blob: cba95f5b04a52844e3cb31cf8dd82f647d0549ca [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "updater/install.h"
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <ftw.h>
#include <inttypes.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/capability.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/xattr.h>
#include <time.h>
#include <unistd.h>
#include <utime.h>
#include <memory>
#include <string>
#include <vector>
#include <android-base/parseint.h>
#include <android-base/parsedouble.h>
#include <android-base/properties.h>
#include <android-base/strings.h>
#include <android-base/stringprintf.h>
#include <cutils/android_reboot.h>
#include <ext4_utils/make_ext4fs.h>
#include <ext4_utils/wipe.h>
#include <openssl/sha.h>
#include <selinux/label.h>
#include <selinux/selinux.h>
#include <ziparchive/zip_archive.h>
#include "applypatch/applypatch.h"
#include "bootloader.h"
#include "edify/expr.h"
#include "error_code.h"
#include "mounts.h"
#include "ota_io.h"
#include "otautil/DirUtil.h"
#include "otautil/ZipUtil.h"
#include "print_sha1.h"
#include "tune2fs.h"
#include "updater/updater.h"
// Send over the buffer to recovery though the command pipe.
static void uiPrint(State* state, const std::string& buffer) {
UpdaterInfo* ui = static_cast<UpdaterInfo*>(state->cookie);
// "line1\nline2\n" will be split into 3 tokens: "line1", "line2" and "".
// So skip sending empty strings to UI.
std::vector<std::string> lines = android::base::Split(buffer, "\n");
for (auto& line: lines) {
if (!line.empty()) {
fprintf(ui->cmd_pipe, "ui_print %s\n", line.c_str());
fprintf(ui->cmd_pipe, "ui_print\n");
}
}
// On the updater side, we need to dump the contents to stderr (which has
// been redirected to the log file). Because the recovery will only print
// the contents to screen when processing pipe command ui_print.
fprintf(stderr, "%s", buffer.c_str());
}
void uiPrintf(State* _Nonnull state, const char* _Nonnull format, ...) {
std::string error_msg;
va_list ap;
va_start(ap, format);
android::base::StringAppendV(&error_msg, format, ap);
va_end(ap);
uiPrint(state, error_msg);
}
static bool is_dir(const std::string& dirpath) {
struct stat st;
return stat(dirpath.c_str(), &st) == 0 && S_ISDIR(st.st_mode);
}
// Create all parent directories of name, if necessary.
static bool make_parents(const std::string& name) {
size_t prev_end = 0;
while (prev_end < name.size()) {
size_t next_end = name.find('/', prev_end + 1);
if (next_end == std::string::npos) {
break;
}
std::string dir_path = name.substr(0, next_end);
if (!is_dir(dir_path)) {
int result = mkdir(dir_path.c_str(), 0700);
if (result != 0) {
printf("failed to mkdir %s when make parents for %s: %s\n", dir_path.c_str(),
name.c_str(), strerror(errno));
return false;
}
printf("created [%s]\n", dir_path.c_str());
}
prev_end = next_end;
}
return true;
}
// mount(fs_type, partition_type, location, mount_point)
// mount(fs_type, partition_type, location, mount_point, mount_options)
//
// fs_type="ext4" partition_type="EMMC" location=device
Value* MountFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 4 && argc != 5) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 4-5 args, got %d", name, argc);
}
std::vector<std::string> args;
if (!ReadArgs(state, argc, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& fs_type = args[0];
const std::string& partition_type = args[1];
const std::string& location = args[2];
const std::string& mount_point = args[3];
std::string mount_options;
if (argc == 5) {
mount_options = args[4];
}
if (fs_type.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "fs_type argument to %s() can't be empty",
name);
}
if (partition_type.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "partition_type argument to %s() can't be empty",
name);
}
if (location.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "location argument to %s() can't be empty",
name);
}
if (mount_point.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "mount_point argument to %s() can't be empty",
name);
}
{
char *secontext = NULL;
if (sehandle) {
selabel_lookup(sehandle, &secontext, mount_point.c_str(), 0755);
setfscreatecon(secontext);
}
mkdir(mount_point.c_str(), 0755);
if (secontext) {
freecon(secontext);
setfscreatecon(NULL);
}
}
if (mount(location.c_str(), mount_point.c_str(), fs_type.c_str(),
MS_NOATIME | MS_NODEV | MS_NODIRATIME, mount_options.c_str()) < 0) {
uiPrintf(state, "%s: failed to mount %s at %s: %s\n",
name, location.c_str(), mount_point.c_str(), strerror(errno));
return StringValue("");
}
return StringValue(mount_point);
}
// is_mounted(mount_point)
Value* IsMountedFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %d", name, argc);
}
std::vector<std::string> args;
if (!ReadArgs(state, argc, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& mount_point = args[0];
if (mount_point.empty()) {
return ErrorAbort(state, kArgsParsingFailure,
"mount_point argument to unmount() can't be empty");
}
scan_mounted_volumes();
MountedVolume* vol = find_mounted_volume_by_mount_point(mount_point.c_str());
if (vol == nullptr) {
return StringValue("");
}
return StringValue(mount_point);
}
Value* UnmountFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %d", name, argc);
}
std::vector<std::string> args;
if (!ReadArgs(state, argc, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& mount_point = args[0];
if (mount_point.empty()) {
return ErrorAbort(state, kArgsParsingFailure,
"mount_point argument to unmount() can't be empty");
}
scan_mounted_volumes();
MountedVolume* vol = find_mounted_volume_by_mount_point(mount_point.c_str());
if (vol == nullptr) {
uiPrintf(state, "unmount of %s failed; no such volume\n", mount_point.c_str());
return nullptr;
} else {
int ret = unmount_mounted_volume(vol);
if (ret != 0) {
uiPrintf(state, "unmount of %s failed (%d): %s\n",
mount_point.c_str(), ret, strerror(errno));
}
}
return StringValue(mount_point);
}
static int exec_cmd(const char* path, char* const argv[]) {
int status;
pid_t child;
if ((child = vfork()) == 0) {
execv(path, argv);
_exit(-1);
}
waitpid(child, &status, 0);
if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
printf("%s failed with status %d\n", path, WEXITSTATUS(status));
}
return WEXITSTATUS(status);
}
// format(fs_type, partition_type, location, fs_size, mount_point)
//
// fs_type="ext4" partition_type="EMMC" location=device fs_size=<bytes> mount_point=<location>
// fs_type="f2fs" partition_type="EMMC" location=device fs_size=<bytes> mount_point=<location>
// if fs_size == 0, then make fs uses the entire partition.
// if fs_size > 0, that is the size to use
// if fs_size < 0, then reserve that many bytes at the end of the partition (not for "f2fs")
Value* FormatFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 5) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 5 args, got %d", name, argc);
}
std::vector<std::string> args;
if (!ReadArgs(state, argc, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& fs_type = args[0];
const std::string& partition_type = args[1];
const std::string& location = args[2];
const std::string& fs_size = args[3];
const std::string& mount_point = args[4];
if (fs_type.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "fs_type argument to %s() can't be empty",
name);
}
if (partition_type.empty()) {
return ErrorAbort(state, kArgsParsingFailure,
"partition_type argument to %s() can't be empty", name);
}
if (location.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "location argument to %s() can't be empty",
name);
}
if (mount_point.empty()) {
return ErrorAbort(state, kArgsParsingFailure,
"mount_point argument to %s() can't be empty", name);
}
int64_t size;
if (!android::base::ParseInt(fs_size, &size)) {
return ErrorAbort(state, kArgsParsingFailure,
"%s: failed to parse int in %s\n", name, fs_size.c_str());
}
if (fs_type == "ext4") {
int status = make_ext4fs(location.c_str(), size, mount_point.c_str(), sehandle);
if (status != 0) {
printf("%s: make_ext4fs failed (%d) on %s", name, status, location.c_str());
return StringValue("");
}
return StringValue(location);
} else if (fs_type == "f2fs") {
if (size < 0) {
printf("%s: fs_size can't be negative for f2fs: %s", name, fs_size.c_str());
return StringValue("");
}
std::string num_sectors = std::to_string(size / 512);
const char *f2fs_path = "/sbin/mkfs.f2fs";
const char* const f2fs_argv[] = {"mkfs.f2fs", "-t", "-d1", location.c_str(),
num_sectors.c_str(), nullptr};
int status = exec_cmd(f2fs_path, (char* const*)f2fs_argv);
if (status != 0) {
printf("%s: mkfs.f2fs failed (%d) on %s", name, status, location.c_str());
return StringValue("");
}
return StringValue(location);
} else {
printf("%s: unsupported fs_type \"%s\" partition_type \"%s\"",
name, fs_type.c_str(), partition_type.c_str());
}
return nullptr;
}
// rename(src_name, dst_name)
// Renames src_name to dst_name. It automatically creates the necessary directories for dst_name.
// Example: rename("system/app/Hangouts/Hangouts.apk", "system/priv-app/Hangouts/Hangouts.apk")
Value* RenameFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %d", name, argc);
}
std::vector<std::string> args;
if (!ReadArgs(state, argc, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& src_name = args[0];
const std::string& dst_name = args[1];
if (src_name.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "src_name argument to %s() can't be empty",
name);
}
if (dst_name.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "dst_name argument to %s() can't be empty",
name);
}
if (!make_parents(dst_name)) {
return ErrorAbort(state, kFileRenameFailure, "Creating parent of %s failed, error %s",
dst_name.c_str(), strerror(errno));
} else if (access(dst_name.c_str(), F_OK) == 0 && access(src_name.c_str(), F_OK) != 0) {
// File was already moved
return StringValue(dst_name);
} else if (rename(src_name.c_str(), dst_name.c_str()) != 0) {
return ErrorAbort(state, kFileRenameFailure, "Rename of %s to %s failed, error %s",
src_name.c_str(), dst_name.c_str(), strerror(errno));
}
return StringValue(dst_name);
}
// delete([filename, ...])
// Deletes all the filenames listed. Returns the number of files successfully deleted.
//
// delete_recursive([dirname, ...])
// Recursively deletes dirnames and all their contents. Returns the number of directories
// successfully deleted.
Value* DeleteFn(const char* name, State* state, int argc, Expr* argv[]) {
std::vector<std::string> paths(argc);
for (int i = 0; i < argc; ++i) {
if (!Evaluate(state, argv[i], &paths[i])) {
return nullptr;
}
}
bool recursive = (strcmp(name, "delete_recursive") == 0);
int success = 0;
for (int i = 0; i < argc; ++i) {
if ((recursive ? dirUnlinkHierarchy(paths[i].c_str()) : unlink(paths[i].c_str())) == 0) {
++success;
}
}
return StringValue(std::to_string(success));
}
Value* ShowProgressFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %d", name, argc);
}
std::vector<std::string> args;
if (!ReadArgs(state, argc, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& frac_str = args[0];
const std::string& sec_str = args[1];
double frac;
if (!android::base::ParseDouble(frac_str.c_str(), &frac)) {
return ErrorAbort(state, kArgsParsingFailure,
"%s: failed to parse double in %s\n", name, frac_str.c_str());
}
int sec;
if (!android::base::ParseInt(sec_str.c_str(), &sec)) {
return ErrorAbort(state, kArgsParsingFailure,
"%s: failed to parse int in %s\n", name, sec_str.c_str());
}
UpdaterInfo* ui = (UpdaterInfo*)(state->cookie);
fprintf(ui->cmd_pipe, "progress %f %d\n", frac, sec);
return StringValue(frac_str);
}
Value* SetProgressFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %d", name, argc);
}
std::vector<std::string> args;
if (!ReadArgs(state, 1, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& frac_str = args[0];
double frac;
if (!android::base::ParseDouble(frac_str.c_str(), &frac)) {
return ErrorAbort(state, kArgsParsingFailure,
"%s: failed to parse double in %s\n", name, frac_str.c_str());
}
UpdaterInfo* ui = (UpdaterInfo*)(state->cookie);
fprintf(ui->cmd_pipe, "set_progress %f\n", frac);
return StringValue(frac_str);
}
// package_extract_dir(package_path, destination_path)
Value* PackageExtractDirFn(const char* name, State* state,
int argc, Expr* argv[]) {
if (argc != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %d", name, argc);
}
std::vector<std::string> args;
if (!ReadArgs(state, 2, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& zip_path = args[0];
const std::string& dest_path = args[1];
ZipArchiveHandle za = ((UpdaterInfo*)(state->cookie))->package_zip;
// To create a consistent system image, never use the clock for timestamps.
struct utimbuf timestamp = { 1217592000, 1217592000 }; // 8/1/2008 default
bool success = ExtractPackageRecursive(za, zip_path, dest_path, &timestamp, sehandle);
return StringValue(success ? "t" : "");
}
// package_extract_file(package_path, destination_path)
// or
// package_extract_file(package_path)
// to return the entire contents of the file as the result of this
// function (the char* returned is actually a FileContents*).
Value* PackageExtractFileFn(const char* name, State* state,
int argc, Expr* argv[]) {
if (argc < 1 || argc > 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 or 2 args, got %d",
name, argc);
}
bool success = false;
if (argc == 2) {
// The two-argument version extracts to a file.
ZipArchiveHandle za = ((UpdaterInfo*)(state->cookie))->package_zip;
std::vector<std::string> args;
if (!ReadArgs(state, 2, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse %d args", name,
argc);
}
const std::string& zip_path = args[0];
const std::string& dest_path = args[1];
ZipString zip_string_path(zip_path.c_str());
ZipEntry entry;
if (FindEntry(za, zip_string_path, &entry) != 0) {
printf("%s: no %s in package\n", name, zip_path.c_str());
return StringValue("");
}
int fd = TEMP_FAILURE_RETRY(ota_open(dest_path.c_str(), O_WRONLY | O_CREAT | O_TRUNC,
S_IRUSR | S_IWUSR));
if (fd == -1) {
printf("%s: can't open %s for write: %s\n", name, dest_path.c_str(), strerror(errno));
return StringValue("");
}
success = ExtractEntryToFile(za, &entry, fd);
if (ota_fsync(fd) == -1) {
printf("fsync of \"%s\" failed: %s\n", dest_path.c_str(), strerror(errno));
success = false;
}
if (ota_close(fd) == -1) {
printf("close of \"%s\" failed: %s\n", dest_path.c_str(), strerror(errno));
success = false;
}
return StringValue(success ? "t" : "");
} else {
// The one-argument version returns the contents of the file
// as the result.
std::vector<std::string> args;
if (!ReadArgs(state, 1, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse %d args", name,
argc);
}
const std::string& zip_path = args[0];
Value* v = new Value(VAL_INVALID, "");
ZipArchiveHandle za = ((UpdaterInfo*)(state->cookie))->package_zip;
ZipString zip_string_path(zip_path.c_str());
ZipEntry entry;
if (FindEntry(za, zip_string_path, &entry) != 0) {
printf("%s: no %s in package\n", name, zip_path.c_str());
return v;
}
v->data.resize(entry.uncompressed_length);
if (ExtractToMemory(za, &entry, reinterpret_cast<uint8_t*>(&v->data[0]),
v->data.size()) != 0) {
printf("%s: faled to extract %zu bytes to memory\n", name, v->data.size());
} else {
success = true;
}
if (!success) {
v->data.clear();
} else {
v->type = VAL_BLOB;
}
return v;
}
}
// symlink target src1 src2 ...
// unlinks any previously existing src1, src2, etc before creating symlinks.
Value* SymlinkFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc == 0) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1+ args, got %d", name, argc);
}
std::string target;
if (!Evaluate(state, argv[0], &target)) {
return nullptr;
}
std::vector<std::string> srcs;
if (!ReadArgs(state, argc-1, argv+1, &srcs)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
int bad = 0;
for (int i = 0; i < argc-1; ++i) {
if (unlink(srcs[i].c_str()) < 0) {
if (errno != ENOENT) {
printf("%s: failed to remove %s: %s\n",
name, srcs[i].c_str(), strerror(errno));
++bad;
}
}
if (!make_parents(srcs[i])) {
printf("%s: failed to symlink %s to %s: making parents failed\n",
name, srcs[i].c_str(), target.c_str());
++bad;
}
if (symlink(target.c_str(), srcs[i].c_str()) < 0) {
printf("%s: failed to symlink %s to %s: %s\n",
name, srcs[i].c_str(), target.c_str(), strerror(errno));
++bad;
}
}
if (bad) {
return ErrorAbort(state, kSymlinkFailure, "%s: some symlinks failed", name);
}
return StringValue("");
}
struct perm_parsed_args {
bool has_uid;
uid_t uid;
bool has_gid;
gid_t gid;
bool has_mode;
mode_t mode;
bool has_fmode;
mode_t fmode;
bool has_dmode;
mode_t dmode;
bool has_selabel;
const char* selabel;
bool has_capabilities;
uint64_t capabilities;
};
static struct perm_parsed_args ParsePermArgs(State * state, int argc,
const std::vector<std::string>& args) {
int i;
struct perm_parsed_args parsed;
int bad = 0;
static int max_warnings = 20;
memset(&parsed, 0, sizeof(parsed));
for (i = 1; i < argc; i += 2) {
if (args[i] == "uid") {
int64_t uid;
if (sscanf(args[i+1].c_str(), "%" SCNd64, &uid) == 1) {
parsed.uid = uid;
parsed.has_uid = true;
} else {
uiPrintf(state, "ParsePermArgs: invalid UID \"%s\"\n", args[i + 1].c_str());
bad++;
}
continue;
}
if (args[i] == "gid") {
int64_t gid;
if (sscanf(args[i+1].c_str(), "%" SCNd64, &gid) == 1) {
parsed.gid = gid;
parsed.has_gid = true;
} else {
uiPrintf(state, "ParsePermArgs: invalid GID \"%s\"\n", args[i + 1].c_str());
bad++;
}
continue;
}
if (args[i] == "mode") {
int32_t mode;
if (sscanf(args[i+1].c_str(), "%" SCNi32, &mode) == 1) {
parsed.mode = mode;
parsed.has_mode = true;
} else {
uiPrintf(state, "ParsePermArgs: invalid mode \"%s\"\n", args[i + 1].c_str());
bad++;
}
continue;
}
if (args[i] == "dmode") {
int32_t mode;
if (sscanf(args[i+1].c_str(), "%" SCNi32, &mode) == 1) {
parsed.dmode = mode;
parsed.has_dmode = true;
} else {
uiPrintf(state, "ParsePermArgs: invalid dmode \"%s\"\n", args[i + 1].c_str());
bad++;
}
continue;
}
if (args[i] == "fmode") {
int32_t mode;
if (sscanf(args[i+1].c_str(), "%" SCNi32, &mode) == 1) {
parsed.fmode = mode;
parsed.has_fmode = true;
} else {
uiPrintf(state, "ParsePermArgs: invalid fmode \"%s\"\n", args[i + 1].c_str());
bad++;
}
continue;
}
if (args[i] == "capabilities") {
int64_t capabilities;
if (sscanf(args[i+1].c_str(), "%" SCNi64, &capabilities) == 1) {
parsed.capabilities = capabilities;
parsed.has_capabilities = true;
} else {
uiPrintf(state, "ParsePermArgs: invalid capabilities \"%s\"\n", args[i + 1].c_str());
bad++;
}
continue;
}
if (args[i] == "selabel") {
if (!args[i+1].empty()) {
parsed.selabel = args[i+1].c_str();
parsed.has_selabel = true;
} else {
uiPrintf(state, "ParsePermArgs: invalid selabel \"%s\"\n", args[i + 1].c_str());
bad++;
}
continue;
}
if (max_warnings != 0) {
printf("ParsedPermArgs: unknown key \"%s\", ignoring\n", args[i].c_str());
max_warnings--;
if (max_warnings == 0) {
printf("ParsedPermArgs: suppressing further warnings\n");
}
}
}
return parsed;
}
static int ApplyParsedPerms(
State * state,
const char* filename,
const struct stat *statptr,
struct perm_parsed_args parsed)
{
int bad = 0;
if (parsed.has_selabel) {
if (lsetfilecon(filename, parsed.selabel) != 0) {
uiPrintf(state, "ApplyParsedPerms: lsetfilecon of %s to %s failed: %s\n",
filename, parsed.selabel, strerror(errno));
bad++;
}
}
/* ignore symlinks */
if (S_ISLNK(statptr->st_mode)) {
return bad;
}
if (parsed.has_uid) {
if (chown(filename, parsed.uid, -1) < 0) {
uiPrintf(state, "ApplyParsedPerms: chown of %s to %d failed: %s\n",
filename, parsed.uid, strerror(errno));
bad++;
}
}
if (parsed.has_gid) {
if (chown(filename, -1, parsed.gid) < 0) {
uiPrintf(state, "ApplyParsedPerms: chgrp of %s to %d failed: %s\n",
filename, parsed.gid, strerror(errno));
bad++;
}
}
if (parsed.has_mode) {
if (chmod(filename, parsed.mode) < 0) {
uiPrintf(state, "ApplyParsedPerms: chmod of %s to %d failed: %s\n",
filename, parsed.mode, strerror(errno));
bad++;
}
}
if (parsed.has_dmode && S_ISDIR(statptr->st_mode)) {
if (chmod(filename, parsed.dmode) < 0) {
uiPrintf(state, "ApplyParsedPerms: chmod of %s to %d failed: %s\n",
filename, parsed.dmode, strerror(errno));
bad++;
}
}
if (parsed.has_fmode && S_ISREG(statptr->st_mode)) {
if (chmod(filename, parsed.fmode) < 0) {
uiPrintf(state, "ApplyParsedPerms: chmod of %s to %d failed: %s\n",
filename, parsed.fmode, strerror(errno));
bad++;
}
}
if (parsed.has_capabilities && S_ISREG(statptr->st_mode)) {
if (parsed.capabilities == 0) {
if ((removexattr(filename, XATTR_NAME_CAPS) == -1) && (errno != ENODATA)) {
// Report failure unless it's ENODATA (attribute not set)
uiPrintf(state, "ApplyParsedPerms: removexattr of %s to %" PRIx64 " failed: %s\n",
filename, parsed.capabilities, strerror(errno));
bad++;
}
} else {
struct vfs_cap_data cap_data;
memset(&cap_data, 0, sizeof(cap_data));
cap_data.magic_etc = VFS_CAP_REVISION | VFS_CAP_FLAGS_EFFECTIVE;
cap_data.data[0].permitted = (uint32_t) (parsed.capabilities & 0xffffffff);
cap_data.data[0].inheritable = 0;
cap_data.data[1].permitted = (uint32_t) (parsed.capabilities >> 32);
cap_data.data[1].inheritable = 0;
if (setxattr(filename, XATTR_NAME_CAPS, &cap_data, sizeof(cap_data), 0) < 0) {
uiPrintf(state, "ApplyParsedPerms: setcap of %s to %" PRIx64 " failed: %s\n",
filename, parsed.capabilities, strerror(errno));
bad++;
}
}
}
return bad;
}
// nftw doesn't allow us to pass along context, so we need to use
// global variables. *sigh*
static struct perm_parsed_args recursive_parsed_args;
static State* recursive_state;
static int do_SetMetadataRecursive(const char* filename, const struct stat *statptr,
int fileflags, struct FTW *pfwt) {
return ApplyParsedPerms(recursive_state, filename, statptr, recursive_parsed_args);
}
static Value* SetMetadataFn(const char* name, State* state, int argc, Expr* argv[]) {
if ((argc % 2) != 1) {
return ErrorAbort(state, kArgsParsingFailure,
"%s() expects an odd number of arguments, got %d", name, argc);
}
std::vector<std::string> args;
if (!ReadArgs(state, argc, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
struct stat sb;
if (lstat(args[0].c_str(), &sb) == -1) {
return ErrorAbort(state, kSetMetadataFailure, "%s: Error on lstat of \"%s\": %s",
name, args[0].c_str(), strerror(errno));
}
struct perm_parsed_args parsed = ParsePermArgs(state, argc, args);
int bad = 0;
bool recursive = (strcmp(name, "set_metadata_recursive") == 0);
if (recursive) {
recursive_parsed_args = parsed;
recursive_state = state;
bad += nftw(args[0].c_str(), do_SetMetadataRecursive, 30, FTW_CHDIR | FTW_DEPTH | FTW_PHYS);
memset(&recursive_parsed_args, 0, sizeof(recursive_parsed_args));
recursive_state = NULL;
} else {
bad += ApplyParsedPerms(state, args[0].c_str(), &sb, parsed);
}
if (bad > 0) {
return ErrorAbort(state, kSetMetadataFailure, "%s: some changes failed", name);
}
return StringValue("");
}
Value* GetPropFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %d", name, argc);
}
std::string key;
if (!Evaluate(state, argv[0], &key)) {
return nullptr;
}
std::string value = android::base::GetProperty(key, "");
return StringValue(value);
}
// file_getprop(file, key)
//
// interprets 'file' as a getprop-style file (key=value pairs, one
// per line. # comment lines, blank lines, lines without '=' ignored),
// and returns the value for 'key' (or "" if it isn't defined).
Value* FileGetPropFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %d", name, argc);
}
std::vector<std::string> args;
if (!ReadArgs(state, 2, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
const std::string& key = args[1];
struct stat st;
if (stat(filename.c_str(), &st) < 0) {
return ErrorAbort(state, kFileGetPropFailure, "%s: failed to stat \"%s\": %s", name,
filename.c_str(), strerror(errno));
}
constexpr off_t MAX_FILE_GETPROP_SIZE = 65536;
if (st.st_size > MAX_FILE_GETPROP_SIZE) {
return ErrorAbort(state, kFileGetPropFailure, "%s too large for %s (max %lld)",
filename.c_str(), name, static_cast<long long>(MAX_FILE_GETPROP_SIZE));
}
std::string buffer(st.st_size, '\0');
FILE* f = ota_fopen(filename.c_str(), "rb");
if (f == nullptr) {
return ErrorAbort(state, kFileOpenFailure, "%s: failed to open %s: %s", name,
filename.c_str(), strerror(errno));
}
if (ota_fread(&buffer[0], 1, st.st_size, f) != static_cast<size_t>(st.st_size)) {
ErrorAbort(state, kFreadFailure, "%s: failed to read %zu bytes from %s",
name, static_cast<size_t>(st.st_size), filename.c_str());
ota_fclose(f);
return nullptr;
}
ota_fclose(f);
std::vector<std::string> lines = android::base::Split(buffer, "\n");
for (size_t i = 0; i < lines.size(); i++) {
std::string line = android::base::Trim(lines[i]);
// comment or blank line: skip to next line
if (line.empty() || line[0] == '#') {
continue;
}
size_t equal_pos = line.find('=');
if (equal_pos == std::string::npos) {
continue;
}
// trim whitespace between key and '='
std::string str = android::base::Trim(line.substr(0, equal_pos));
// not the key we're looking for
if (key != str) continue;
return StringValue(android::base::Trim(line.substr(equal_pos + 1)));
}
return StringValue("");
}
// apply_patch_space(bytes)
Value* ApplyPatchSpaceFn(const char* name, State* state,
int argc, Expr* argv[]) {
std::vector<std::string> args;
if (!ReadArgs(state, 1, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& bytes_str = args[0];
size_t bytes;
if (!android::base::ParseUint(bytes_str.c_str(), &bytes)) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): can't parse \"%s\" as byte count\n\n",
name, bytes_str.c_str());
}
return StringValue(CacheSizeCheck(bytes) ? "" : "t");
}
// apply_patch(file, size, init_sha1, tgt_sha1, patch)
Value* ApplyPatchFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc < 6 || (argc % 2) == 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): expected at least 6 args and an "
"even number, got %d", name, argc);
}
std::vector<std::string> args;
if (!ReadArgs(state, 4, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& source_filename = args[0];
const std::string& target_filename = args[1];
const std::string& target_sha1 = args[2];
const std::string& target_size_str = args[3];
size_t target_size;
if (!android::base::ParseUint(target_size_str.c_str(), &target_size)) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): can't parse \"%s\" as byte count",
name, target_size_str.c_str());
}
int patchcount = (argc-4) / 2;
std::vector<std::unique_ptr<Value>> arg_values;
if (!ReadValueArgs(state, argc-4, argv+4, &arg_values)) {
return nullptr;
}
for (int i = 0; i < patchcount; ++i) {
if (arg_values[i * 2]->type != VAL_STRING) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): sha-1 #%d is not string", name,
i * 2);
}
if (arg_values[i * 2 + 1]->type != VAL_BLOB) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): patch #%d is not blob", name,
i * 2 + 1);
}
}
std::vector<std::string> patch_sha_str;
std::vector<std::unique_ptr<Value>> patches;
for (int i = 0; i < patchcount; ++i) {
patch_sha_str.push_back(arg_values[i * 2]->data);
patches.push_back(std::move(arg_values[i * 2 + 1]));
}
int result = applypatch(source_filename.c_str(), target_filename.c_str(),
target_sha1.c_str(), target_size,
patch_sha_str, patches, nullptr);
return StringValue(result == 0 ? "t" : "");
}
// apply_patch_check(file, [sha1_1, ...])
Value* ApplyPatchCheckFn(const char* name, State* state,
int argc, Expr* argv[]) {
if (argc < 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): expected at least 1 arg, got %d",
name, argc);
}
std::vector<std::string> args;
if (!ReadArgs(state, 1, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
std::vector<std::string> sha1s;
if (!ReadArgs(state, argc - 1, argv + 1, &sha1s)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
int result = applypatch_check(filename.c_str(), sha1s);
return StringValue(result == 0 ? "t" : "");
}
// This is the updater side handler for ui_print() in edify script. Contents
// will be sent over to the recovery side for on-screen display.
Value* UIPrintFn(const char* name, State* state, int argc, Expr* argv[]) {
std::vector<std::string> args;
if (!ReadArgs(state, argc, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
std::string buffer = android::base::Join(args, "") + "\n";
uiPrint(state, buffer);
return StringValue(buffer);
}
Value* WipeCacheFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 0) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects no args, got %d", name, argc);
}
fprintf(((UpdaterInfo*)(state->cookie))->cmd_pipe, "wipe_cache\n");
return StringValue("t");
}
Value* RunProgramFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc < 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects at least 1 arg", name);
}
std::vector<std::string> args;
if (!ReadArgs(state, argc, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
char* args2[argc+1];
for (int i = 0; i < argc; i++) {
args2[i] = &args[i][0];
}
args2[argc] = nullptr;
printf("about to run program [%s] with %d args\n", args2[0], argc);
pid_t child = fork();
if (child == 0) {
execv(args2[0], args2);
printf("run_program: execv failed: %s\n", strerror(errno));
_exit(1);
}
int status;
waitpid(child, &status, 0);
if (WIFEXITED(status)) {
if (WEXITSTATUS(status) != 0) {
printf("run_program: child exited with status %d\n",
WEXITSTATUS(status));
}
} else if (WIFSIGNALED(status)) {
printf("run_program: child terminated by signal %d\n",
WTERMSIG(status));
}
return StringValue(android::base::StringPrintf("%d", status));
}
// sha1_check(data)
// to return the sha1 of the data (given in the format returned by
// read_file).
//
// sha1_check(data, sha1_hex, [sha1_hex, ...])
// returns the sha1 of the file if it matches any of the hex
// strings passed, or "" if it does not equal any of them.
//
Value* Sha1CheckFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc < 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects at least 1 arg", name);
}
std::vector<std::unique_ptr<Value>> args;
if (!ReadValueArgs(state, argc, argv, &args)) {
return nullptr;
}
if (args[0]->type == VAL_INVALID) {
return StringValue("");
}
uint8_t digest[SHA_DIGEST_LENGTH];
SHA1(reinterpret_cast<const uint8_t*>(args[0]->data.c_str()), args[0]->data.size(), digest);
if (argc == 1) {
return StringValue(print_sha1(digest));
}
for (int i = 1; i < argc; ++i) {
uint8_t arg_digest[SHA_DIGEST_LENGTH];
if (args[i]->type != VAL_STRING) {
printf("%s(): arg %d is not a string; skipping", name, i);
} else if (ParseSha1(args[i]->data.c_str(), arg_digest) != 0) {
// Warn about bad args and skip them.
printf("%s(): error parsing \"%s\" as sha-1; skipping", name, args[i]->data.c_str());
} else if (memcmp(digest, arg_digest, SHA_DIGEST_LENGTH) == 0) {
// Found a match.
return args[i].release();
}
}
// Didn't match any of the hex strings; return false.
return StringValue("");
}
// Read a local file and return its contents (the Value* returned
// is actually a FileContents*).
Value* ReadFileFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %d", name, argc);
}
std::vector<std::string> args;
if (!ReadArgs(state, 1, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
Value* v = new Value(VAL_INVALID, "");
FileContents fc;
if (LoadFileContents(filename.c_str(), &fc) == 0) {
v->type = VAL_BLOB;
v->data = std::string(fc.data.begin(), fc.data.end());
}
return v;
}
// Immediately reboot the device. Recovery is not finished normally,
// so if you reboot into recovery it will re-start applying the
// current package (because nothing has cleared the copy of the
// arguments stored in the BCB).
//
// The argument is the partition name passed to the android reboot
// property. It can be "recovery" to boot from the recovery
// partition, or "" (empty string) to boot from the regular boot
// partition.
Value* RebootNowFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %d", name, argc);
}
std::vector<std::string> args;
if (!ReadArgs(state, 2, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
const std::string& property = args[1];
// zero out the 'command' field of the bootloader message.
char buffer[80];
memset(buffer, 0, sizeof(((struct bootloader_message*)0)->command));
FILE* f = ota_fopen(filename.c_str(), "r+b");
fseek(f, offsetof(struct bootloader_message, command), SEEK_SET);
ota_fwrite(buffer, sizeof(((struct bootloader_message*)0)->command), 1, f);
ota_fclose(f);
std::string reboot_cmd = "reboot,";
reboot_cmd += property;
android::base::SetProperty(ANDROID_RB_PROPERTY, reboot_cmd);
sleep(5);
return ErrorAbort(state, kRebootFailure, "%s() failed to reboot", name);
}
// Store a string value somewhere that future invocations of recovery
// can access it. This value is called the "stage" and can be used to
// drive packages that need to do reboots in the middle of
// installation and keep track of where they are in the multi-stage
// install.
//
// The first argument is the block device for the misc partition
// ("/misc" in the fstab), which is where this value is stored. The
// second argument is the string to store; it should not exceed 31
// bytes.
Value* SetStageFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %d", name, argc);
}
std::vector<std::string> args;
if (!ReadArgs(state, 2, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
std::string& stagestr = args[1];
// Store this value in the misc partition, immediately after the
// bootloader message that the main recovery uses to save its
// arguments in case of the device restarting midway through
// package installation.
FILE* f = ota_fopen(filename.c_str(), "r+b");
fseek(f, offsetof(struct bootloader_message, stage), SEEK_SET);
size_t to_write = stagestr.size();
size_t max_size = sizeof(((struct bootloader_message*)0)->stage);
if (to_write > max_size) {
to_write = max_size;
stagestr = stagestr.substr(0, max_size-1);
}
size_t status = ota_fwrite(stagestr.c_str(), to_write, 1, f);
ota_fclose(f);
if (status != to_write) {
return StringValue("");
}
return StringValue(filename);
}
// Return the value most recently saved with SetStageFn. The argument
// is the block device for the misc partition.
Value* GetStageFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %d", name, argc);
}
std::vector<std::string> args;
if (!ReadArgs(state, 1, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
char buffer[sizeof(((struct bootloader_message*)0)->stage)];
FILE* f = ota_fopen(filename.c_str(), "rb");
fseek(f, offsetof(struct bootloader_message, stage), SEEK_SET);
size_t status = ota_fread(buffer, sizeof(buffer), 1, f);
ota_fclose(f);
if (status != sizeof(buffer)) {
return StringValue("");
}
buffer[sizeof(buffer)-1] = '\0';
return StringValue(buffer);
}
Value* WipeBlockDeviceFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %d", name, argc);
}
std::vector<std::string> args;
if (!ReadArgs(state, 2, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
const std::string& len_str = args[1];
size_t len;
if (!android::base::ParseUint(len_str.c_str(), &len)) {
return nullptr;
}
int fd = ota_open(filename.c_str(), O_WRONLY, 0644);
// The wipe_block_device function in ext4_utils returns 0 on success and 1
// for failure.
int status = wipe_block_device(fd, len);
ota_close(fd);
return StringValue((status == 0) ? "t" : "");
}
Value* EnableRebootFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 0) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects no args, got %d", name, argc);
}
UpdaterInfo* ui = (UpdaterInfo*)(state->cookie);
fprintf(ui->cmd_pipe, "enable_reboot\n");
return StringValue("t");
}
Value* Tune2FsFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc == 0) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects args, got %d", name, argc);
}
std::vector<std::string> args;
if (!ReadArgs(state, argc, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() could not read args", name);
}
char* args2[argc+1];
// Tune2fs expects the program name as its args[0]
args2[0] = const_cast<char*>(name);
if (args2[0] == nullptr) {
return nullptr;
}
for (int i = 0; i < argc; ++i) {
args2[i + 1] = &args[i][0];
}
// tune2fs changes the file system parameters on an ext2 file system; it
// returns 0 on success.
int result = tune2fs_main(argc + 1, args2);
if (result != 0) {
return ErrorAbort(state, kTune2FsFailure, "%s() returned error code %d", name, result);
}
return StringValue("t");
}
void RegisterInstallFunctions() {
RegisterFunction("mount", MountFn);
RegisterFunction("is_mounted", IsMountedFn);
RegisterFunction("unmount", UnmountFn);
RegisterFunction("format", FormatFn);
RegisterFunction("show_progress", ShowProgressFn);
RegisterFunction("set_progress", SetProgressFn);
RegisterFunction("delete", DeleteFn);
RegisterFunction("delete_recursive", DeleteFn);
RegisterFunction("package_extract_dir", PackageExtractDirFn);
RegisterFunction("package_extract_file", PackageExtractFileFn);
RegisterFunction("symlink", SymlinkFn);
// Usage:
// set_metadata("filename", "key1", "value1", "key2", "value2", ...)
// Example:
// set_metadata("/system/bin/netcfg", "uid", 0, "gid", 3003, "mode", 02750, "selabel", "u:object_r:system_file:s0", "capabilities", 0x0);
RegisterFunction("set_metadata", SetMetadataFn);
// Usage:
// set_metadata_recursive("dirname", "key1", "value1", "key2", "value2", ...)
// Example:
// set_metadata_recursive("/system", "uid", 0, "gid", 0, "fmode", 0644, "dmode", 0755, "selabel", "u:object_r:system_file:s0", "capabilities", 0x0);
RegisterFunction("set_metadata_recursive", SetMetadataFn);
RegisterFunction("getprop", GetPropFn);
RegisterFunction("file_getprop", FileGetPropFn);
RegisterFunction("apply_patch", ApplyPatchFn);
RegisterFunction("apply_patch_check", ApplyPatchCheckFn);
RegisterFunction("apply_patch_space", ApplyPatchSpaceFn);
RegisterFunction("wipe_block_device", WipeBlockDeviceFn);
RegisterFunction("read_file", ReadFileFn);
RegisterFunction("sha1_check", Sha1CheckFn);
RegisterFunction("rename", RenameFn);
RegisterFunction("wipe_cache", WipeCacheFn);
RegisterFunction("ui_print", UIPrintFn);
RegisterFunction("run_program", RunProgramFn);
RegisterFunction("reboot_now", RebootNowFn);
RegisterFunction("get_stage", GetStageFn);
RegisterFunction("set_stage", SetStageFn);
RegisterFunction("enable_reboot", EnableRebootFn);
RegisterFunction("tune2fs", Tune2FsFn);
}