcmp(slot_suffix, "a") == 0)
Set_Active_Slot("A");
else
Set_Active_Slot("B");
#endif
}
int TWPartitionManager::Set_FDE_Encrypt_Status(void) {
property_set("ro.crypto.state", "encrypted");
property_set("ro.crypto.type", "block");
// Sleep for a bit so that services can start if needed
sleep(1);
return 0;
}
int TWPartitionManager::Process_Fstab(string Fstab_Filename, bool Display_Error) {
FILE *fstabFile;
char fstab_line[MAX_FSTAB_LINE_LENGTH];
TWPartition* settings_partition = NULL;
TWPartition* andsec_partition = NULL;
unsigned int storageid = 1 << 16; // upper 16 bits are for physical storage device, we pretend to have only one
std::map<string, Flags_Map> twrp_flags;
fstabFile = fopen("/etc/twrp.flags", "rt");
if (fstabFile != NULL) {
LOGINFO("Reading /etc/twrp.flags\n");
while (fgets(fstab_line, sizeof(fstab_line), fstabFile) != NULL) {
if (fstab_line[0] != '/')
continue;
size_t line_size = strlen(fstab_line);
if (fstab_line[line_size - 1] != '\n')
fstab_line[line_size] = '\n';
Flags_Map line_flags;
line_flags.Primary_Block_Device = "";
line_flags.Alternate_Block_Device = "";
line_flags.fstab_line = (char*)malloc(MAX_FSTAB_LINE_LENGTH);
if (!line_flags.fstab_line) {
LOGERR("malloc error on line_flags.fstab_line\n");
return false;
}
memcpy(line_flags.fstab_line, fstab_line, MAX_FSTAB_LINE_LENGTH);
bool found_separator = false;
char *fs_loc = NULL;
char *block_loc = NULL;
char *flags_loc = NULL;
size_t index, item_index = 0;
for (index = 0; index < line_size; index++) {
if (fstab_line[index] <= 32) {
fstab_line[index] = '\0';
found_separator = true;
} else if (found_separator) {
if (item_index == 0) {
fs_loc = fstab_line + index;
} else if (item_index == 1) {
block_loc = fstab_line + index;
} else if (item_index > 1) {
char *ptr = fstab_line + index;
if (*ptr == '/') {
line_flags.Alternate_Block_Device = ptr;
} else if (strlen(ptr) > strlen("flags=") && strncmp(ptr, "flags=", strlen("flags=")) == 0) {
flags_loc = ptr;
// Once we find the flags=, we're done scanning the line
break;
}
}
found_separator = false;
item_index++;
}
}
if (block_loc)
line_flags.Primary_Block_Device = block_loc;
if (fs_loc)
line_flags.File_System = fs_loc;
if (flags_loc)
line_flags.Flags = flags_loc;
string Mount_Point = fstab_line;
twrp_flags[Mount_Point] = line_flags;
memset(fstab_line, 0, sizeof(fstab_line));
}
fclose(fstabFile);
}
fstabFile = fopen(Fstab_Filename.c_str(), "rt");
if (fstabFile == NULL) {
LOGERR("Critical Error: Unable to open fstab at '%s'.\n", Fstab_Filename.c_str());
return false;
} else
LOGINFO("Reading %s\n", Fstab_Filename.c_str());
while (fgets(fstab_line, sizeof(fstab_line), fstabFile) != NULL) {
bool isSuper = Is_Super_Partition(fstab_line);
if (!isSuper && fstab_line[0] != '/')
continue;
if (strstr(fstab_line, "swap"))
continue; // Skip swap in recovery
size_t line_size = strlen(fstab_line);
if (fstab_line[line_size - 1] != '\n')
fstab_line[line_size] = '\n';
TWPartition* partition = new TWPartition();
if (partition->Process_Fstab_Line(fstab_line, Display_Error, &twrp_flags))
Partitions.push_back(partition);
else
delete partition;
memset(fstab_line, 0, sizeof(fstab_line));
}
fclose(fstabFile);
if (twrp_flags.size() > 0) {
LOGINFO("Processing remaining twrp.flags\n");
// Add any items from twrp.flags that did not exist in the recovery.fstab
for (std::map<string, Flags_Map>::iterator mapit=twrp_flags.begin(); mapit!=twrp_flags.end(); mapit++) {
if (Find_Partition_By_Path(mapit->first) == NULL) {
TWPartition* partition = new TWPartition();
if (partition->Process_Fstab_Line(mapit->second.fstab_line, Display_Error, NULL))
Partitions.push_back(partition);
else
delete partition;
}
if (mapit->second.fstab_line)
free(mapit->second.fstab_line);
mapit->second.fstab_line = NULL;
}
}
if (Get_Super_Status()) {
Setup_Super_Devices();
}
LOGINFO("Done processing fstab files\n");
std::vector<TWPartition*>::iterator iter;
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
(*iter)->Partition_Post_Processing(Display_Error);
if ((*iter)->Is_Storage) {
++storageid;
(*iter)->MTP_Storage_ID = storageid;
}
if (!settings_partition && (*iter)->Is_Settings_Storage && (*iter)->Is_Present)
settings_partition = (*iter);
else
(*iter)->Is_Settings_Storage = false;
if (!andsec_partition && (*iter)->Has_Android_Secure && (*iter)->Is_Present)
andsec_partition = (*iter);
else
(*iter)->Has_Android_Secure = false;
if (Is_Super_Partition(TWFunc::Remove_Beginning_Slash((*iter)->Get_Mount_Point()).c_str()))
Prepare_Super_Volume((*iter));
}
//Setup Apex before decryption
TWPartition* sys = PartitionManager.Find_Partition_By_Path(PartitionManager.Get_Android_Root_Path());
TWPartition* ven = PartitionManager.Find_Partition_By_Path("/vendor");
if (sys) {
if (sys->Get_Super_Status()) {
sys->Mount(true);
if (ven) {
ven->Mount(true);
}
twrpApex apex;
if (!apex.loadApexImages()) {
LOGERR("Unable to load apex images from %s\n", APEX_DIR);
property_set("twrp.apex.loaded", "false");
} else {
property_set("twrp.apex.loaded", "true");
}
TWFunc::check_and_run_script("/sbin/resyncapex.sh", "apex");
}
}
#ifndef USE_VENDOR_LIBS
if (ven)
ven->UnMount(true);
if (sys)
sys->UnMount(true);
#endif
if (!datamedia && !settings_partition && Find_Partition_By_Path("/sdcard") == NULL && Find_Partition_By_Path("/internal_sd") == NULL && Find_Partition_By_Path("/internal_sdcard") == NULL && Find_Partition_By_Path("/emmc") == NULL) {
// Attempt to automatically identify /data/media emulated storage devices
TWPartition* Dat = Find_Partition_By_Path("/data");
if (Dat) {
LOGINFO("Using automatic handling for /data/media emulated storage device.\n");
datamedia = true;
Dat->Setup_Data_Media();
settings_partition = Dat;
// Since /data was not considered a storage partition earlier, we still need to assign an MTP ID
++storageid;
Dat->MTP_Storage_ID = storageid;
}
}
if (!settings_partition) {
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Is_Storage) {
settings_partition = (*iter);
break;
}
}
if (!settings_partition)
LOGERR("Unable to locate storage partition for storing settings file.\n");
}
if (!Write_Fstab()) {
if (Display_Error)
LOGERR("Error creating fstab\n");
else
LOGINFO("Error creating fstab\n");
}
if (andsec_partition) {
Setup_Android_Secure_Location(andsec_partition);
} else if (settings_partition) {
Setup_Android_Secure_Location(settings_partition);
}
if (settings_partition) {
Setup_Settings_Storage_Partition(settings_partition);
}
#ifdef TW_INCLUDE_CRYPTO
DataManager::SetValue(TW_IS_ENCRYPTED, 1);
Decrypt_Data();
#endif
Update_System_Details();
if (Get_Super_Status())
Setup_Super_Partition();
UnMount_Main_Partitions();
#ifdef AB_OTA_UPDATER
DataManager::SetValue("tw_active_slot", Get_Active_Slot_Display());
#endif
setup_uevent();
return true;
}
int TWPartitionManager::Write_Fstab(void) {
FILE *fp;
std::vector<TWPartition*>::iterator iter;
string Line;
fp = fopen("/etc/fstab", "w");
if (fp == NULL) {
LOGINFO("Can not open /etc/fstab.\n");
return false;
}
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Can_Be_Mounted) {
Line = (*iter)->Actual_Block_Device + " " + (*iter)->Mount_Point + " " + (*iter)->Current_File_System +
((*iter)->Mount_Read_Only ? " ro " : " rw ") + "0 0\n";
fputs(Line.c_str(), fp);
}
// Handle subpartition tracking
if ((*iter)->Is_SubPartition) {
TWPartition* ParentPartition = Find_Partition_By_Path((*iter)->SubPartition_Of);
if (ParentPartition)
ParentPartition->Has_SubPartition = true;
else
LOGERR("Unable to locate parent partition '%s' of '%s'\n", (*iter)->SubPartition_Of.c_str(), (*iter)->Mount_Point.c_str());
}
}
fclose(fp);
return true;
}
void TWPartitionManager::Decrypt_Data() {
#ifdef TW_INCLUDE_CRYPTO
TWPartition* Decrypt_Data = Find_Partition_By_Path("/data");
if (Decrypt_Data && Decrypt_Data->Is_Encrypted && !Decrypt_Data->Is_Decrypted) {
property_set("ro.crypto.state", "encrypted");
if (!Decrypt_Data->Key_Directory.empty() && Mount_By_Path(Decrypt_Data->Key_Directory, false)) {
property_set("ro.crypto.type", "file");
#ifdef TW_INCLUDE_FBE_METADATA_DECRYPT
#ifdef USE_FSCRYPT
if (fscrypt_mount_metadata_encrypted(Decrypt_Data->Actual_Block_Device, Decrypt_Data->Mount_Point, false)) {
std::string crypto_blkdev =android::base::GetProperty("ro.crypto.fs_crypto_blkdev", "error");
Decrypt_Data->Decrypted_Block_Device = crypto_blkdev;
LOGINFO("Successfully decrypted metadata encrypted data partition with new block device: '%s'\n", crypto_blkdev.c_str());
#else
if (e4crypt_mount_metadata_encrypted(Decrypt_Data->Mount_Point, false, Decrypt_Data->Key_Directory, Decrypt_Data->Actual_Block_Device, &Decrypt_Data->Decrypted_Block_Device)) {
LOGINFO("Successfully decrypted metadata encrypted data partition with new block device: '%s'\n",
Decrypt_Data->Decrypted_Block_Device.c_str());
#endif
Decrypt_Data->Is_Decrypted = true; // Needed to make the mount function work correctly
int retry_count = 10;
while (!Decrypt_Data->Mount(false) && --retry_count)
usleep(500);
if (Decrypt_Data->Mount(false)) {
if (!Decrypt_Data->Decrypt_FBE_DE()) {
char wrappedvalue[PROPERTY_VALUE_MAX];
property_get("fbe.data.wrappedkey", wrappedvalue, "");
std::string wrappedkeyvalue(wrappedvalue);
if (wrappedkeyvalue == "true") {
LOGERR("Unable to decrypt FBE device\n");
} else {
LOGINFO("Trying wrapped key.\n");
property_set("fbe.data.wrappedkey", "true");
if (!Decrypt_Data->Decrypt_FBE_DE()) {
LOGERR("Unable to decrypt FBE device\n");
}
}
}
} else {
LOGINFO("Failed to mount data after metadata decrypt\n");
}
} else {
LOGINFO("Unable to decrypt metadata encryption\n");
}
#else
LOGERR("Metadata FBE decrypt support not present in this TWRP\n");
#endif
}
if (Decrypt_Data->Is_FBE) {
if (DataManager::GetIntValue(TW_CRYPTO_PWTYPE) == 0) {
if (Decrypt_Device("!") == 0) {
gui_msg("decrypt_success=Successfully decrypted with default password.");
DataManager::SetValue(TW_IS_ENCRYPTED, 0);
} else {
gui_err("unable_to_decrypt=Unable to decrypt with default password.");
}
}
} else {
Set_FDE_Encrypt_Status();
int password_type = cryptfs_get_password_type();
if (password_type == CRYPT_TYPE_DEFAULT) {
LOGINFO("Device is encrypted with the default password, attempting to decrypt.\n");
if (Decrypt_Device("default_password") == 0) {
gui_msg("decrypt_success=Successfully decrypted with default password.");
DataManager::SetValue(TW_IS_ENCRYPTED, 0);
} else {
gui_err("unable_to_decrypt=Unable to decrypt with default password.");
}
} else {
DataManager::SetValue("TW_CRYPTO_TYPE", password_type);
DataManager::SetValue("tw_crypto_pwtype_0", password_type);
}
}
}
if (Decrypt_Data && (!Decrypt_Data->Is_Encrypted || Decrypt_Data->Is_Decrypted) &&
Decrypt_Data->Mount(false)) {
Decrypt_Adopted();
}
#endif
}
void TWPartitionManager::Setup_Settings_Storage_Partition(TWPartition* Part) {
DataManager::SetValue("tw_settings_path", Part->Storage_Path);
DataManager::SetValue("tw_storage_path", Part->Storage_Path);
LOGINFO("Settings storage is '%s'\n", Part->Storage_Path.c_str());
}
void TWPartitionManager::Setup_Android_Secure_Location(TWPartition* Part) {
if (Part->Has_Android_Secure)
Part->Setup_AndSec();
else if (!datamedia)
Part->Setup_AndSec();
}
void TWPartitionManager::Output_Partition_Logging(void) {
std::vector<TWPartition*>::iterator iter;
printf("\n\nPartition Logs:\n");
for (iter = Partitions.begin(); iter != Partitions.end(); iter++)
Output_Partition((*iter));
}
void TWPartitionManager::Output_Partition(TWPartition* Part) {
unsigned long long mb = 1048576;
printf("%s | %s | Size: %iMB", Part->Mount_Point.c_str(), Part->Actual_Block_Device.c_str(), (int)(Part->Size / mb));
if (Part->Can_Be_Mounted) {
printf(" Used: %iMB Free: %iMB Backup Size: %iMB", (int)(Part->Used / mb), (int)(Part->Free / mb), (int)(Part->Backup_Size / mb));
}
printf("\n Flags: ");
if (Part->Can_Be_Mounted)
printf("Can_Be_Mounted ");
if (Part->Can_Be_Wiped)
printf("Can_Be_Wiped ");
if (Part->Use_Rm_Rf)
printf("Use_Rm_Rf ");
if (Part->Can_Be_Backed_Up)
printf("Can_Be_Backed_Up ");
if (Part->Wipe_During_Factory_Reset)
printf("Wipe_During_Factory_Reset ");
if (Part->Wipe_Available_in_GUI)
printf("Wipe_Available_in_GUI ");
if (Part->Is_SubPartition)
printf("Is_SubPartition ");
if (Part->Has_SubPartition)
printf("Has_SubPartition ");
if (Part->Removable)
printf("Removable ");
if (Part->Is_Present)
printf("IsPresent ");
if (Part->Can_Be_Encrypted)
printf("Can_Be_Encrypted ");
if (Part->Is_Encrypted)
printf("Is_Encrypted ");
if (Part->Is_Decrypted)
printf("Is_Decrypted ");
if (Part->Has_Data_Media)
printf("Has_Data_Media ");
if (Part->Can_Encrypt_Backup)
printf("Can_Encrypt_Backup ");
if (Part->Use_Userdata_Encryption)
printf("Use_Userdata_Encryption ");
if (Part->Has_Android_Secure)
printf("Has_Android_Secure ");
if (Part->Is_Storage)
printf("Is_Storage ");
if (Part->Is_Settings_Storage)
printf("Is_Settings_Storage ");
if (Part->Ignore_Blkid)
printf("Ignore_Blkid ");
if (Part->Mount_To_Decrypt)
printf("Mount_To_Decrypt ");
if (Part->Can_Flash_Img)
printf("Can_Flash_Img ");
if (Part->Is_Adopted_Storage)
printf("Is_Adopted_Storage ");
if (Part->SlotSelect)
printf("SlotSelect ");
if (Part->Mount_Read_Only)
printf("Mount_Read_Only ");
printf("\n");
if (!Part->SubPartition_Of.empty())
printf(" SubPartition_Of: %s\n", Part->SubPartition_Of.c_str());
if (!Part->Symlink_Path.empty())
printf(" Symlink_Path: %s\n", Part->Symlink_Path.c_str());
if (!Part->Symlink_Mount_Point.empty())
printf(" Symlink_Mount_Point: %s\n", Part->Symlink_Mount_Point.c_str());
if (!Part->Primary_Block_Device.empty())
printf(" Primary_Block_Device: %s\n", Part->Primary_Block_Device.c_str());
if (!Part->Alternate_Block_Device.empty())
printf(" Alternate_Block_Device: %s\n", Part->Alternate_Block_Device.c_str());
if (!Part->Decrypted_Block_Device.empty())
printf(" Decrypted_Block_Device: %s\n", Part->Decrypted_Block_Device.c_str());
if (!Part->Crypto_Key_Location.empty())
printf(" Crypto_Key_Location: %s\n", Part->Crypto_Key_Location.c_str());
if (Part->Length != 0)
printf(" Length: %i\n", Part->Length);
if (!Part->Display_Name.empty())
printf(" Display_Name: %s\n", Part->Display_Name.c_str());
if (!Part->Storage_Name.empty())
printf(" Storage_Name: %s\n", Part->Storage_Name.c_str());
if (!Part->Backup_Path.empty())
printf(" Backup_Path: %s\n", Part->Backup_Path.c_str());
if (!Part->Backup_Name.empty())
printf(" Backup_Name: %s\n", Part->Backup_Name.c_str());
if (!Part->Backup_Display_Name.empty())
printf(" Backup_Display_Name: %s\n", Part->Backup_Display_Name.c_str());
if (!Part->Backup_FileName.empty())
printf(" Backup_FileName: %s\n", Part->Backup_FileName.c_str());
if (!Part->Storage_Path.empty())
printf(" Storage_Path: %s\n", Part->Storage_Path.c_str());
if (!Part->Current_File_System.empty())
printf(" Current_File_System: %s\n", Part->Current_File_System.c_str());
if (!Part->Fstab_File_System.empty())
printf(" Fstab_File_System: %s\n", Part->Fstab_File_System.c_str());
if (Part->Format_Block_Size != 0)
printf(" Format_Block_Size: %lu\n", Part->Format_Block_Size);
if (!Part->MTD_Name.empty())
printf(" MTD_Name: %s\n", Part->MTD_Name.c_str());
printf(" Backup_Method: %s\n", Part->Backup_Method_By_Name().c_str());
if (Part->Mount_Flags || !Part->Mount_Options.empty())
printf(" Mount_Flags: %i, Mount_Options: %s\n", Part->Mount_Flags, Part->Mount_Options.c_str());
if (Part->MTP_Storage_ID)
printf(" MTP_Storage_ID: %i\n", Part->MTP_Storage_ID);
if (!Part->Key_Directory.empty())
printf(" Metadata Key Directory: %s\n", Part->Key_Directory.c_str());
printf("\n");
}
int TWPartitionManager::Mount_By_Path(string Path, bool Display_Error) {
std::vector<TWPartition*>::iterator iter;
int ret = false;
bool found = false;
string Local_Path = TWFunc::Get_Root_Path(Path);
if (Local_Path == "/tmp" || Local_Path == "/")
return true;
// Iterate through all partitions
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Mount_Point == Local_Path || (!(*iter)->Symlink_Mount_Point.empty() && (*iter)->Symlink_Mount_Point == Local_Path)) {
ret = (*iter)->Mount(Display_Error);
found = true;
} else if ((*iter)->Is_SubPartition && (*iter)->SubPartition_Of == Local_Path) {
(*iter)->Mount(Display_Error);
}
}
if (found) {
return ret;
} else if (Display_Error) {
gui_msg(Msg(msg::kError, "unable_find_part_path=Unable to find partition for path '{1}'")(Local_Path));
} else {
LOGINFO("Mount: Unable to find partition for path '%s'\n", Local_Path.c_str());
}
return false;
}
int TWPartitionManager::UnMount_By_Path(string Path, bool Display_Error) {
std::vector<TWPartition*>::iterator iter;
int ret = false;
bool found = false;
string Local_Path = TWFunc::Get_Root_Path(Path);
// Iterate through all partitions
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Mount_Point == Local_Path || (!(*iter)->Symlink_Mount_Point.empty() && (*iter)->Symlink_Mount_Point == Local_Path)) {
ret = (*iter)->UnMount(Display_Error);
found = true;
} else if ((*iter)->Is_SubPartition && (*iter)->SubPartition_Of == Local_Path) {
(*iter)->UnMount(Display_Error);
}
}
if (found) {
return ret;
} else if (Display_Error) {
gui_msg(Msg(msg::kError, "unable_find_part_path=Unable to find partition for path '{1}'")(Local_Path));
} else {
LOGINFO("UnMount: Unable to find partition for path '%s'\n", Local_Path.c_str());
}
return false;
}
int TWPartitionManager::Is_Mounted_By_Path(string Path) {
TWPartition* Part = Find_Partition_By_Path(Path);
if (Part)
return Part->Is_Mounted();
else
LOGINFO("Is_Mounted: Unable to find partition for path '%s'\n", Path.c_str());
return false;
}
int TWPartitionManager::Mount_Current_Storage(bool Display_Error) {
string current_storage_path = DataManager::GetCurrentStoragePath();
if (Mount_By_Path(current_storage_path, Display_Error)) {
TWPartition* FreeStorage = Find_Partition_By_Path(current_storage_path);
if (FreeStorage)
DataManager::SetValue(TW_STORAGE_FREE_SIZE, (int)(FreeStorage->Free / 1048576LLU));
return true;
}
return false;
}
int TWPartitionManager::Mount_Settings_Storage(bool Display_Error) {
return Mount_By_Path(DataManager::GetSettingsStoragePath(), Display_Error);
}
TWPartition* TWPartitionManager::Find_Partition_By_Path(const string& Path) {
std::vector<TWPartition*>::iterator iter;
string Local_Path = TWFunc::Get_Root_Path(Path);
if (Local_Path == "/system")
Local_Path = Get_Android_Root_Path();
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Mount_Point == Local_Path || (!(*iter)->Symlink_Mount_Point.empty() && (*iter)->Symlink_Mount_Point == Local_Path))
return (*iter);
}
return NULL;
}
TWPartition* TWPartitionManager::Find_Partition_By_Block_Device(const string& Block_Device) {
std::vector<TWPartition*>::iterator iter;
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Primary_Block_Device == Block_Device || (!(*iter)->Actual_Block_Device.empty() && (*iter)->Actual_Block_Device == Block_Device))
return (*iter);
}
return NULL;
}
int TWPartitionManager::Check_Backup_Name(const std::string& Backup_Name, bool Display_Error, bool Must_Be_Unique) {
// Check the backup name to ensure that it is the correct size and contains only valid characters
// and that a backup with that name doesn't already exist
char backup_name[MAX_BACKUP_NAME_LEN];
char backup_loc[255], tw_image_dir[255];
int copy_size;
int index, cur_char;
string Backup_Loc;
copy_size = Backup_Name.size();
// Check size
if (copy_size > MAX_BACKUP_NAME_LEN) {
if (Display_Error)
gui_err("backup_name_len=Backup name is too long.");
return -2;
}
// Check each character
strncpy(backup_name, Backup_Name.c_str(), copy_size);
if (copy_size == 1 && strncmp(backup_name, "0", 1) == 0)
return 0; // A "0" (zero) means to use the current timestamp for the backup name
for (index=0; index<copy_size; index++) {
cur_char = (int)backup_name[index];
if (cur_char == 32 || (cur_char >= 48 && cur_char <= 57) || (cur_char >= 65 && cur_char <= 91) || cur_char == 93 || cur_char == 95 || (cur_char >= 97 && cur_char <= 123) || cur_char == 125 || cur_char == 45 || cur_char == 46) {
// These are valid characters
// Numbers
// Upper case letters
// Lower case letters
// Space
// and -_.{}[]
} else {
if (Display_Error)
gui_msg(Msg(msg::kError, "backup_name_invalid=Backup name '{1}' contains invalid character: '{1}'")(Backup_Name)((char)cur_char));
return -3;
}
}
if (Must_Be_Unique) {
// Check to make sure that a backup with this name doesn't already exist
DataManager::GetValue(TW_BACKUPS_FOLDER_VAR, Backup_Loc);
strcpy(backup_loc, Backup_Loc.c_str());
sprintf(tw_image_dir,"%s/%s", backup_loc, Backup_Name.c_str());
if (TWFunc::Path_Exists(tw_image_dir)) {
if (Display_Error)
gui_err("backup_name_exists=A backup with that name already exists!");
return -4;
}
// Backup is unique
}
// No problems found
return 0;
}
bool TWPartitionManager::Backup_Partition(PartitionSettings *part_settings) {
time_t start, stop;
int use_compression;
string backup_log = part_settings->Backup_Folder + "/recovery.log";
if (part_settings->Part == NULL)
return true;
DataManager::GetValue(TW_USE_COMPRESSION_VAR, use_compression);
TWFunc::SetPerformanceMode(true);
time(&start);
if (part_settings->Part->Backup(part_settings, &tar_fork_pid)) {
sync();
sync();
string Full_Filename = part_settings->Backup_Folder + "/" + part_settings->Part->Backup_FileName;
if (!part_settings->adbbackup && part_settings->generate_digest) {
if (!twrpDigestDriver::Make_Digest(Full_Filename))
goto backup_error;
}
if (part_settings->Part->Has_SubPartition) {
std::vector<TWPartition*>::iterator subpart;
TWPartition *parentPart = part_settings->Part;
for (subpart = Partitions.begin(); subpart != Partitions.end(); subpart++) {
if ((*subpart)->Can_Be_Backed_Up && (*subpart)->Is_SubPartition && (*subpart)->SubPartition_Of == parentPart->Mount_Point) {
part_settings->Part = *subpart;
if (!(*subpart)->Backup(part_settings, &tar_fork_pid)) {
goto backup_error;
}
sync();
sync();
string Full_Filename = part_settings->Backup_Folder + "/" + part_settings->Part->Backup_FileName;
if (!part_settings->adbbackup && part_settings->generate_digest) {
if (!twrpDigestDriver::Make_Digest(Full_Filename)) {
goto backup_error;
}
}
}
}
}
time(&stop);
int backup_time = (int) difftime(stop, start);
LOGINFO("Partition Backup time: %d\n", backup_time);
if (part_settings->Part->Backup_Method == BM_FILES) {
part_settings->file_time += backup_time;
} else {
part_settings->img_time += backup_time;
}
TWFunc::SetPerformanceMode(false);
return true;
}
backup_error:
Clean_Backup_Folder(part_settings->Backup_Folder);
TWFunc::copy_file("/tmp/recovery.log", backup_log, 0644);
tw_set_default_metadata(backup_log.c_str());
TWFunc::SetPerformanceMode(false);
return false;
}
void TWPartitionManager::Clean_Backup_Folder(string Backup_Folder) {
DIR *d = opendir(Backup_Folder.c_str());
struct dirent *p;
int r;
vector<string> ext;
//extensions we should delete when cleaning
ext.push_back("win");
ext.push_back("md5");
ext.push_back("sha2");
ext.push_back("info");
gui_msg("backup_clean=Backup Failed. Cleaning Backup Folder.");
if (d == NULL) {
gui_msg(Msg(msg::kError, "error_opening_strerr=Error opening: '{1}' ({2})")(Backup_Folder)(strerror(errno)));
return;
}
while ((p = readdir(d))) {
if (!strcmp(p->d_name, ".") || !strcmp(p->d_name, ".."))
continue;
string path = Backup_Folder + "/" + p->d_name;
size_t dot = path.find_last_of(".") + 1;
for (vector<string>::const_iterator i = ext.begin(); i != ext.end(); ++i) {
if (path.substr(dot) == *i) {
r = unlink(path.c_str());
if (r != 0)
LOGINFO("Unable to unlink '%s: %s'\n", path.c_str(), strerror(errno));
}
}
}
closedir(d);
}
int TWPartitionManager::Check_Backup_Cancel() {
return stop_backup.get_value();
}
int TWPartitionManager::Cancel_Backup() {
string Backup_Folder, Backup_Name, Full_Backup_Path;
stop_backup.set_value(1);
if (tar_fork_pid != 0) {
DataManager::GetValue(TW_BACKUP_NAME, Backup_Name);
DataManager::GetValue(TW_BACKUPS_FOLDER_VAR, Backup_Folder);
Full_Backup_Path = Backup_Folder + "/" + Backup_Name;
LOGINFO("Killing pid: %d\n", tar_fork_pid);
kill(tar_fork_pid, SIGUSR2);
while (kill(tar_fork_pid, 0) == 0) {
usleep(1000);
}
LOGINFO("Backup_Run stopped and returning false, backup cancelled.\n");
LOGINFO("Removing directory %s\n", Full_Backup_Path.c_str());
TWFunc::removeDir(Full_Backup_Path, false);
tar_fork_pid = 0;
}
return 0;
}
int TWPartitionManager::Run_Backup(bool adbbackup) {
PartitionSettings part_settings;
int partition_count = 0, disable_free_space_check = 0, skip_digest = 0;
string Backup_Name, Backup_List, backup_path;
unsigned long long total_bytes = 0, free_space = 0;
TWPartition* storage = NULL;
struct tm *t;
time_t seconds, total_start, total_stop;
size_t start_pos = 0, end_pos = 0;
stop_backup.set_value(0);
seconds = time(0);
t = localtime(&seconds);
part_settings.img_bytes_remaining = 0;
part_settings.file_bytes_remaining = 0;
part_settings.img_time = 0;
part_settings.file_time = 0;
part_settings.img_bytes = 0;
part_settings.file_bytes = 0;
part_settings.PM_Method = PM_BACKUP;
part_settings.adbbackup = adbbackup;
time(&total_start);
Update_System_Details();
if (!Mount_Current_Storage(true))
return false;
DataManager::GetValue(TW_SKIP_DIGEST_GENERATE_VAR, skip_digest);
if (skip_digest == 0)
part_settings.generate_digest = true;
else
part_settings.generate_digest = false;
DataManager::GetValue(TW_BACKUPS_FOLDER_VAR, part_settings.Backup_Folder);
DataManager::GetValue(TW_BACKUP_NAME, Backup_Name);
if (Backup_Name == gui_lookup("curr_date", "(Current Date)")) {
Backup_Name = TWFunc::Get_Current_Date();
} else if (Backup_Name == gui_lookup("auto_generate", "(Auto Generate)") || Backup_Name == "0" || Backup_Name.empty()) {
TWFunc::Auto_Generate_Backup_Name();
DataManager::GetValue(TW_BACKUP_NAME, Backup_Name);
}
LOGINFO("Backup Name is: '%s'\n", Backup_Name.c_str());
part_settings.Backup_Folder = part_settings.Backup_Folder + "/" + Backup_Name;
LOGINFO("Backup_Folder is: '%s'\n", part_settings.Backup_Folder.c_str());
LOGINFO("Calculating backup details...\n");
DataManager::GetValue("tw_backup_list", Backup_List);
LOGINFO("Backup_List: %s\n", Backup_List.c_str());
if (!Backup_List.empty()) {
end_pos = Backup_List.find(";", start_pos);
while (end_pos != string::npos && start_pos < Backup_List.size()) {
backup_path = Backup_List.substr(start_pos, end_pos - start_pos);
LOGINFO("backup_path: %s\n", backup_path.c_str());
part_settings.Part = Find_Partition_By_Path(backup_path);
if (part_settings.Part != NULL) {
partition_count++;
if (part_settings.Part->Backup_Method == BM_FILES)
part_settings.file_bytes += part_settings.Part->Backup_Size;
else
part_settings.img_bytes += part_settings.Part->Backup_Size;
if (part_settings.Part->Has_SubPartition) {
std::vector<TWPartition*>::iterator subpart;
for (subpart = Partitions.begin(); subpart != Partitions.end(); subpart++) {
if ((*subpart)->Can_Be_Backed_Up && (*subpart)->Is_Present && (*subpart)->Is_SubPartition && (*subpart)->SubPartition_Of == part_settings.Part->Mount_Point) {
partition_count++;
if ((*subpart)->Backup_Method == BM_FILES)
part_settings.file_bytes += (*subpart)->Backup_Size;
else
part_settings.img_bytes += (*subpart)->Backup_Size;
}
}
}
} else {
gui_msg(Msg(msg::kError, "unable_to_locate_partition=Unable to locate '{1}' partition for backup calculations.")(backup_path));
}
start_pos = end_pos + 1;
end_pos = Backup_List.find(";", start_pos);
}
}
if (partition_count == 0) {
gui_msg("no_partition_selected=No partitions selected for backup.");
return false;
}
if (adbbackup) {
if (twadbbu::Write_ADB_Stream_Header(partition_count) == false) {
return false;
}
}
total_bytes = part_settings.file_bytes + part_settings.img_bytes;
ProgressTracking progress(total_bytes);
part_settings.progress = &progress;
gui_msg(Msg("total_partitions_backup= * Total number of partitions to back up: {1}")(partition_count));
gui_msg(Msg("total_backup_size= * Total size of all data: {1}MB")(total_bytes / 1024 / 1024));
storage = Find_Partition_By_Path(DataManager::GetCurrentStoragePath());
if (storage != NULL) {
free_space = storage->Free;
gui_msg(Msg("available_space= * Available space: {1}MB")(free_space / 1024 / 1024));
} else {
gui_err("unable_locate_storage=Unable to locate storage device.");
return false;
}
DataManager::GetValue(TW_DISABLE_FREE_SPACE_VAR, disable_free_space_check);
if (adbbackup)
disable_free_space_check = true;
if (!disable_free_space_check) {
if (free_space - (32 * 1024 * 1024) < total_bytes) {
// We require an extra 32MB just in case
gui_err("no_space=Not enough free space on storage.");
return false;
}
}
part_settings.img_bytes_remaining = part_settings.img_bytes;
part_settings.file_bytes_remaining = part_settings.file_bytes;
gui_msg("backup_started=[BACKUP STARTED]");
int is_decrypted = 0;
int is_encrypted = 0;
DataManager::GetValue(TW_IS_DECRYPTED, is_decrypted);
DataManager::GetValue(TW_IS_ENCRYPTED, is_encrypted);
if (!adbbackup || (!is_encrypted || (is_encrypted && is_decrypted))) {
gui_msg(Msg("backup_folder= * Backup Folder: {1}")(part_settings.Backup_Folder));
if (!TWFunc::Recursive_Mkdir(part_settings.Backup_Folder)) {
gui_err("fail_backup_folder=Failed to make backup folder.");
return false;
}
}
DataManager::SetProgress(0.0);
start_pos = 0;
end_pos = Backup_List.find(";", start_pos);
while (end_pos != string::npos && start_pos < Backup_List.size()) {
if (stop_backup.get_value() != 0)
return -1;
backup_path = Backup_List.substr(start_pos, end_pos - start_pos);
part_settings.Part = Find_Partition_By_Path(backup_path);
if (part_settings.Part != NULL) {
if (!Backup_Partition(&part_settings))
return false;
} else {
gui_msg(Msg(msg::kError, "unable_to_locate_partition=Unable to locate '{1}' partition for backup calculations.")(backup_path));
}
start_pos = end_pos + 1;
end_pos = Backup_List.find(";", start_pos);
}
// Average BPS
if (part_settings.img_time == 0)
part_settings.img_time = 1;
if (part_settings.file_time == 0)
part_settings.file_time = 1;
int img_bps = (int)part_settings.img_bytes / (int)part_settings.img_time;
unsigned long long file_bps = part_settings.file_bytes / (int)part_settings.file_time;
if (part_settings.file_bytes != 0)
gui_msg(Msg("avg_backup_fs=Average backup rate for file systems: {1} MB/sec")(file_bps / (1024 * 1024)));
if (part_settings.img_bytes != 0)
gui_msg(Msg("avg_backup_img=Average backup rate for imaged drives: {1} MB/sec")(img_bps / (1024 * 1024)));
time(&total_stop);
int total_time = (int) difftime(total_stop, total_start);
uint64_t actual_backup_size;
if (!adbbackup) {
TWExclude twe;
actual_backup_size = twe.Get_Folder_Size(part_settings.Backup_Folder);
} else
actual_backup_size = part_settings.file_bytes + part_settings.img_bytes;
actual_backup_size /= (1024LLU * 1024LLU);
int prev_img_bps = 0, use_compression = 0;
unsigned long long prev_file_bps = 0;
DataManager::GetValue(TW_BACKUP_AVG_IMG_RATE, prev_img_bps);
img_bps += (prev_img_bps * 4);
img_bps /= 5;
DataManager::GetValue(TW_USE_COMPRESSION_VAR, use_compression);
if (use_compression)
DataManager::GetValue(TW_BACKUP_AVG_FILE_COMP_RATE, prev_file_bps);
else
DataManager::GetValue(TW_BACKUP_AVG_FILE_RATE, prev_file_bps);
file_bps += (prev_file_bps * 4);
file_bps /= 5;
DataManager::SetValue(TW_BACKUP_AVG_IMG_RATE, img_bps);
if (use_compression)
DataManager::SetValue(TW_BACKUP_AVG_FILE_COMP_RATE, file_bps);
else
DataManager::SetValue(TW_BACKUP_AVG_FILE_RATE, file_bps);
gui_msg(Msg("total_backed_size=[{1} MB TOTAL BACKED UP]")(actual_backup_size));
Update_System_Details();
UnMount_Main_Partitions();
gui_msg(Msg(msg::kHighlight, "backup_completed=[BACKUP COMPLETED IN {1} SECONDS]")(total_time)); // the end
string backup_log = part_settings.Backup_Folder + "/recovery.log";
TWFunc::copy_file("/tmp/recovery.log", backup_log, 0644);
tw_set_default_metadata(backup_log.c_str());
if (part_settings.adbbackup) {
if (twadbbu::Write_ADB_Stream_Trailer() == false) {
return false;
}
}
part_settings.adbbackup = false;
DataManager::SetValue("tw_enable_adb_backup", 0);
return true;
}
bool TWPartitionManager::Restore_Partition(PartitionSettings *part_settings) {
time_t Start, Stop;
if (part_settings->adbbackup) {
std::string partName = part_settings->Part->Backup_Name + "." + part_settings->Part->Current_File_System + ".win";
LOGINFO("setting backup name: %s\n", partName.c_str());
part_settings->Part->Set_Backup_FileName(part_settings->Part->Backup_Name + "." + part_settings->Part->Current_File_System + ".win");
}
TWFunc::SetPerformanceMode(true);
time(&Start);
if (!part_settings->Part->Restore(part_settings)) {
TWFunc::SetPerformanceMode(false);
return false;
}
if (part_settings->Part->Has_SubPartition && !part_settings->adbbackup) {
std::vector<TWPartition*>::iterator subpart;
TWPartition *parentPart = part_settings->Part;
for (subpart = Partitions.begin(); subpart != Partitions.end(); subpart++) {
part_settings->Part = *subpart;
if ((*subpart)->Is_SubPartition && (*subpart)->SubPartition_Of == parentPart->Mount_Point) {
part_settings->Part = (*subpart);
part_settings->Part->Set_Backup_FileName(part_settings->Part->Backup_Name + "." + part_settings->Part->Current_File_System + ".win");
if (!(*subpart)->Restore(part_settings)) {
TWFunc::SetPerformanceMode(false);
return false;
}
}
}
}
time(&Stop);
TWFunc::SetPerformanceMode(false);
gui_msg(Msg("restore_part_done=[{1} done ({2} seconds)]")(part_settings->Part->Backup_Display_Name)((int)difftime(Stop, Start)));
return true;
}
int TWPartitionManager::Run_Restore(const string& Restore_Name) {
PartitionSettings part_settings;
int check_digest;
time_t rStart, rStop;
time(&rStart);
string Restore_List, restore_path;
size_t start_pos = 0, end_pos;
part_settings.Backup_Folder = Restore_Name;
part_settings.Part = NULL;
part_settings.partition_count = 0;
part_settings.total_restore_size = 0;
part_settings.adbbackup = false;
part_settings.PM_Method = PM_RESTORE;
gui_msg("restore_started=[RESTORE STARTED]");
gui_msg(Msg("restore_folder=Restore folder: '{1}'")(Restore_Name));
if (!Mount_Current_Storage(true))
return false;
DataManager::GetValue(TW_SKIP_DIGEST_CHECK_VAR, check_digest);
if (check_digest > 0) {
// Check Digest files first before restoring to ensure that all of them match before starting a restore
TWFunc::GUI_Operation_Text(TW_VERIFY_DIGEST_TEXT, gui_parse_text("{@verifying_digest}"));
gui_msg("verifying_digest=Verifying Digest");
} else {
gui_msg("skip_digest=Skipping Digest check based on user setting.");
}
gui_msg("calc_restore=Calculating restore details...");
DataManager::GetValue("tw_restore_selected", Restore_List);
if (!Restore_List.empty()) {
end_pos = Restore_List.find(";", start_pos);
while (end_pos != string::npos && start_pos < Restore_List.size()) {
restore_path = Restore_List.substr(start_pos, end_pos - start_pos);
part_settings.Part = Find_Partition_By_Path(restore_path);
if (part_settings.Part != NULL) {
if (part_settings.Part->Mount_Read_Only) {
gui_msg(Msg(msg::kError, "restore_read_only=Cannot restore {1} -- mounted read only.")(part_settings.Part->Backup_Display_Name));
return false;
}
string Full_Filename = part_settings.Backup_Folder + "/" + part_settings.Part->Backup_FileName;
if (check_digest > 0 && !twrpDigestDriver::Check_Digest(Full_Filename))
return false;
part_settings.partition_count++;
part_settings.total_restore_size += part_settings.Part->Get_Restore_Size(&part_settings);
if (part_settings.Part->Has_SubPartition) {
TWPartition *parentPart = part_settings.Part;
std::vector<TWPartition*>::iterator subpart;
for (subpart = Partitions.begin(); subpart != Partitions.end(); subpart++) {
part_settings.Part = *subpart;
if ((*subpart)->Is_SubPartition && (*subpart)->SubPartition_Of == parentPart->Mount_Point) {
if (check_digest > 0 && !twrpDigestDriver::Check_Digest(Full_Filename))
return false;
part_settings.total_restore_size += (*subpart)->Get_Restore_Size(&part_settings);
}
}
}
} else {
gui_msg(Msg(msg::kError, "restore_unable_locate=Unable to locate '{1}' partition for restoring.")(restore_path));
}
start_pos = end_pos + 1;
end_pos = Restore_List.find(";", start_pos);
}
}
if (part_settings.partition_count == 0) {
gui_err("no_part_restore=No partitions selected for restore.");
return false;
}
gui_msg(Msg("restore_part_count=Restoring {1} partitions...")(part_settings.partition_count));
gui_msg(Msg("total_restore_size=Total restore size is {1}MB")(part_settings.total_restore_size / 1048576));
DataManager::SetProgress(0.0);
ProgressTracking progress(part_settings.total_restore_size);
part_settings.progress = &progress;
start_pos = 0;
if (!Restore_List.empty()) {
end_pos = Restore_List.find(";", start_pos);
while (end_pos != string::npos && start_pos < Restore_List.size()) {
restore_path = Restore_List.substr(start_pos, end_pos - start_pos);
part_settings.Part = Find_Partition_By_Path(restore_path);
if (part_settings.Part != NULL) {
part_settings.partition_count++;
if (!Restore_Partition(&part_settings))
return false;
} else {
gui_msg(Msg(msg::kError, "restore_unable_locate=Unable to locate '{1}' partition for restoring.")(restore_path));
}
start_pos = end_pos + 1;
end_pos = Restore_List.find(";", start_pos);
}
}
TWFunc::GUI_Operation_Text(TW_UPDATE_SYSTEM_DETAILS_TEXT, gui_parse_text("{@updating_system_details}"));
UnMount_By_Path(Get_Android_Root_Path(), false);
Update_System_Details();
UnMount_Main_Partitions();
time(&rStop);
gui_msg(Msg(msg::kHighlight, "restore_completed=[RESTORE COMPLETED IN {1} SECONDS]")((int)difftime(rStop,rStart)));
DataManager::SetValue("tw_file_progress", "");
return true;
}
void TWPartitionManager::Set_Restore_Files(string Restore_Name) {
// Start with the default values
string Restore_List;
bool get_date = true, check_encryption = true;
bool adbbackup = false;
DataManager::SetValue("tw_restore_encrypted", 0);
if (twadbbu::Check_ADB_Backup_File(Restore_Name)) {
vector<string> adb_files;
adb_files = twadbbu::Get_ADB_Backup_Files(Restore_Name);
for (unsigned int i = 0; i < adb_files.size(); ++i) {
string adb_restore_file = adb_files.at(i);
std::size_t pos = adb_restore_file.find_first_of(".");
std::string path = "/" + adb_restore_file.substr(0, pos);
Restore_List = path + ";";
TWPartition* Part = Find_Partition_By_Path(path);
Part->Backup_FileName = TWFunc::Get_Filename(adb_restore_file);
adbbackup = true;
}
DataManager::SetValue("tw_enable_adb_backup", 1);
}
else {
DIR* d;
d = opendir(Restore_Name.c_str());
if (d == NULL)
{
gui_msg(Msg(msg::kError, "error_opening_strerr=Error opening: '{1}' ({2})")(Restore_Name)(strerror(errno)));
return;
}
struct dirent* de;
while ((de = readdir(d)) != NULL)
{
// Strip off three components
char str[256];
char* label;
char* fstype = NULL;
char* extn = NULL;
char* ptr;
strcpy(str, de->d_name);
if (strlen(str) <= 2)
continue;
if (get_date) {
char file_path[255];
struct stat st;
strcpy(file_path, Restore_Name.c_str());
strcat(file_path, "/");
strcat(file_path, str);
stat(file_path, &st);
string backup_date = ctime((const time_t*)(&st.st_mtime));
DataManager::SetValue(TW_RESTORE_FILE_DATE, backup_date);
get_date = false;
}
label = str;
ptr = label;
while (*ptr && *ptr != '.') ptr++;
if (*ptr == '.')
{
*ptr = 0x00;
ptr++;
fstype = ptr;
}
while (*ptr && *ptr != '.') ptr++;
if (*ptr == '.')
{
*ptr = 0x00;
ptr++;
extn = ptr;
}
if (fstype == NULL || extn == NULL || strcmp(fstype, "log") == 0) continue;
int extnlength = strlen(extn);
if (extnlength != 3 && extnlength != 6) continue;
if (extnlength >= 3 && strncmp(extn, "win", 3) != 0) continue;
//if (extnlength == 6 && strncmp(extn, "win000", 6) != 0) continue;
if (check_encryption) {
string filename = Restore_Name + "/";
filename += de->d_name;
if (TWFunc::Get_File_Type(filename) == 2) {
LOGINFO("'%s' is encrypted\n", filename.c_str());
DataManager::SetValue("tw_restore_encrypted", 1);
}
}
if (extnlength == 6 && strncmp(extn, "win000", 6) != 0) continue;
TWPartition* Part = Find_Partition_By_Path(label);
if (Part == NULL)
{
gui_msg(Msg(msg::kError, "unable_locate_part_backup_name=Unable to locate partition by backup name: '{1}'")(label));
continue;
}
Part->Backup_FileName = de->d_name;
if (strlen(extn) > 3) {
Part->Backup_FileName.resize(Part->Backup_FileName.size() - strlen(extn) + 3);
}
if (!Part->Is_SubPartition) {
if (Part->Backup_Path == Get_Android_Root_Path())
Restore_List += "/system;";
else
Restore_List += Part->Backup_Path + ";";
}
}
closedir(d);
}
if (adbbackup) {
Restore_List = "ADB_Backup;";
adbbackup = false;
}
// Set the final value
DataManager::SetValue("tw_restore_list", Restore_List);
DataManager::SetValue("tw_restore_selected", Restore_List);
return;
}
int TWPartitionManager::Wipe_By_Path(string Path) {
std::vector<TWPartition*>::iterator iter;
std::vector < TWPartition * >::iterator iter1;
int ret = false;
bool found = false;
string Local_Path = TWFunc::Get_Root_Path(Path);
if (Local_Path == "/system")
Local_Path = Get_Android_Root_Path();
// Iterate through all partitions
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Mount_Point == Local_Path || (!(*iter)->Symlink_Mount_Point.empty() && (*iter)->Symlink_Mount_Point == Local_Path)) {
// iterate through all partitions since some legacy devices uses other partitions as vendor causes issues while wiping
(*iter)->Find_Actual_Block_Device();
for (iter1 = Partitions.begin (); iter1 != Partitions.end (); iter1++)
{
(*iter1)->Find_Actual_Block_Device();
if ((*iter)->Actual_Block_Device == (*iter1)->Actual_Block_Device && (*iter)->Mount_Point != (*iter1)->Mount_Point)
(*iter1)->UnMount(false);
}
if (Path == "/and-sec")
ret = (*iter)->Wipe_AndSec();
else
ret = (*iter)->Wipe();
found = true;
} else if ((*iter)->Is_SubPartition && (*iter)->SubPartition_Of == Local_Path) {
(*iter)->Wipe();
}
}
if (found) {
return ret;
} else
gui_msg(Msg(msg::kError, "unable_find_part_path=Unable to find partition for path '{1}'")(Local_Path));
return false;
}
int TWPartitionManager::Wipe_By_Path(string Path, string New_File_System) {
std::vector<TWPartition*>::iterator iter;
int ret = false;
bool found = false;
string Local_Path = TWFunc::Get_Root_Path(Path);
// Iterate through all partitions
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Mount_Point == Local_Path || (!(*iter)->Symlink_Mount_Point.empty() && (*iter)->Symlink_Mount_Point == Local_Path)) {
if (Path == "/and-sec")
ret = (*iter)->Wipe_AndSec();
else
ret = (*iter)->Wipe(New_File_System);
found = true;
} else if ((*iter)->Is_SubPartition && (*iter)->SubPartition_Of == Local_Path) {
(*iter)->Wipe(New_File_System);
}
}
if (found) {
return ret;
} else
gui_msg(Msg(msg::kError, "unable_find_part_path=Unable to find partition for path '{1}'")(Local_Path));
return false;
}
int TWPartitionManager::Factory_Reset(void) {
std::vector<TWPartition*>::iterator iter;
int ret = true;
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Wipe_During_Factory_Reset && (*iter)->Is_Present) {
#ifdef TW_OEM_BUILD
if ((*iter)->Mount_Point == "/data") {
if (!(*iter)->Wipe_Encryption())
ret = false;
} else {
#endif
if (!(*iter)->Wipe())
ret = false;
#ifdef TW_OEM_BUILD
}
#endif
} else if ((*iter)->Has_Android_Secure) {
if (!(*iter)->Wipe_AndSec())
ret = false;
}
}
TWFunc::check_and_run_script("/system/bin/factoryreset.sh", "Factory Reset Script");
return ret;
}
int TWPartitionManager::Wipe_Dalvik_Cache(void) {
struct stat st;
vector <string> dir;
if (!Mount_By_Path("/data", true))
return false;
dir.push_back("/data/dalvik-cache");
std::string cacheDir = TWFunc::get_log_dir();
if (cacheDir == CACHE_LOGS_DIR) {
if (!PartitionManager.Mount_By_Path(CACHE_LOGS_DIR, false)) {
LOGINFO("Unable to mount %s for wiping cache.\n", CACHE_LOGS_DIR);
}
dir.push_back(cacheDir + "dalvik-cache");
dir.push_back(cacheDir + "/dc");
}
TWPartition* sdext = Find_Partition_By_Path("/sd-ext");
if (sdext && sdext->Is_Present && sdext->Mount(false))
{
if (stat("/sd-ext/dalvik-cache", &st) == 0)
{
dir.push_back("/sd-ext/dalvik-cache");
}
}
if (cacheDir == CACHE_LOGS_DIR) {
gui_msg("wiping_cache_dalvik=Wiping Dalvik Cache Directories...");
} else {
gui_msg("wiping_dalvik=Wiping Dalvik Directory...");
}
for (unsigned i = 0; i < dir.size(); ++i) {
if (stat(dir.at(i).c_str(), &st) == 0) {
TWFunc::removeDir(dir.at(i), false);
gui_msg(Msg("cleaned=Cleaned: {1}...")(dir.at(i)));
}
}
if (cacheDir == CACHE_LOGS_DIR) {
gui_msg("cache_dalvik_done=-- Dalvik Cache Directories Wipe Complete!");
} else {
gui_msg("dalvik_done=-- Dalvik Directory Wipe Complete!");
}
return true;
}
int TWPartitionManager::Wipe_Rotate_Data(void) {
if (!Mount_By_Path("/data", true))
return false;
unlink("/data/misc/akmd*");
unlink("/data/misc/rild*");
gui_print("Rotation data wiped.\n");
return true;
}
int TWPartitionManager::Wipe_Battery_Stats(void) {
struct stat st;
if (!Mount_By_Path("/data", true))
return false;
if (0 != stat("/data/system/batterystats.bin", &st)) {
gui_print("No Battery Stats Found. No Need To Wipe.\n");
} else {
remove("/data/system/batterystats.bin");
gui_print("Cleared battery stats.\n");
}
return true;
}
int TWPartitionManager::Wipe_Android_Secure(void) {
std::vector<TWPartition*>::iterator iter;
int ret = false;
bool found = false;
// Iterate through all partitions
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Has_Android_Secure) {
ret = (*iter)->Wipe_AndSec();
found = true;
}
}
if (found) {
return ret;
} else {
gui_err("no_andsec=No android secure partitions found.");
}
return false;
}
int TWPartitionManager::Format_Data(void) {
TWPartition* dat = Find_Partition_By_Path("/data");
if (dat != NULL) {
return dat->Wipe_Encryption();
} else {
gui_msg(Msg(msg::kError, "unable_to_locate=Unable to locate {1}.")("/data"));
return false;
}
return false;
}
int TWPartitionManager::Wipe_Media_From_Data(void) {
TWPartition* dat = Find_Partition_By_Path("/data");
if (dat != NULL) {
if (!dat->Has_Data_Media) {
LOGERR("This device does not have /data/media\n");
return false;
}
if (!dat->Mount(true))
return false;
gui_msg("wiping_datamedia=Wiping internal storage -- /data/media...");
Remove_MTP_Storage(dat->MTP_Storage_ID);
TWFunc::removeDir("/data/media", false);
dat->Recreate_Media_Folder();
Add_MTP_Storage(dat->MTP_Storage_ID);
return true;
} else {
gui_msg(Msg(msg::kError, "unable_to_locate=Unable to locate {1}.")("/data"));
return false;
}
return false;
}
int TWPartitionManager::Repair_By_Path(string Path, bool Display_Error) {
std::vector<TWPartition*>::iterator iter;
int ret = false;
bool found = false;
string Local_Path = TWFunc::Get_Root_Path(Path);
if (Local_Path == "/tmp" || Local_Path == "/")
return true;
// Iterate through all partitions
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Mount_Point == Local_Path || (!(*iter)->Symlink_Mount_Point.empty() && (*iter)->Symlink_Mount_Point == Local_Path)) {
ret = (*iter)->Repair();
found = true;
} else if ((*iter)->Is_SubPartition && (*iter)->SubPartition_Of == Local_Path) {
(*iter)->Repair();
}
}
if (found) {
return ret;
} else if (Display_Error) {
gui_msg(Msg(msg::kError, "unable_find_part_path=Unable to find partition for path '{1}'")(Local_Path));
} else {
LOGINFO("Repair: Unable to find partition for path '%s'\n", Local_Path.c_str());
}
return false;
}
int TWPartitionManager::Resize_By_Path(string Path, bool Display_Error) {
std::vector<TWPartition*>::iterator iter;
int ret = false;
bool found = false;
string Local_Path = TWFunc::Get_Root_Path(Path);
if (Local_Path == "/tmp" || Local_Path == "/")
return true;
// Iterate through all partitions
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Mount_Point == Local_Path || (!(*iter)->Symlink_Mount_Point.empty() && (*iter)->Symlink_Mount_Point == Local_Path)) {
ret = (*iter)->Resize();
found = true;
} else if ((*iter)->Is_SubPartition && (*iter)->SubPartition_Of == Local_Path) {
(*iter)->Resize();
}
}
if (found) {
return ret;
} else if (Display_Error) {
gui_msg(Msg(msg::kError, "unable_find_part_path=Unable to find partition for path '{1}'")(Local_Path));
} else {
LOGINFO("Resize: Unable to find partition for path '%s'\n", Local_Path.c_str());
}
return false;
}
void TWPartitionManager::Update_System_Details(void) {
std::vector<TWPartition*>::iterator iter;
int data_size = 0;
gui_msg("update_part_details=Updating partition details...");
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
(*iter)->Update_Size(true);
if ((*iter)->Can_Be_Mounted) {
if ((*iter)->Mount_Point == Get_Android_Root_Path()) {
int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU);
DataManager::SetValue(TW_BACKUP_SYSTEM_SIZE, backup_display_size);
TWFunc::Is_TWRP_App_In_System();
} else if ((*iter)->Mount_Point == "/data" || (*iter)->Mount_Point == "/datadata") {
data_size += (int)((*iter)->Backup_Size / 1048576LLU);
} else if ((*iter)->Mount_Point == "/cache") {
int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU);
DataManager::SetValue(TW_BACKUP_CACHE_SIZE, backup_display_size);
} else if ((*iter)->Mount_Point == "/sd-ext") {
int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU);
DataManager::SetValue(TW_BACKUP_SDEXT_SIZE, backup_display_size);
if ((*iter)->Backup_Size == 0) {
DataManager::SetValue(TW_HAS_SDEXT_PARTITION, 0);
DataManager::SetValue(TW_BACKUP_SDEXT_VAR, 0);
} else
DataManager::SetValue(TW_HAS_SDEXT_PARTITION, 1);
} else if ((*iter)->Has_Android_Secure) {
int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU);
DataManager::SetValue(TW_BACKUP_ANDSEC_SIZE, backup_display_size);
if ((*iter)->Backup_Size == 0) {
DataManager::SetValue(TW_HAS_ANDROID_SECURE, 0);
DataManager::SetValue(TW_BACKUP_ANDSEC_VAR, 0);
} else
DataManager::SetValue(TW_HAS_ANDROID_SECURE, 1);
} else if ((*iter)->Mount_Point == "/boot") {
int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU);
DataManager::SetValue(TW_BACKUP_BOOT_SIZE, backup_display_size);
if ((*iter)->Backup_Size == 0) {
DataManager::SetValue("tw_has_boot_partition", 0);
DataManager::SetValue(TW_BACKUP_BOOT_VAR, 0);
} else
DataManager::SetValue("tw_has_boot_partition", 1);
}
} else {
// Handle unmountable partitions in case we reset defaults
if ((*iter)->Mount_Point == "/boot") {
int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU);
DataManager::SetValue(TW_BACKUP_BOOT_SIZE, backup_display_size);
if ((*iter)->Backup_Size == 0) {
DataManager::SetValue(TW_HAS_BOOT_PARTITION, 0);
DataManager::SetValue(TW_BACKUP_BOOT_VAR, 0);
} else
DataManager::SetValue(TW_HAS_BOOT_PARTITION, 1);
} else if ((*iter)->Mount_Point == "/recovery") {
int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU);
DataManager::SetValue(TW_BACKUP_RECOVERY_SIZE, backup_display_size);
if ((*iter)->Backup_Size == 0) {
DataManager::SetValue(TW_HAS_RECOVERY_PARTITION, 0);
DataManager::SetValue(TW_BACKUP_RECOVERY_VAR, 0);
} else
DataManager::SetValue(TW_HAS_RECOVERY_PARTITION, 1);
} else if ((*iter)->Mount_Point == "/data") {
data_size += (int)((*iter)->Backup_Size / 1048576LLU);
}
}
}
gui_msg("update_part_details_done=...done");
DataManager::SetValue(TW_BACKUP_DATA_SIZE, data_size);
string current_storage_path = DataManager::GetCurrentStoragePath();
TWPartition* FreeStorage = Find_Partition_By_Path(current_storage_path);
if (FreeStorage != NULL) {
// Attempt to mount storage
if (!FreeStorage->Mount(false)) {
gui_msg(Msg(msg::kWarning, "unable_to_mount_storage=Unable to mount storage"));
DataManager::SetValue(TW_STORAGE_FREE_SIZE, 0);
} else {
DataManager::SetValue(TW_STORAGE_FREE_SIZE, (int)(FreeStorage->Free / 1048576LLU));
}
} else {
LOGINFO("Unable to find storage partition '%s'.\n", current_storage_path.c_str());
}
if (!Write_Fstab())
LOGERR("Error creating fstab\n");
return;
}
void TWPartitionManager::Post_Decrypt(const string& Block_Device) {
TWPartition* dat = Find_Partition_By_Path("/data");
if (dat != NULL) {
DataManager::SetValue(TW_IS_DECRYPTED, 1);
dat->Is_Decrypted = true;
if (!Block_Device.empty()) {
dat->Decrypted_Block_Device = Block_Device;
gui_msg(Msg("decrypt_success_dev=Data successfully decrypted, new block device: '{1}'")(Block_Device));
} else {
gui_msg("decrypt_success_nodev=Data successfully decrypted");
}
property_set("twrp.decrypt.done", "true");
dat->Setup_File_System(false);
dat->Current_File_System = dat->Fstab_File_System; // Needed if we're ignoring blkid because encrypted devices start out as emmc
sleep(1); // Sleep for a bit so that the device will be ready
if (dat->Has_Data_Media && dat->Mount(false) && TWFunc::Path_Exists("/data/media/0")) {
dat->Storage_Path = "/data/media/0";
dat->Symlink_Path = dat->Storage_Path;
DataManager::SetValue("tw_storage_path", "/data/media/0");
DataManager::SetValue("tw_settings_path", "/data/media/0");
dat->UnMount(false);
}
Update_System_Details();
Output_Partition(dat);
UnMount_Main_Partitions();
} else
LOGERR("Unable to locate data partition.\n");
}
void TWPartitionManager::Parse_Users() {
#ifdef TW_INCLUDE_FBE
char user_check_result[PROPERTY_VALUE_MAX];
for (int userId = 0; userId <= 9999; userId++) {
string prop = "twrp.user." + to_string(userId) + ".decrypt";
property_get(prop.c_str(), user_check_result, "-1");
if (strcmp(user_check_result, "-1") != 0) {
if (userId < 0 || userId > 9999) {
LOGINFO("Incorrect user id %d\n", userId);
continue;
}
struct users_struct user;
user.userId = to_string(userId);
// Attempt to get name of user. Fallback to user ID if this fails.
char* userFile = PageManager::LoadFileToBuffer("/data/system/users/" + to_string(userId) + ".xml", NULL);
if (userFile == NULL)
user.userName = to_string(userId);
else {
xml_document<> *userXml = new xml_document<>();
userXml->parse<0>(userFile);
xml_node<>* userNode = userXml->first_node("user");
if (userNode == nullptr) {
user.userName = to_string(userId);
} else {
xml_node<>* nameNode = userNode->first_node("name");
if (nameNode == nullptr)
user.userName = to_string(userId);
else {
string userName = nameNode->value();
user.userName = userName + " (" + to_string(userId) + ")";
}
}
}
string filename;
user.type = Get_Password_Type(userId, filename);
user.isDecrypted = false;
if (strcmp(user_check_result, "1") == 0)
user.isDecrypted = true;
Users_List.push_back(user);
}
}
Check_Users_Decryption_Status();
#endif
}
std::vector<users_struct>* TWPartitionManager::Get_Users_List() {
return &Users_List;
}
void TWPartitionManager::Mark_User_Decrypted(int userID) {
#ifdef TW_INCLUDE_FBE
std::vector<users_struct>::iterator iter;
for (iter = Users_List.begin(); iter != Users_List.end(); iter++) {
if (atoi((*iter).userId.c_str()) == userID) {
(*iter).isDecrypted = true;
string user_prop_decrypted = "twrp.user." + to_string(userID) + ".decrypt";
property_set(user_prop_decrypted.c_str(), "1");
break;
}
}
Check_Users_Decryption_Status();
#endif
}
void TWPartitionManager::Check_Users_Decryption_Status() {
#ifdef TW_INCLUDE_FBE
int all_is_decrypted = 1;
std::vector<users_struct>::iterator iter;
for (iter = Users_List.begin(); iter != Users_List.end(); iter++) {
if (!(*iter).isDecrypted) {
LOGINFO("User %s is not decrypted.\n", (*iter).userId.c_str());
all_is_decrypted = 0;
break;
}
}
if (all_is_decrypted == 1) {
LOGINFO("All found users are decrypted.\n");
DataManager::SetValue("tw_all_users_decrypted", "1");
property_set("twrp.all.users.decrypted", "true");
} else
DataManager::SetValue("tw_all_users_decrypted", "0");
#endif
}
int TWPartitionManager::Decrypt_Device(string Password, int user_id) {
#ifdef TW_INCLUDE_CRYPTO
char crypto_state[PROPERTY_VALUE_MAX], crypto_blkdev[PROPERTY_VALUE_MAX];
std::vector<TWPartition*>::iterator iter;
// Mount any partitions that need to be mounted for decrypt
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Mount_To_Decrypt) {
(*iter)->Mount(true);
}
}
property_set("twrp.mount_to_decrypt", "1");
property_get("ro.crypto.state", crypto_state, "error");
if (strcmp(crypto_state, "error") == 0) {
Set_FDE_Encrypt_Status();
}
if (DataManager::GetIntValue(TW_IS_FBE)) {
#ifdef TW_INCLUDE_FBE
if (!Mount_By_Path("/data", true)) // /data has to be mounted for FBE
return -1;
bool user_need_decrypt = false;
std::vector<users_struct>::iterator iter;
for (iter = Users_List.begin(); iter != Users_List.end(); iter++) {
if (atoi((*iter).userId.c_str()) == user_id && !(*iter).isDecrypted) {
user_need_decrypt = true;
}
}
if (!user_need_decrypt) {
LOGINFO("User %d does not require decryption\n", user_id);
return 0;
}
int retry_count = 10;
while (!TWFunc::Path_Exists("/data/system/users/gatekeeper.password.key") && --retry_count)
usleep(2000); // A small sleep is needed after mounting /data to ensure reliable decrypt...maybe because of DE?
gui_msg(Msg("decrypting_user_fbe=Attempting to decrypt FBE for user {1}...")(user_id));
if (Decrypt_User(user_id, Password)) {
gui_msg(Msg("decrypt_user_success_fbe=User {1} Decrypted Successfully")(user_id));
Mark_User_Decrypted(user_id);
if (user_id == 0) {
// When decrypting user 0 also try all other users
std::vector<users_struct>::iterator iter;
for (iter = Users_List.begin(); iter != Users_List.end(); iter++) {
if ((*iter).userId == "0" || (*iter).isDecrypted)
continue;
int tmp_user_id = atoi((*iter).userId.c_str());
gui_msg(Msg("decrypting_user_fbe=Attempting to decrypt FBE for user {1}...")(tmp_user_id));
if (Decrypt_User(tmp_user_id, Password) ||
(Password != "!" && Decrypt_User(tmp_user_id, "!"))) { // "!" means default password
gui_msg(Msg("decrypt_user_success_fbe=User {1} Decrypted Successfully")(tmp_user_id));
Mark_User_Decrypted(tmp_user_id);
} else {
gui_msg(Msg("decrypt_user_fail_fbe=Failed to decrypt user {1}")(tmp_user_id));
}
}
Post_Decrypt("");
}
return 0;
} else {
gui_msg(Msg(msg::kError, "decrypt_user_fail_fbe=Failed to decrypt user {1}")(user_id));
}
#else
LOGERR("FBE support is not present\n");
#endif
return -1;
}
char isdecrypteddata[PROPERTY_VALUE_MAX];
property_get("twrp.decrypt.done", isdecrypteddata, "");
if (strcmp(isdecrypteddata, "true") == 0) {
LOGINFO("Data has no decryption required\n");
return 0;
}
int pwret = -1;
pid_t pid = fork();
if (pid < 0) {
LOGERR("fork failed\n");
return -1;
} else if (pid == 0) {
// Child process
char cPassword[255];
strcpy(cPassword, Password.c_str());
int ret = cryptfs_check_passwd(cPassword);
exit(ret);
} else {
// Parent
int status;
if (TWFunc::Wait_For_Child_Timeout(pid, &status, "Decrypt", 30))
pwret = -1;
else
pwret = WEXITSTATUS(status) ? -1 : 0;
}
#ifdef TW_CRYPTO_USE_SYSTEM_VOLD
if (pwret != 0) {
pwret = vold_decrypt(Password);
switch (pwret) {
case VD_SUCCESS:
break;
case VD_ERR_MISSING_VDC:
gui_msg(Msg(msg::kError, "decrypt_data_vold_os_missing=Missing files needed for vold decrypt: {1}")("/system/bin/vdc"));
break;
case VD_ERR_MISSING_VOLD:
gui_msg(Msg(msg::kError, "decrypt_data_vold_os_missing=Missing files needed for vold decrypt: {1}")("/system/bin/vold"));
break;
}
}
#endif // TW_CRYPTO_USE_SYSTEM_VOLD
// Unmount any partitions that were needed for decrypt
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Mount_To_Decrypt) {
(*iter)->UnMount(false);
}
}
property_set("twrp.mount_to_decrypt", "0");
if (pwret != 0) {
gui_err("fail_decrypt=Failed to decrypt data.");
return -1;
}
property_get("ro.crypto.fs_crypto_blkdev", crypto_blkdev, "error");
if (strcmp(crypto_blkdev, "error") == 0) {
LOGERR("Error retrieving decrypted data block device.\n");
} else {
Post_Decrypt(crypto_blkdev);
}
return 0;
#else
gui_err("no_crypto_support=No crypto support was compiled into this build.");
return -1;
#endif
return 1;
}
int TWPartitionManager::Fix_Contexts(void) {
std::vector<TWPartition*>::iterator iter;
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Has_Data_Media) {
if ((*iter)->Mount(true)) {
if (fixContexts::fixDataMediaContexts((*iter)->Mount_Point) != 0)
return -1;
}
}
}
UnMount_Main_Partitions();
gui_msg("done=Done.");
return 0;
}
TWPartition* TWPartitionManager::Find_Next_Storage(string Path, bool Exclude_Data_Media) {
std::vector<TWPartition*>::iterator iter = Partitions.begin();
if (!Path.empty()) {
string Search_Path = TWFunc::Get_Root_Path(Path);
for (; iter != Partitions.end(); iter++) {
if ((*iter)->Mount_Point == Search_Path) {
iter++;
break;
}
}
}
for (; iter != Partitions.end(); iter++) {
if (Exclude_Data_Media && (*iter)->Has_Data_Media) {
// do nothing, do not return this type of partition
} else if ((*iter)->Is_Storage && (*iter)->Is_Present) {
return (*iter);
}
}
return NULL;
}
int TWPartitionManager::Open_Lun_File(string Partition_Path, string Lun_File) {
TWPartition* Part = Find_Partition_By_Path(Partition_Path);
if (Part == NULL) {
LOGINFO("Unable to locate '%s' for USB storage mode.", Partition_Path.c_str());
gui_msg(Msg(msg::kError, "unable_find_part_path=Unable to find partition for path '{1}'")(Partition_Path));
return false;
}
LOGINFO("USB mount '%s', '%s' > '%s'\n", Partition_Path.c_str(), Part->Actual_Block_Device.c_str(), Lun_File.c_str());
if (!Part->UnMount(true) || !Part->Is_Present)
return false;
if (TWFunc::write_to_file(Lun_File, Part->Actual_Block_Device)) {
LOGERR("Unable to write to ums lunfile '%s': (%s)\n", Lun_File.c_str(), strerror(errno));
return false;
}
return true;
}
int TWPartitionManager::usb_storage_enable(void) {
char lun_file[255];
bool has_multiple_lun = false;
string Lun_File_str = CUSTOM_LUN_FILE;
size_t found = Lun_File_str.find("%");
if (found != string::npos) {
sprintf(lun_file, CUSTOM_LUN_FILE, 1);
if (TWFunc::Path_Exists(lun_file))
has_multiple_lun = true;
}
mtp_was_enabled = TWFunc::Toggle_MTP(false); // Must disable MTP for USB Storage
if (!has_multiple_lun) {
LOGINFO("Device doesn't have multiple lun files, mount current storage\n");
sprintf(lun_file, CUSTOM_LUN_FILE, 0);
if (TWFunc::Get_Root_Path(DataManager::GetCurrentStoragePath()) == "/data") {
TWPartition* Mount = Find_Next_Storage("", true);
if (Mount) {
if (!Open_Lun_File(Mount->Mount_Point, lun_file)) {
goto error_handle;
}
} else {
gui_err("unable_locate_storage=Unable to locate storage device.");
goto error_handle;
}
} else if (!Open_Lun_File(DataManager::GetCurrentStoragePath(), lun_file)) {
goto error_handle;
}
} else {
LOGINFO("Device has multiple lun files\n");
TWPartition* Mount1;
TWPartition* Mount2;
sprintf(lun_file, CUSTOM_LUN_FILE, 0);
Mount1 = Find_Next_Storage("", true);
if (Mount1) {
if (!Open_Lun_File(Mount1->Mount_Point, lun_file)) {
goto error_handle;
}
sprintf(lun_file, CUSTOM_LUN_FILE, 1);
Mount2 = Find_Next_Storage(Mount1->Mount_Point, true);
if (Mount2 && Mount2->Mount_Point != Mount1->Mount_Point) {
Open_Lun_File(Mount2->Mount_Point, lun_file);
}
} else {
gui_err("unable_locate_storage=Unable to locate storage device.");
goto error_handle;
}
}
property_set("sys.storage.ums_enabled", "1");
property_set("sys.usb.config", "mass_storage,adb");
return true;
error_handle:
if (mtp_was_enabled)
if (!Enable_MTP())
Disable_MTP();
return false;
}
int TWPartitionManager::usb_storage_disable(void) {
int index, ret;
char lun_file[255], ch[2] = {0, 0};
string str = ch;
for (index=0; index<2; index++) {
sprintf(lun_file, CUSTOM_LUN_FILE, index);
ret = TWFunc::write_to_file(lun_file, str);
if (ret < 0) {
break;
}
}
Mount_All_Storage();
Update_System_Details();
UnMount_Main_Partitions();
property_set("sys.storage.ums_enabled", "0");
property_set("sys.usb.config", "adb");
if (mtp_was_enabled)
if (!Enable_MTP())
Disable_MTP();
if (ret < 0 && index == 0) {
LOGERR("Unable to write to ums lunfile '%s'.", lun_file);
return false;
} else {
return true;
}
return true;
}
void TWPartitionManager::Mount_All_Storage(void) {
std::vector<TWPartition*>::iterator iter;
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Is_Storage)
(*iter)->Mount(false);
}
}
void TWPartitionManager::UnMount_Main_Partitions(void) {
// Unmounts system and data if data is not data/media
// Also unmounts boot if boot is mountable
LOGINFO("Unmounting main partitions...\n");
TWPartition *Partition = Find_Partition_By_Path ("/vendor");
if (Partition != NULL) UnMount_By_Path("/vendor", false);
UnMount_By_Path (Get_Android_Root_Path(), true);
Partition = Find_Partition_By_Path ("/product");
if (Partition != NULL) UnMount_By_Path("/product", false);
if (!datamedia)
UnMount_By_Path("/data", true);
Partition = Find_Partition_By_Path ("/boot");
if (Partition != NULL && Partition->Can_Be_Mounted)
Partition->UnMount(true);
}
int TWPartitionManager::Partition_SDCard(void) {
char temp[255];
string Storage_Path, Command, Device, fat_str, ext_str, start_loc, end_loc, ext_format, sd_path, tmpdevice;
int ext, swap, total_size = 0, fat_size;
gui_msg("start_partition_sd=Partitioning SD Card...");
// Locate and validate device to partition
TWPartition* SDCard = Find_Partition_By_Path(DataManager::GetCurrentStoragePath());
if (SDCard->Is_Adopted_Storage)
SDCard->Revert_Adopted();
if (SDCard == NULL || !SDCard->Removable || SDCard->Has_Data_Media) {
gui_err("partition_sd_locate=Unable to locate device to partition.");
return false;
}
// Unmount everything
if (!SDCard->UnMount(true))
return false;
TWPartition* SDext = Find_Partition_By_Path("/sd-ext");
if (SDext != NULL) {
if (!SDext->UnMount(true))
return false;
}
char* swappath = getenv("SWAPPATH");
if (swappath != NULL) {
LOGINFO("Unmounting swap at '%s'\n", swappath);
umount(swappath);
}
// Determine block device
if (SDCard->Alternate_Block_Device.empty()) {
SDCard->Find_Actual_Block_Device();
Device = SDCard->Actual_Block_Device;
// Just use the root block device
Device.resize(strlen("/dev/block/mmcblkX"));
} else {
Device = SDCard->Alternate_Block_Device;
}
// Find the size of the block device:
total_size = (int)(TWFunc::IOCTL_Get_Block_Size(Device.c_str()) / (1048576));
DataManager::GetValue("tw_sdext_size", ext);
DataManager::GetValue("tw_swap_size", swap);
DataManager::GetValue("tw_sdpart_file_system", ext_format);
fat_size = total_size - ext - swap;
LOGINFO("sd card mount point %s block device is '%s', sdcard size is: %iMB, fat size: %iMB, ext size: %iMB, ext system: '%s', swap size: %iMB\n", DataManager::GetCurrentStoragePath().c_str(), Device.c_str(), total_size, fat_size, ext, ext_format.c_str(), swap);
// Determine partition sizes
if (swap == 0 && ext == 0) {
fat_str = "-0";
} else {
memset(temp, 0, sizeof(temp));
sprintf(temp, "%i", fat_size);
fat_str = temp;
fat_str += "MB";
}
if (swap == 0) {
ext_str = "-0";
} else {
memset(temp, 0, sizeof(temp));
sprintf(temp, "%i", ext);
ext_str = "+";
ext_str += temp;
ext_str += "MB";
}
if (ext + swap > total_size) {
gui_err("ext_swap_size=EXT + Swap size is larger than sdcard size.");
return false;
}
gui_msg("remove_part_table=Removing partition table...");
Command = "sgdisk --zap-all " + Device;
LOGINFO("Command is: '%s'\n", Command.c_str());
if (TWFunc::Exec_Cmd(Command) != 0) {
gui_err("unable_rm_part=Unable to remove partition table.");
Update_System_Details();
return false;
}
gui_msg(Msg("create_part=Creating {1} partition...")("FAT32"));
Command = "sgdisk --new=0:0:" + fat_str + " --change-name=0:\"Microsoft basic data\" --typecode=0:EBD0A0A2-B9E5-4433-87C0-68B6B72699C7 " + Device;
LOGINFO("Command is: '%s'\n", Command.c_str());
if (TWFunc::Exec_Cmd(Command) != 0) {
gui_msg(Msg(msg::kError, "unable_to_create_part=Unable to create {1} partition.")("FAT32"));
return false;
}
if (ext > 0) {
gui_msg(Msg("create_part=Creating {1} partition...")("EXT"));
Command = "sgdisk --new=0:0:" + ext_str + " --change-name=0:\"Linux filesystem\" " + Device;
LOGINFO("Command is: '%s'\n", Command.c_str());
if (TWFunc::Exec_Cmd(Command) != 0) {
gui_msg(Msg(msg::kError, "unable_to_create_part=Unable to create {1} partition.")("EXT"));
Update_System_Details();
return false;
}
}
if (swap > 0) {
gui_msg(Msg("create_part=Creating {1} partition...")("swap"));
Command = "sgdisk --new=0:0:-0 --change-name=0:\"Linux swap\" --typecode=0:0657FD6D-A4AB-43C4-84E5-0933C84B4F4F " + Device;
LOGINFO("Command is: '%s'\n", Command.c_str());
if (TWFunc::Exec_Cmd(Command) != 0) {
gui_msg(Msg(msg::kError, "unable_to_create_part=Unable to create {1} partition.")("swap"));
Update_System_Details();
return false;
}
}
// Convert GPT to MBR
Command = "sgdisk --gpttombr " + Device;
if (TWFunc::Exec_Cmd(Command) != 0)
LOGINFO("Failed to covert partition GPT to MBR\n");
// Tell the kernel to rescan the partition table
int fd = open(Device.c_str(), O_RDONLY);
ioctl(fd, BLKRRPART, 0);
close(fd);
string format_device = Device;
if (Device.substr(0, 17) == "/dev/block/mmcblk")
format_device += "p";
// Format new partitions to proper file system
if (fat_size > 0) {
Command = "mkfs.fat " + format_device + "1";
TWFunc::Exec_Cmd(Command);
}
if (ext > 0) {
if (SDext == NULL) {
Command = "mke2fs -t " + ext_format + " -m 0 " + format_device + "2";
gui_msg(Msg("format_sdext_as=Formatting sd-ext as {1}...")(ext_format));
LOGINFO("Formatting sd-ext after partitioning, command: '%s'\n", Command.c_str());
TWFunc::Exec_Cmd(Command);
} else {
SDext->Wipe(ext_format);
}
}
if (swap > 0) {
Command = "mkswap " + format_device;
if (ext > 0)
Command += "3";
else
Command += "2";
TWFunc::Exec_Cmd(Command);
}
// recreate TWRP folder and rewrite settings - these will be gone after sdcard is partitioned
if (SDCard->Mount(true)) {
string TWRP_Folder = SDCard->Mount_Point + "/TWRP";
mkdir(TWRP_Folder.c_str(), 0777);
DataManager::Flush();
}
Update_System_Details();
gui_msg("part_complete=Partitioning complete.");
return true;
}
void TWPartitionManager::Get_Partition_List(string ListType, std::vector<PartitionList> *Partition_List) {
std::vector<TWPartition*>::iterator iter;
if (ListType == "mount") {
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Can_Be_Mounted) {
struct PartitionList part;
part.Display_Name = (*iter)->Display_Name;
part.Mount_Point = (*iter)->Mount_Point;
part.selected = (*iter)->Is_Mounted();
Partition_List->push_back(part);
}
}
} else if (ListType == "storage") {
char free_space[255];
string Current_Storage = DataManager::GetCurrentStoragePath();
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Is_Storage) {
struct PartitionList part;
sprintf(free_space, "%llu", (*iter)->Free / 1024 / 1024);
part.Display_Name = (*iter)->Storage_Name + " (";
part.Display_Name += free_space;
part.Display_Name += "MB)";
part.Mount_Point = (*iter)->Storage_Path;
if ((*iter)->Storage_Path == Current_Storage)
part.selected = 1;
else
part.selected = 0;
Partition_List->push_back(part);
}
}
} else if (ListType == "backup") {
char backup_size[255];
unsigned long long Backup_Size;
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Can_Be_Backed_Up && !(*iter)->Is_SubPartition && (*iter)->Is_Present) {
struct PartitionList part;
Backup_Size = (*iter)->Backup_Size;
if ((*iter)->Has_SubPartition) {
std::vector<TWPartition*>::iterator subpart;
for (subpart = Partitions.begin(); subpart != Partitions.end(); subpart++) {
if ((*subpart)->Is_SubPartition && (*subpart)->Can_Be_Backed_Up && (*subpart)->Is_Present && (*subpart)->SubPartition_Of == (*iter)->Mount_Point)
Backup_Size += (*subpart)->Backup_Size;
}
}
sprintf(backup_size, "%llu", Backup_Size / 1024 / 1024);
part.Display_Name = (*iter)->Backup_Display_Name + " (";
part.Display_Name += backup_size;
part.Display_Name += "MB)";
part.Mount_Point = (*iter)->Backup_Path;
part.selected = 0;
Partition_List->push_back(part);
}
}
} else if (ListType == "restore") {
string Restore_List, restore_path;
TWPartition* restore_part = NULL;
DataManager::GetValue("tw_restore_list", Restore_List);
if (!Restore_List.empty()) {
size_t start_pos = 0, end_pos = Restore_List.find(";", start_pos);
while (end_pos != string::npos && start_pos < Restore_List.size()) {
restore_path = Restore_List.substr(start_pos, end_pos - start_pos);
struct PartitionList part;
if (restore_path.compare("ADB_Backup") == 0) {
part.Display_Name = "ADB Backup";
part.Mount_Point = "ADB Backup";
part.selected = 1;
Partition_List->push_back(part);
break;
}
if ((restore_part = Find_Partition_By_Path(restore_path)) != NULL) {
if ((restore_part->Backup_Name == "recovery" && !restore_part->Can_Be_Backed_Up) || restore_part->Is_SubPartition) {
// Don't allow restore of recovery (causes problems on some devices)
// Don't add subpartitions to the list of items
} else {
part.Display_Name = restore_part->Backup_Display_Name;
part.Mount_Point = restore_part->Backup_Path;
part.selected = 1;
Partition_List->push_back(part);
}
} else {
gui_msg(Msg(msg::kError, "restore_unable_locate=Unable to locate '{1}' partition for restoring.")(restore_path));
}
start_pos = end_pos + 1;
end_pos = Restore_List.find(";", start_pos);
}
}
} else if (ListType == "wipe") {
struct PartitionList dalvik;
dalvik.Display_Name = gui_parse_text("{@dalvik}");
dalvik.Mount_Point = "DALVIK";
dalvik.selected = 0;
Partition_List->push_back(dalvik);
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Wipe_Available_in_GUI && !(*iter)->Is_SubPartition) {
struct PartitionList part;
part.Display_Name = (*iter)->Display_Name;
part.Mount_Point = (*iter)->Mount_Point;
part.selected = 0;
Partition_List->push_back(part);
}
if ((*iter)->Has_Android_Secure) {
struct PartitionList part;
part.Display_Name = (*iter)->Backup_Display_Name;
part.Mount_Point = (*iter)->Backup_Path;
part.selected = 0;
Partition_List->push_back(part);
}
if ((*iter)->Has_Data_Media) {
struct PartitionList datamedia;
datamedia.Display_Name = (*iter)->Storage_Name;
datamedia.Mount_Point = "INTERNAL";
datamedia.selected = 0;
Partition_List->push_back(datamedia);
}
}
} else if (ListType == "flashimg") {
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Can_Flash_Img && (*iter)->Is_Present) {
struct PartitionList part;
part.Display_Name = (*iter)->Backup_Display_Name;
part.Mount_Point = (*iter)->Backup_Path;
part.selected = 0;
Partition_List->push_back(part);
}
}
if (DataManager::GetIntValue("tw_has_repack_tools") != 0 && DataManager::GetIntValue("tw_has_boot_slots") != 0) {
TWPartition* boot = Find_Partition_By_Path("/boot");
if (boot) {
// Allow flashing kernels and ramdisks
struct PartitionList repack_ramdisk;
repack_ramdisk.Display_Name = gui_lookup("install_twrp_ramdisk", "Install Recovery Ramdisk");
repack_ramdisk.Mount_Point = "/repack_ramdisk";
repack_ramdisk.selected = 0;
Partition_List->push_back(repack_ramdisk);
/*struct PartitionList repack_kernel; For now let's leave repacking kernels under advanced only
repack_kernel.Display_Name = gui_lookup("install_kernel", "Install Kernel");
repack_kernel.Mount_Point = "/repack_kernel";
repack_kernel.selected = 0;
Partition_List->push_back(repack_kernel);*/
}
}
} else {
LOGERR("Unknown list type '%s' requested for TWPartitionManager::Get_Partition_List\n", ListType.c_str());
}
}
int TWPartitionManager::Fstab_Processed(void) {
return Partitions.size();
}
void TWPartitionManager::Output_Storage_Fstab(void) {
std::vector<TWPartition*>::iterator iter;
char storage_partition[255];
std::string Temp;
std::string cacheDir = TWFunc::get_log_dir();
if (cacheDir.empty()) {
LOGINFO("Unable to find cache directory\n");
return;
}
std::string storageFstab = TWFunc::get_log_dir() + "recovery/storage.fstab";
FILE *fp = fopen(storageFstab.c_str(), "w");
if (fp == NULL) {
gui_msg(Msg(msg::kError, "unable_to_open=Unable to open '{1}'.")(storageFstab));
return;
}
// Iterate through all partitions
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Is_Storage) {
Temp = (*iter)->Storage_Path + ";" + (*iter)->Storage_Name + ";\n";
strcpy(storage_partition, Temp.c_str());
fwrite(storage_partition, sizeof(storage_partition[0]), strlen(storage_partition) / sizeof(storage_partition[0]), fp);
}
}
fclose(fp);
}
TWPartition *TWPartitionManager::Get_Default_Storage_Partition()
{
TWPartition *res = NULL;
for (std::vector<TWPartition*>::iterator iter = Partitions.begin(); iter != Partitions.end(); ++iter) {
if (!(*iter)->Is_Storage)
continue;
if ((*iter)->Is_Settings_Storage)
return *iter;
if (!res)
res = *iter;
}
return res;
}
bool TWPartitionManager::Enable_MTP(void) {
#ifdef TW_HAS_MTP
if (mtppid) {
gui_err("mtp_already_enabled=MTP already enabled");
return true;
}
int mtppipe[2];
if (pipe(mtppipe) < 0) {
LOGERR("Error creating MTP pipe\n");
return false;
}
char old_value[PROPERTY_VALUE_MAX];
property_get("sys.usb.config", old_value, "");
if (strcmp(old_value, "mtp,adb") != 0) {
char vendor[PROPERTY_VALUE_MAX];
char product[PROPERTY_VALUE_MAX];
property_set("sys.usb.config", "none");
property_get("usb.vendor", vendor, "18D1");
property_get("usb.product.mtpadb", product, "4EE2");
string vendorstr = vendor;
string productstr = product;
TWFunc::write_to_file("/sys/class/android_usb/android0/idVendor", vendorstr);
TWFunc::write_to_file("/sys/class/android_usb/android0/idProduct", productstr);
property_set("sys.usb.config", "mtp,adb");
}
/* To enable MTP debug, use the twrp command line feature:
* twrp set tw_mtp_debug 1
*/
twrpMtp *mtp = new twrpMtp(DataManager::GetIntValue("tw_mtp_debug"));
mtppid = mtp->forkserver(mtppipe);
if (mtppid) {
close(mtppipe[0]); // Host closes read side
mtp_write_fd = mtppipe[1];
DataManager::SetValue("tw_mtp_enabled", 1);
Add_All_MTP_Storage();
return true;
} else {
close(mtppipe[0]);
close(mtppipe[1]);
gui_err("mtp_fail=Failed to enable MTP");
return false;
}
#else
gui_err("no_mtp=MTP support not included");
#endif
DataManager::SetValue("tw_mtp_enabled", 0);
return false;
}
void TWPartitionManager::Add_All_MTP_Storage(void) {
#ifdef TW_HAS_MTP
std::vector<TWPartition*>::iterator iter;
if (!mtppid)
return; // MTP is not enabled
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Is_Storage && (*iter)->Is_Present && (*iter)->Mount(false))
Add_Remove_MTP_Storage((*iter), MTP_MESSAGE_ADD_STORAGE);
}
#else
return;
#endif
}
bool TWPartitionManager::Disable_MTP(void) {
char old_value[PROPERTY_VALUE_MAX];
property_set("sys.usb.ffs.mtp.ready", "0");
property_get("sys.usb.config", old_value, "");
if (strcmp(old_value, "adb") != 0) {
char vendor[PROPERTY_VALUE_MAX];
char product[PROPERTY_VALUE_MAX];
property_set("sys.usb.config", "none");
property_get("usb.vendor", vendor, "18D1");
property_get("usb.product.adb", product, "D001");
string vendorstr = vendor;
string productstr = product;
TWFunc::write_to_file("/sys/class/android_usb/android0/idVendor", vendorstr);
TWFunc::write_to_file("/sys/class/android_usb/android0/idProduct", productstr);
usleep(2000);
}
#ifdef TW_HAS_MTP
if (mtppid) {
LOGINFO("Disabling MTP\n");
int status;
kill(mtppid, SIGKILL);
mtppid = 0;
// We don't care about the exit value, but this prevents a zombie process
waitpid(mtppid, &status, 0);
close(mtp_write_fd);
mtp_write_fd = -1;
}
#endif
property_set("sys.usb.config", "adb");
#ifdef TW_HAS_MTP
DataManager::SetValue("tw_mtp_enabled", 0);
return true;
#endif
return false;
}
TWPartition* TWPartitionManager::Find_Partition_By_MTP_Storage_ID(unsigned int Storage_ID) {
std::vector<TWPartition*>::iterator iter;
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->MTP_Storage_ID == Storage_ID)
return (*iter);
}
return NULL;
}
bool TWPartitionManager::Add_Remove_MTP_Storage(TWPartition* Part, int message_type) {
#ifdef TW_HAS_MTP
struct mtpmsg mtp_message;
if (!mtppid)
return false; // MTP is disabled
if (mtp_write_fd < 0) {
LOGINFO("MTP: mtp_write_fd is not set\n");
return false;
}
if (Part) {
if (Part->MTP_Storage_ID == 0)
return false;
if (message_type == MTP_MESSAGE_REMOVE_STORAGE) {
mtp_message.message_type = MTP_MESSAGE_REMOVE_STORAGE; // Remove
LOGINFO("sending message to remove %i\n", Part->MTP_Storage_ID);
mtp_message.storage_id = Part->MTP_Storage_ID;
if (write(mtp_write_fd, &mtp_message, sizeof(mtp_message)) <= 0) {
LOGINFO("error sending message to remove storage %i\n", Part->MTP_Storage_ID);
return false;
} else {
LOGINFO("Message sent, remove storage ID: %i\n", Part->MTP_Storage_ID);
return true;
}
} else if (message_type == MTP_MESSAGE_ADD_STORAGE && Part->Is_Mounted()) {
mtp_message.message_type = MTP_MESSAGE_ADD_STORAGE; // Add
mtp_message.storage_id = Part->MTP_Storage_ID;
if (Part->Storage_Path.size() >= sizeof(mtp_message.path)) {
LOGERR("Storage path '%s' too large for mtpmsg\n", Part->Storage_Path.c_str());
return false;
}
strcpy(mtp_message.path, Part->Storage_Path.c_str());
if (Part->Storage_Name.size() >= sizeof(mtp_message.display)) {
LOGERR("Storage name '%s' too large for mtpmsg\n", Part->Storage_Name.c_str());
return false;
}
strcpy(mtp_message.display, Part->Storage_Name.c_str());
mtp_message.maxFileSize = Part->Get_Max_FileSize();
LOGINFO("sending message to add %i '%s' '%s'\n", mtp_message.storage_id, mtp_message.path, mtp_message.display);
if (write(mtp_write_fd, &mtp_message, sizeof(mtp_message)) <= 0) {
LOGINFO("error sending message to add storage %i\n", Part->MTP_Storage_ID);
return false;
} else {
LOGINFO("Message sent, add storage ID: %i '%s'\n", Part->MTP_Storage_ID, mtp_message.path);
return true;
}
} else {
LOGERR("Unknown MTP message type: %i\n", message_type);
}
} else {
// This hopefully never happens as the error handling should
// occur in the calling function.
LOGINFO("TWPartitionManager::Add_Remove_MTP_Storage NULL partition given\n");
}
return true;
#else
gui_err("no_mtp=MTP support not included");
DataManager::SetValue("tw_mtp_enabled", 0);
return false;
#endif
}
bool TWPartitionManager::Add_MTP_Storage(string Mount_Point) {
#ifdef TW_HAS_MTP
TWPartition* Part = PartitionManager.Find_Partition_By_Path(Mount_Point);
if (Part) {
return PartitionManager.Add_Remove_MTP_Storage(Part, MTP_MESSAGE_ADD_STORAGE);
} else {
LOGINFO("TWFunc::Add_MTP_Storage unable to locate partition for '%s'\n", Mount_Point.c_str());
}
#endif
return false;
}
bool TWPartitionManager::Add_MTP_Storage(unsigned int Storage_ID) {
#ifdef TW_HAS_MTP
TWPartition* Part = PartitionManager.Find_Partition_By_MTP_Storage_ID(Storage_ID);
if (Part) {
return PartitionManager.Add_Remove_MTP_Storage(Part, MTP_MESSAGE_ADD_STORAGE);
} else {
LOGINFO("TWFunc::Add_MTP_Storage unable to locate partition for %i\n", Storage_ID);
}
#endif
return false;
}
bool TWPartitionManager::Remove_MTP_Storage(string Mount_Point) {
#ifdef TW_HAS_MTP
TWPartition* Part = PartitionManager.Find_Partition_By_Path(Mount_Point);
if (Part) {
return PartitionManager.Add_Remove_MTP_Storage(Part, MTP_MESSAGE_REMOVE_STORAGE);
} else {
LOGINFO("TWFunc::Remove_MTP_Storage unable to locate partition for '%s'\n", Mount_Point.c_str());
}
#endif
return false;
}
bool TWPartitionManager::Remove_MTP_Storage(unsigned int Storage_ID) {
#ifdef TW_HAS_MTP
TWPartition* Part = PartitionManager.Find_Partition_By_MTP_Storage_ID(Storage_ID);
if (Part) {
return PartitionManager.Add_Remove_MTP_Storage(Part, MTP_MESSAGE_REMOVE_STORAGE);
} else {
LOGINFO("TWFunc::Remove_MTP_Storage unable to locate partition for %i\n", Storage_ID);
}
#endif
return false;
}
bool TWPartitionManager::Flash_Image(string& path, string& filename) {
twrpRepacker repacker;
int partition_count = 0;
TWPartition* flash_part = NULL;
string Flash_List, flash_path, full_filename;
size_t start_pos = 0, end_pos = 0;
full_filename = path + "/" + filename;
gui_msg("image_flash_start=[IMAGE FLASH STARTED]");
gui_msg(Msg("img_to_flash=Image to flash: '{1}'")(full_filename));
if (!TWFunc::Path_Exists(full_filename)) {
if (!Mount_By_Path(full_filename, true)) {
return false;
}
if (!TWFunc::Path_Exists(full_filename)) {
gui_msg(Msg(msg::kError, "unable_to_locate=Unable to locate {1}.")(full_filename));
return false;
}
}
DataManager::GetValue("tw_flash_partition", Flash_List);
Repack_Type repack = REPLACE_NONE;
if (Flash_List == "/repack_ramdisk;") {
repack = REPLACE_RAMDISK;
} else if (Flash_List == "/repack_kernel;") {
repack = REPLACE_KERNEL;
}
if (repack != REPLACE_NONE) {
Repack_Options_struct Repack_Options;
Repack_Options.Type = repack;
Repack_Options.Disable_Verity = false;
Repack_Options.Disable_Force_Encrypt = false;
Repack_Options.Backup_First = DataManager::GetIntValue("tw_repack_backup_first") != 0;
return repacker.Repack_Image_And_Flash(full_filename, Repack_Options);
}
PartitionSettings part_settings;
part_settings.Backup_Folder = path;
unsigned long long total_bytes = TWFunc::Get_File_Size(full_filename);
ProgressTracking progress(total_bytes);
part_settings.progress = &progress;
part_settings.adbbackup = false;
part_settings.PM_Method = PM_RESTORE;
gui_msg("calc_restore=Calculating restore details...");
if (!Flash_List.empty()) {
end_pos = Flash_List.find(";", start_pos);
while (end_pos != string::npos && start_pos < Flash_List.size()) {
flash_path = Flash_List.substr(start_pos, end_pos - start_pos);
flash_part = Find_Partition_By_Path(flash_path);
if (flash_part != NULL) {
partition_count++;
if (partition_count > 1) {
gui_err("too_many_flash=Too many partitions selected for flashing.");
return false;
}
} else {
gui_msg(Msg(msg::kError, "flash_unable_locate=Unable to locate '{1}' partition for flashing.")(flash_path));
return false;
}
start_pos = end_pos + 1;
end_pos = Flash_List.find(";", start_pos);
}
}
if (partition_count == 0) {
gui_err("no_part_flash=No partitions selected for flashing.");
return false;
}
DataManager::SetProgress(0.0);
if (flash_part) {
flash_part->Backup_FileName = filename;
if (!flash_part->Flash_Image(&part_settings))
return false;
} else {
gui_err("invalid_flash=Invalid flash partition specified.");
return false;
}
gui_highlight("flash_done=IMAGE FLASH COMPLETED]");
return true;
}
void TWPartitionManager::Translate_Partition(const char* path, const char* resource_name, const char* default_value) {
TWPartition* part = PartitionManager.Find_Partition_By_Path(path);
if (part) {
if (part->Is_Adopted_Storage) {
part->Display_Name = part->Display_Name + " - " + gui_lookup("data", "Data");
part->Backup_Display_Name = part->Display_Name;
part->Storage_Name = part->Storage_Name + " - " + gui_lookup("adopted_storage", "Adopted Storage");
} else {
part->Display_Name = gui_lookup(resource_name, default_value);
part->Backup_Display_Name = part->Display_Name;
}
}
}
void TWPartitionManager::Translate_Partition(const char* path, const char* resource_name, const char* default_value, const char* storage_resource_name, const char* storage_default_value) {
TWPartition* part = PartitionManager.Find_Partition_By_Path(path);
if (part) {
if (part->Is_Adopted_Storage) {
part->Backup_Display_Name = part->Display_Name + " - " + gui_lookup("data_backup", "Data (excl. storage)");
part->Display_Name = part->Display_Name + " - " + gui_lookup("data", "Data");
part->Storage_Name = part->Storage_Name + " - " + gui_lookup("adopted_storage", "Adopted Storage");
} else {
part->Display_Name = gui_lookup(resource_name, default_value);
part->Backup_Display_Name = part->Display_Name;
if (part->Is_Storage)
part->Storage_Name = gui_lookup(storage_resource_name, storage_default_value);
}
}
}
void TWPartitionManager::Translate_Partition(const char* path, const char* resource_name, const char* default_value, const char* storage_resource_name, const char* storage_default_value, const char* backup_name, const char* backup_default) {
TWPartition* part = PartitionManager.Find_Partition_By_Path(path);
if (part) {
if (part->Is_Adopted_Storage) {
part->Backup_Display_Name = part->Display_Name + " - " + gui_lookup(backup_name, backup_default);
part->Display_Name = part->Display_Name + " - " + gui_lookup("data", "Data");
part->Storage_Name = part->Storage_Name + " - " + gui_lookup("adopted_storage", "Adopted Storage");
} else {
part->Display_Name = gui_lookup(resource_name, default_value);
part->Backup_Display_Name = gui_lookup(backup_name, backup_default);
if (part->Is_Storage)
part->Storage_Name = gui_lookup(storage_resource_name, storage_default_value);
}
}
}
void TWPartitionManager::Translate_Partition_Display_Names() {
LOGINFO("Translating partition display names\n");
Translate_Partition("/system", "system", "System");
Translate_Partition("/system_image", "system_image", "System Image");
Translate_Partition("/vendor", "vendor", "Vendor");
Translate_Partition("/vendor_image", "vendor_image", "Vendor Image");
Translate_Partition("/cache", "cache", "Cache");
Translate_Partition("/boot", "boot", "Boot");
Translate_Partition("/recovery", "recovery", "Recovery");
if (!datamedia) {
Translate_Partition("/data", "data", "Data", "internal", "Internal Storage");
Translate_Partition("/sdcard", "sdcard", "SDCard", "sdcard", "SDCard");
Translate_Partition("/internal_sd", "sdcard", "SDCard", "sdcard", "SDCard");
Translate_Partition("/internal_sdcard", "sdcard", "SDCard", "sdcard", "SDCard");
Translate_Partition("/emmc", "sdcard", "SDCard", "sdcard", "SDCard");
} else {
Translate_Partition("/data", "data", "Data", "internal", "Internal Storage", "data_backup", "Data (excl. storage)");
}
Translate_Partition("/external_sd", "microsd", "Micro SDCard", "microsd", "Micro SDCard", "data_backup", "Data (excl. storage)");
Translate_Partition("/external_sdcard", "microsd", "Micro SDCard", "microsd", "Micro SDCard", "data_backup", "Data (excl. storage)");
Translate_Partition("/usb-otg", "usbotg", "USB OTG", "usbotg", "USB OTG");
Translate_Partition("/sd-ext", "sdext", "SD-EXT");
// Android secure is a special case
TWPartition* part = PartitionManager.Find_Partition_By_Path("/and-sec");
if (part)
part->Backup_Display_Name = gui_lookup("android_secure", "Android Secure");
std::vector<TWPartition*>::iterator sysfs;
for (sysfs = Partitions.begin(); sysfs != Partitions.end(); sysfs++) {
if (!(*sysfs)->Sysfs_Entry.empty()) {
Translate_Partition((*sysfs)->Mount_Point.c_str(), "autostorage", "Storage", "autostorage", "Storage");
}
}
// This updates the text on all of the storage selection buttons in the GUI
DataManager::SetBackupFolder();
}
bool TWPartitionManager::Decrypt_Adopted() {
#ifdef TW_INCLUDE_CRYPTO
bool ret = false;
if (!Mount_By_Path("/data", false)) {
LOGERR("Cannot decrypt adopted storage because /data will not mount\n");
return false;
}
LOGINFO("Decrypt adopted storage starting\n");
char* xmlFile = PageManager::LoadFileToBuffer("/data/system/storage.xml", NULL);
xml_document<> *doc = NULL;
xml_node<>* volumes = NULL;
string Primary_Storage_UUID = "";
if (xmlFile != NULL) {
LOGINFO("successfully loaded storage.xml\n");
doc = new xml_document<>();
doc->parse<0>(xmlFile);
volumes = doc->first_node("volumes");
if (volumes) {
xml_attribute<>* psuuid = volumes->first_attribute("primaryStorageUuid");
if (psuuid) {
Primary_Storage_UUID = psuuid->value();
}
}
} else {
LOGINFO("No /data/system/storage.xml for adopted storage\n");
return false;
}
std::vector<TWPartition*>::iterator adopt;
for (adopt = Partitions.begin(); adopt != Partitions.end(); adopt++) {
if ((*adopt)->Removable && (*adopt)->Is_Present) {
if ((*adopt)->Decrypt_Adopted() == 0) {
ret = true;
if (volumes) {
xml_node<>* volume = volumes->first_node("volume");
while (volume) {
xml_attribute<>* guid = volume->first_attribute("partGuid");
if (guid) {
string GUID = (*adopt)->Adopted_GUID.c_str();
GUID.insert(8, "-");
GUID.insert(13, "-");
GUID.insert(18, "-");
GUID.insert(23, "-");
if (strcasecmp(GUID.c_str(), guid->value()) == 0) {
xml_attribute<>* attr = volume->first_attribute("nickname");
if (attr && attr->value() && strlen(attr->value()) > 0) {
(*adopt)->Storage_Name = attr->value();
(*adopt)->Display_Name = (*adopt)->Storage_Name;
(*adopt)->Backup_Display_Name = (*adopt)->Storage_Name;
LOGINFO("storage name from storage.xml is '%s'\n", attr->value());
}
attr = volume->first_attribute("fsUuid");
if (attr && !Primary_Storage_UUID.empty() && strcmp(Primary_Storage_UUID.c_str(), attr->value()) == 0) {
TWPartition* Dat = Find_Partition_By_Path("/data");
if (Dat) {
LOGINFO("Internal storage is found on adopted storage '%s'\n", (*adopt)->Display_Name.c_str());
LOGINFO("Changing '%s' to point to '%s'\n", Dat->Symlink_Mount_Point.c_str(), (*adopt)->Storage_Path.c_str());
(*adopt)->Symlink_Mount_Point = Dat->Symlink_Mount_Point;
Dat->Symlink_Mount_Point = "";
// Toggle mounts to ensure that the symlink mount point (probably /sdcard) is mounted to the right location
Dat->UnMount(false);
Dat->Mount(false);
(*adopt)->UnMount(false);
(*adopt)->Mount(false);
}
}
break;
}
}
volume = volume->next_sibling("volume");
}
}
Update_System_Details();
Output_Partition((*adopt));
}
}
}
if (xmlFile) {
doc->clear();
delete doc;
free(xmlFile);
}
return ret;
#else
LOGINFO("Decrypt_Adopted: no crypto support\n");
return false;
#endif
}
void TWPartitionManager::Remove_Partition_By_Path(string Path) {
std::vector<TWPartition*>::iterator iter;
string Local_Path = TWFunc::Get_Root_Path(Path);
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Mount_Point == Local_Path || (!(*iter)->Symlink_Mount_Point.empty() && (*iter)->Symlink_Mount_Point == Local_Path)) {
LOGINFO("Found and erasing '%s' from partition list\n", Local_Path.c_str());
Partitions.erase(iter);
return;
}
}
}
void TWPartitionManager::Set_Active_Slot(const string& Slot) {
if (Slot != "A" && Slot != "B") {
LOGERR("Set_Active_Slot invalid slot '%s'\n", Slot.c_str());
return;
}
if (Active_Slot_Display == Slot)
return;
LOGINFO("Setting active slot %s\n", Slot.c_str());
#ifdef AB_OTA_UPDATER
if (!Active_Slot_Display.empty()) {
const hw_module_t *hw_module;
boot_control_module_t *module;
int ret;
ret = hw_get_module("bootctrl", &hw_module);
if (ret != 0) {
LOGERR("Error getting bootctrl module.\n");
} else {
module = (boot_control_module_t*) hw_module;
module->init(module);
int slot_number = 0;
if (Slot == "B")
slot_number = 1;
if (module->setActiveBootSlot(module, slot_number))
gui_msg(Msg(msg::kError, "unable_set_boot_slot=Error changing bootloader boot slot to {1}")(Slot));
}
DataManager::SetValue("tw_active_slot", Slot); // Doing this outside of this if block may result in a seg fault because the DataManager may not be ready yet
}
#else
LOGERR("Boot slot feature not present\n");
#endif
Active_Slot_Display = Slot;
if (Fstab_Processed())
Update_System_Details();
}
string TWPartitionManager::Get_Active_Slot_Suffix() {
if (Active_Slot_Display == "A")
return "_a";
return "_b";
}
string TWPartitionManager::Get_Active_Slot_Display() {
return Active_Slot_Display;
}
string TWPartitionManager::Get_Android_Root_Path() {
return "/system_root";
}
void TWPartitionManager::Remove_Uevent_Devices(const string& Mount_Point) {
std::vector<TWPartition*>::iterator iter;
for (iter = Partitions.begin(); iter != Partitions.end(); ) {
if ((*iter)->Is_SubPartition && (*iter)->SubPartition_Of == Mount_Point) {
TWPartition *part = *iter;
LOGINFO("%s was removed by uevent data\n", (*iter)->Mount_Point.c_str());
(*iter)->UnMount(false);
rmdir((*iter)->Mount_Point.c_str());
iter = Partitions.erase(iter);
delete part;
} else {
iter++;
}
}
}
void TWPartitionManager::Handle_Uevent(const Uevent_Block_Data& uevent_data) {
std::vector<TWPartition*>::iterator iter;
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if (!(*iter)->Sysfs_Entry.empty()) {
string device;
size_t wildcard = (*iter)->Sysfs_Entry.find("*");
if (wildcard != string::npos) {
device = (*iter)->Sysfs_Entry.substr(0, wildcard);
} else {
device = (*iter)->Sysfs_Entry;
}
if (device == uevent_data.sysfs_path.substr(0, device.size())) {
// Found a match
if (uevent_data.action == "add") {
(*iter)->Primary_Block_Device = "/dev/block/" + uevent_data.block_device;
(*iter)->Alternate_Block_Device = (*iter)->Primary_Block_Device;
(*iter)->Is_Present = true;
LOGINFO("Found a match '%s' '%s'\n", uevent_data.block_device.c_str(), device.c_str());
if (!Decrypt_Adopted()) {
LOGINFO("No adopted storage so finding actual block device\n");
(*iter)->Find_Actual_Block_Device();
}
return;
} else if (uevent_data.action == "remove") {
(*iter)->Is_Present = false;
(*iter)->Primary_Block_Device = "";
(*iter)->Actual_Block_Device = "";
Remove_Uevent_Devices((*iter)->Mount_Point);
return;
}
}
}
}
if (!PartitionManager.Get_Super_Status())
LOGINFO("Found no matching fstab entry for uevent device '%s' - %s\n", uevent_data.sysfs_path.c_str(), uevent_data.action.c_str());
}
void TWPartitionManager::setup_uevent() {
struct sockaddr_nl nls;
if (uevent_pfd.fd >= 0) {
LOGINFO("uevent already set up\n");
return;
}
// Open hotplug event netlink socket
memset(&nls,0,sizeof(struct sockaddr_nl));
nls.nl_family = AF_NETLINK;
nls.nl_pid = getpid();
nls.nl_groups = -1;
uevent_pfd.events = POLLIN;
uevent_pfd.fd = socket(PF_NETLINK, SOCK_DGRAM, NETLINK_KOBJECT_UEVENT);
if (uevent_pfd.fd==-1) {
LOGERR("uevent not root\n");
return;
}
// Listen to netlink socket
if (::bind(uevent_pfd.fd, (struct sockaddr *) &nls, sizeof(struct sockaddr_nl)) < 0) {
LOGERR("Bind failed\n");
return;
}
set_select_fd();
Coldboot();
}
Uevent_Block_Data TWPartitionManager::get_event_block_values(char *buf, int len) {
Uevent_Block_Data ret;
ret.subsystem = "";
char *ptr = buf;
const char *end = buf + len;
buf[len - 1] = '\0';
while (ptr < end) {
if (strncmp(ptr, "ACTION=", strlen("ACTION=")) == 0) {
ptr += strlen("ACTION=");
ret.action = ptr;
} else if (strncmp(ptr, "SUBSYSTEM=", strlen("SUBSYSTEM=")) == 0) {
ptr += strlen("SUBSYSTEM=");
ret.subsystem = ptr;
} else if (strncmp(ptr, "DEVTYPE=", strlen("DEVTYPE=")) == 0) {
ptr += strlen("DEVTYPE=");
ret.type = ptr;
} else if (strncmp(ptr, "DEVPATH=", strlen("DEVPATH=")) == 0) {
ptr += strlen("DEVPATH=");
ret.sysfs_path += ptr;
} else if (strncmp(ptr, "DEVNAME=", strlen("DEVNAME=")) == 0) {
ptr += strlen("DEVNAME=");
ret.block_device += ptr;
} else if (strncmp(ptr, "MAJOR=", strlen("MAJOR=")) == 0) {
ptr += strlen("MAJOR=");
ret.major = atoi(ptr);
} else if (strncmp(ptr, "MINOR=", strlen("MINOR=")) == 0) {
ptr += strlen("MINOR=");
ret.minor = atoi(ptr);
}
ptr += strlen(ptr) + 1;
}
return ret;
}
void TWPartitionManager::read_uevent() {
char buf[1024];
int len = recv(uevent_pfd.fd, buf, sizeof(buf), MSG_DONTWAIT);
if (len == -1) {
LOGINFO("recv error on uevent\n");
return;
}
/*int i = 0; // Print all uevent output for test /debug
while (i<len) {
printf("%s\n", buf+i);
i += strlen(buf+i)+1;
}*/
Uevent_Block_Data uevent_data = get_event_block_values(buf, len);
if (uevent_data.subsystem == "block" && uevent_data.type == "disk") {
PartitionManager.Handle_Uevent(uevent_data);
}
}
void TWPartitionManager::close_uevent() {
if (uevent_pfd.fd > 0)
close(uevent_pfd.fd);
uevent_pfd.fd = -1;
}
void TWPartitionManager::Add_Partition(TWPartition* Part) {
Partitions.push_back(Part);
}
void TWPartitionManager::Coldboot_Scan(std::vector<string> *sysfs_entries, const string& Path, int depth) {
string Real_Path = Path;
char real_path[PATH_MAX];
if (realpath(Path.c_str(), &real_path[0])) {
string Real_Path = real_path;
std::vector<string>::iterator iter;
for (iter = sysfs_entries->begin(); iter != sysfs_entries->end(); iter++) {
if (Real_Path.find((*iter)) != string::npos) {
string Write_Path = Real_Path + "/uevent";
if (TWFunc::Path_Exists(Write_Path)) {
const char* write_val = "add\n";
TWFunc::write_to_file(Write_Path, write_val);
break;
}
}
}
}
DIR* d = opendir(Path.c_str());
if (d != NULL) {
struct dirent* de;
while ((de = readdir(d)) != NULL) {
if (de->d_name[0] == '.' || (de->d_type != DT_DIR && depth > 0))
continue;
if (strlen(de->d_name) >= 4 && (strncmp(de->d_name, "ram", 3) == 0 || strncmp(de->d_name, "loop", 4) == 0))
continue;
string item = Path + "/";
item.append(de->d_name);
Coldboot_Scan(sysfs_entries, item, depth + 1);
}
closedir(d);
}
}
void TWPartitionManager::Coldboot() {
std::vector<TWPartition*>::iterator iter;
std::vector<string> sysfs_entries;
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if (!(*iter)->Sysfs_Entry.empty()) {
size_t wildcard_pos = (*iter)->Sysfs_Entry.find("*");
if (wildcard_pos == string::npos)
wildcard_pos = (*iter)->Sysfs_Entry.size();
sysfs_entries.push_back((*iter)->Sysfs_Entry.substr(0, wildcard_pos));
}
}
if (sysfs_entries.size() > 0)
Coldboot_Scan(&sysfs_entries, "/sys/block", 0);
}
bool TWPartitionManager::Prepare_Empty_Folder(const std::string& Folder) {
if (TWFunc::Path_Exists(Folder))
TWFunc::removeDir(Folder, false);
return TWFunc::Recursive_Mkdir(Folder);
}
bool TWPartitionManager::Prepare_Super_Volume(TWPartition* twrpPart) {
Fstab fstab;
std::string bare_partition_name;
if (twrpPart->Get_Mount_Point() == "/system_root")
bare_partition_name = "system";
else
bare_partition_name = TWFunc::Remove_Beginning_Slash(twrpPart->Get_Mount_Point());
LOGINFO("Trying to prepare %s from super partition\n", bare_partition_name.c_str());
std::string blk_device_partition;
#ifdef AB_OTA_UPDATER
blk_device_partition = bare_partition_name + PartitionManager.Get_Active_Slot_Suffix();
#else
blk_device_partition = bare_partition_name;
#endif
FstabEntry fstabEntry = {
.blk_device = blk_device_partition,
.mount_point = twrpPart->Get_Mount_Point(),
.fs_type = twrpPart->Current_File_System,
.fs_mgr_flags.logical = twrpPart->Is_Super,
};
fstab.emplace_back(fstabEntry);
if (!fs_mgr_update_logical_partition(&fstabEntry)) {
LOGERR("unable to update logical partition: %s\n", twrpPart->Get_Mount_Point().c_str());
return false;
}
while (access(fstabEntry.blk_device.c_str(), F_OK) != 0) {
usleep(100);
}
twrpPart->Set_Block_Device(fstabEntry.blk_device);
twrpPart->Update_Size(true);
twrpPart->Change_Mount_Read_Only(true);
twrpPart->Set_Can_Be_Backed_Up(false);
twrpPart->Set_Can_Be_Wiped(false);
return true;
}
bool TWPartitionManager::Prepare_All_Super_Volumes() {
bool status = true;
std::vector<TWPartition*>::iterator iter;
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Is_Super) {
if (!Prepare_Super_Volume(*iter)) {
status = false;
}
PartitionManager.Output_Partition(*iter);
}
}
Update_System_Details();
return status;
}
bool TWPartitionManager::Is_Super_Partition(const char* fstab_line) {
if (!Get_Super_Status())
return false;
std::vector<std::string> super_partition_list = {"system", "vendor", "odm", "product", "system_ext"};
for (auto&& fstab_partition_check: super_partition_list) {
if (strncmp(fstab_line, fstab_partition_check.c_str(), fstab_partition_check.size()) == 0) {
DataManager::SetValue(TW_IS_SUPER, "1");
return true;
}
}
return false;
}
std::string TWPartitionManager::Get_Super_Partition() {
int slot_number = Get_Active_Slot_Display() == "A" ? 0 : 1;
std::string super_device = fs_mgr_get_super_partition_name(slot_number);
return "/dev/block/by-name/" + super_device;
}
void TWPartitionManager::Setup_Super_Devices() {
std::string superPart = Get_Super_Partition();
android::fs_mgr::CreateLogicalPartitions(superPart);
}
void TWPartitionManager::Setup_Super_Partition() {
TWPartition* superPartition = new TWPartition();
std::string superPart = Get_Super_Partition();
superPartition->Backup_Path = "/super";
superPartition->Mount_Point = "/super";
superPartition->Actual_Block_Device = superPart;
superPartition->Alternate_Block_Device = superPart;
#ifdef BOARD_DYNAMIC_PARTITIONS_PARTITION_LIST
superPartition->Backup_Display_Name = "Super (" BOARD_DYNAMIC_PARTITIONS_PARTITION_LIST ")";
#else
superPartition->Backup_Display_Name = "Super";
#endif
superPartition->Can_Flash_Img = true;
superPartition->Current_File_System = "emmc";
superPartition->Can_Be_Backed_Up = true;
superPartition->Is_Present = true;
superPartition->Is_SubPartition = false;
superPartition->Setup_Image();
Add_Partition(superPartition);
PartitionManager.Output_Partition(superPartition);
Update_System_Details();
}
bool TWPartitionManager::Get_Super_Status() {
std::string fastboot_mode = android::base::GetProperty("sys.usb.config", "");
if (fastboot_mode == "fastboot") {
return false;
}
else
return access(Get_Super_Partition().c_str(), F_OK) == 0;
}
bool TWPartitionManager::Recreate_Logs_Dir() {
#ifdef TW_INCLUDE_FBE
struct passwd pd;
struct passwd *pwdptr = &pd;
struct passwd *tempPd;
char pwdBuf[512];
int uid = 0, gid = 0;
if ((getpwnam_r("system", pwdptr, pwdBuf, sizeof(pwdBuf), &tempPd)) != 0) {
LOGERR("unable to get system user id\n");
return false;
} else {
struct group grp;
struct group *grpptr = &grp;
struct group *tempGrp;
char grpBuf[512];
if ((getgrnam_r("cache", grpptr, grpBuf, sizeof(grpBuf), &tempGrp)) != 0) {
LOGERR("unable to get cache group id\n");
return false;
} else {
uid = pd.pw_uid;
gid = grp.gr_gid;
std::string abLogsRecoveryDir(DATA_LOGS_DIR);
abLogsRecoveryDir += "/recovery/";
if (!TWFunc::Create_Dir_Recursive(abLogsRecoveryDir, S_IRWXU | S_IRWXG | S_IWGRP | S_IXGRP, uid, gid)) {
LOGERR("Unable to recreate %s\n", abLogsRecoveryDir.c_str());
return false;
}
if (setfilecon(abLogsRecoveryDir.c_str(), "u:object_r:cache_file:s0") != 0) {
LOGERR("Unable to set contexts for %s\n", abLogsRecoveryDir.c_str());
return false;
}
}
}
#endif
return true;
}