| /* |
| * Copyright (C) 2010 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* TO DO: |
| * 1. Perhaps keep several copies of the encrypted key, in case something |
| * goes horribly wrong? |
| * |
| */ |
| |
| #include <sys/types.h> |
| #include <sys/stat.h> |
| #include <fcntl.h> |
| #include <unistd.h> |
| #include <stdio.h> |
| #include <sys/ioctl.h> |
| #include <linux/dm-ioctl.h> |
| #include <libgen.h> |
| #include <stdlib.h> |
| #include <sys/param.h> |
| #include <string.h> |
| #include <sys/mount.h> |
| #include <openssl/evp.h> |
| #include <openssl/sha.h> |
| #include <errno.h> |
| #include <cutils/android_reboot.h> |
| #include <ext4.h> |
| #include <linux/kdev_t.h> |
| #include "cryptfs.h" |
| #define LOG_TAG "Cryptfs" |
| #include "cutils/log.h" |
| #include "cutils/properties.h" |
| #include "hardware_legacy/power.h" |
| //#include "VolumeManager.h" |
| |
| #define DM_CRYPT_BUF_SIZE 4096 |
| #define DATA_MNT_POINT "/data" |
| |
| #define HASH_COUNT 2000 |
| #define KEY_LEN_BYTES 16 |
| #define IV_LEN_BYTES 16 |
| |
| #define KEY_LOC_PROP "ro.crypto.keyfile.userdata" |
| #define KEY_IN_FOOTER "footer" |
| |
| #define EXT4_FS 1 |
| #define FAT_FS 2 |
| |
| char *me = "cryptfs"; |
| |
| static unsigned char saved_master_key[KEY_LEN_BYTES]; |
| static char *saved_data_blkdev; |
| static char *saved_mount_point; |
| static int master_key_saved = 0; |
| |
| static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags) |
| { |
| memset(io, 0, dataSize); |
| io->data_size = dataSize; |
| io->data_start = sizeof(struct dm_ioctl); |
| io->version[0] = 4; |
| io->version[1] = 0; |
| io->version[2] = 0; |
| io->flags = flags; |
| if (name) { |
| strncpy(io->name, name, sizeof(io->name)); |
| } |
| } |
| |
| static unsigned int get_fs_size(char *dev) |
| { |
| int fd, block_size; |
| struct ext4_super_block sb; |
| off64_t len; |
| |
| if ((fd = open(dev, O_RDONLY)) < 0) { |
| SLOGE("Cannot open device to get filesystem size "); |
| return 0; |
| } |
| |
| if (lseek64(fd, 1024, SEEK_SET) < 0) { |
| SLOGE("Cannot seek to superblock"); |
| return 0; |
| } |
| |
| if (read(fd, &sb, sizeof(sb)) != sizeof(sb)) { |
| SLOGE("Cannot read superblock"); |
| return 0; |
| } |
| |
| close(fd); |
| |
| block_size = 1024 << sb.s_log_block_size; |
| /* compute length in bytes */ |
| len = ( ((off64_t)sb.s_blocks_count_hi << 32) + sb.s_blocks_count_lo) * block_size; |
| |
| /* return length in sectors */ |
| return (unsigned int) (len / 512); |
| } |
| |
| static unsigned int get_blkdev_size(int fd) |
| { |
| unsigned int nr_sec; |
| |
| if ( (ioctl(fd, BLKGETSIZE, &nr_sec)) == -1) { |
| nr_sec = 0; |
| } |
| |
| return nr_sec; |
| } |
| |
| /* key or salt can be NULL, in which case just skip writing that value. Useful to |
| * update the failed mount count but not change the key. |
| */ |
| static int put_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr, |
| unsigned char *key, unsigned char *salt) |
| { |
| int fd; |
| unsigned int nr_sec, cnt; |
| off64_t off; |
| int rc = -1; |
| char *fname; |
| char key_loc[PROPERTY_VALUE_MAX]; |
| struct stat statbuf; |
| |
| property_get(KEY_LOC_PROP, key_loc, KEY_IN_FOOTER); |
| |
| if (!strcmp(key_loc, KEY_IN_FOOTER)) { |
| fname = real_blk_name; |
| if ( (fd = open(fname, O_RDWR)) < 0) { |
| SLOGE("Cannot open real block device %s\n", fname); |
| return -1; |
| } |
| |
| if ( (nr_sec = get_blkdev_size(fd)) == 0) { |
| SLOGE("Cannot get size of block device %s\n", fname); |
| goto errout; |
| } |
| |
| /* If it's an encrypted Android partition, the last 16 Kbytes contain the |
| * encryption info footer and key, and plenty of bytes to spare for future |
| * growth. |
| */ |
| off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET; |
| |
| if (lseek64(fd, off, SEEK_SET) == -1) { |
| SLOGE("Cannot seek to real block device footer\n"); |
| goto errout; |
| } |
| } else if (key_loc[0] == '/') { |
| fname = key_loc; |
| if ( (fd = open(fname, O_RDWR | O_CREAT, 0600)) < 0) { |
| SLOGE("Cannot open footer file %s\n", fname); |
| return -1; |
| } |
| } else { |
| SLOGE("Unexpected value for" KEY_LOC_PROP "\n"); |
| return -1;; |
| } |
| |
| if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) { |
| SLOGE("Cannot write real block device footer\n"); |
| goto errout; |
| } |
| |
| if (key) { |
| if (crypt_ftr->keysize != KEY_LEN_BYTES) { |
| SLOGE("Keysize of %d bits not supported for real block device %s\n", |
| crypt_ftr->keysize*8, fname); |
| goto errout; |
| } |
| |
| if ( (cnt = write(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) { |
| SLOGE("Cannot write key for real block device %s\n", fname); |
| goto errout; |
| } |
| } |
| |
| if (salt) { |
| /* Compute the offset from the last write to the salt */ |
| off = KEY_TO_SALT_PADDING; |
| if (! key) |
| off += crypt_ftr->keysize; |
| |
| if (lseek64(fd, off, SEEK_CUR) == -1) { |
| SLOGE("Cannot seek to real block device salt \n"); |
| goto errout; |
| } |
| |
| if ( (cnt = write(fd, salt, SALT_LEN)) != SALT_LEN) { |
| SLOGE("Cannot write salt for real block device %s\n", fname); |
| goto errout; |
| } |
| } |
| |
| fstat(fd, &statbuf); |
| /* If the keys are kept on a raw block device, do not try to truncate it. */ |
| if (S_ISREG(statbuf.st_mode) && (key_loc[0] == '/')) { |
| if (ftruncate(fd, 0x4000)) { |
| SLOGE("Cannot set footer file size\n", fname); |
| goto errout; |
| } |
| } |
| |
| /* Success! */ |
| rc = 0; |
| |
| errout: |
| close(fd); |
| return rc; |
| |
| } |
| |
| static int get_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr, |
| unsigned char *key, unsigned char *salt) |
| { |
| int fd; |
| unsigned int nr_sec, cnt; |
| off64_t off; |
| int rc = -1; |
| char key_loc[PROPERTY_VALUE_MAX]; |
| char *fname; |
| struct stat statbuf; |
| |
| property_get(KEY_LOC_PROP, key_loc, KEY_IN_FOOTER); |
| |
| if (!strcmp(key_loc, KEY_IN_FOOTER)) { |
| fname = real_blk_name; |
| if ( (fd = open(fname, O_RDONLY)) < 0) { |
| printf("Cannot open real block device %s\n", fname); |
| return -1; |
| } |
| |
| if ( (nr_sec = get_blkdev_size(fd)) == 0) { |
| SLOGE("Cannot get size of block device %s\n", fname); |
| goto errout; |
| } |
| |
| /* If it's an encrypted Android partition, the last 16 Kbytes contain the |
| * encryption info footer and key, and plenty of bytes to spare for future |
| * growth. |
| */ |
| off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET; |
| |
| if (lseek64(fd, off, SEEK_SET) == -1) { |
| printf("Cannot seek to real block device footer\n"); |
| goto errout; |
| } |
| } else if (key_loc[0] == '/') { |
| fname = key_loc; |
| if ( (fd = open(fname, O_RDONLY)) < 0) { |
| printf("Cannot open footer file %s\n", fname); |
| return -1; |
| } |
| |
| /* Make sure it's 16 Kbytes in length */ |
| fstat(fd, &statbuf); |
| if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) { |
| printf("footer file %s is not the expected size!\n", fname); |
| goto errout; |
| } |
| } else { |
| printf("Unexpected value for" KEY_LOC_PROP "\n"); |
| return -1;; |
| } |
| |
| if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) { |
| printf("Cannot read real block device footer\n"); |
| goto errout; |
| } |
| |
| if (crypt_ftr->magic != CRYPT_MNT_MAGIC) { |
| printf("Bad magic for real block device %s\n", fname); |
| goto errout; |
| } |
| |
| if (crypt_ftr->major_version != 1) { |
| printf("Cannot understand major version %d real block device footer\n", |
| crypt_ftr->major_version); |
| goto errout; |
| } |
| |
| if (crypt_ftr->minor_version != 0) { |
| printf("Warning: crypto footer minor version %d, expected 0, continuing...\n", |
| crypt_ftr->minor_version); |
| } |
| |
| if (crypt_ftr->ftr_size > sizeof(struct crypt_mnt_ftr)) { |
| /* the footer size is bigger than we expected. |
| * Skip to it's stated end so we can read the key. |
| */ |
| if (lseek(fd, crypt_ftr->ftr_size - sizeof(struct crypt_mnt_ftr), SEEK_CUR) == -1) { |
| printf("Cannot seek to start of key\n"); |
| goto errout; |
| } |
| } |
| |
| if (crypt_ftr->keysize != KEY_LEN_BYTES) { |
| printf("Keysize of %d bits not supported for real block device %s\n", |
| crypt_ftr->keysize * 8, fname); |
| goto errout; |
| } |
| |
| if ( (cnt = read(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) { |
| printf("Cannot read key for real block device %s\n", fname); |
| goto errout; |
| } |
| |
| if (lseek64(fd, KEY_TO_SALT_PADDING, SEEK_CUR) == -1) { |
| printf("Cannot seek to real block device salt\n"); |
| goto errout; |
| } |
| |
| if ( (cnt = read(fd, salt, SALT_LEN)) != SALT_LEN) { |
| printf("Cannot read salt for real block device %s\n", fname); |
| goto errout; |
| } |
| |
| /* Success! */ |
| rc = 0; |
| |
| errout: |
| close(fd); |
| return rc; |
| } |
| |
| /* Convert a binary key of specified length into an ascii hex string equivalent, |
| * without the leading 0x and with null termination |
| */ |
| void convert_key_to_hex_ascii(unsigned char *master_key, unsigned int keysize, |
| char *master_key_ascii) |
| { |
| unsigned int i, a; |
| unsigned char nibble; |
| |
| for (i=0, a=0; i<keysize; i++, a+=2) { |
| /* For each byte, write out two ascii hex digits */ |
| nibble = (master_key[i] >> 4) & 0xf; |
| master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30); |
| |
| nibble = master_key[i] & 0xf; |
| master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30); |
| } |
| |
| /* Add the null termination */ |
| master_key_ascii[a] = '\0'; |
| |
| } |
| |
| static int create_crypto_blk_dev(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key, |
| char *real_blk_name, char *crypto_blk_name, const char *name) |
| { |
| char buffer[DM_CRYPT_BUF_SIZE]; |
| char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */ |
| char *crypt_params; |
| struct dm_ioctl *io; |
| struct dm_target_spec *tgt; |
| unsigned int minor; |
| int fd; |
| int retval = -1; |
| |
| if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) { |
| printf("Cannot open device-mapper\n"); |
| goto errout; |
| } |
| |
| io = (struct dm_ioctl *) buffer; |
| |
| ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); |
| if (ioctl(fd, DM_DEV_CREATE, io)) { |
| printf("Cannot create dm-crypt device\n"); |
| goto errout; |
| } |
| |
| /* Get the device status, in particular, the name of it's device file */ |
| ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); |
| if (ioctl(fd, DM_DEV_STATUS, io)) { |
| printf("Cannot retrieve dm-crypt device status\n"); |
| goto errout; |
| } |
| minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00); |
| snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor); |
| |
| /* Load the mapping table for this device */ |
| tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)]; |
| |
| ioctl_init(io, 4096, name, 0); |
| io->target_count = 1; |
| tgt->status = 0; |
| tgt->sector_start = 0; |
| tgt->length = crypt_ftr->fs_size; |
| strcpy(tgt->target_type, "crypt"); |
| |
| crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec); |
| convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii); |
| sprintf(crypt_params, "%s %s 0 %s 0", crypt_ftr->crypto_type_name, |
| master_key_ascii, real_blk_name); |
| crypt_params += strlen(crypt_params) + 1; |
| crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */ |
| tgt->next = crypt_params - buffer; |
| |
| if (ioctl(fd, DM_TABLE_LOAD, io)) { |
| printf("Cannot load dm-crypt mapping table.\n"); |
| goto errout; |
| } |
| |
| /* Resume this device to activate it */ |
| ioctl_init(io, 4096, name, 0); |
| |
| if (ioctl(fd, DM_DEV_SUSPEND, io)) { |
| printf("Cannot resume the dm-crypt device\n"); |
| goto errout; |
| } |
| |
| /* We made it here with no errors. Woot! */ |
| retval = 0; |
| |
| errout: |
| close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */ |
| |
| return retval; |
| } |
| |
| static int delete_crypto_blk_dev(char *name) |
| { |
| int fd; |
| char buffer[DM_CRYPT_BUF_SIZE]; |
| struct dm_ioctl *io; |
| int retval = -1; |
| |
| if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) { |
| printf("Cannot open device-mapper\n"); |
| goto errout; |
| } |
| |
| io = (struct dm_ioctl *) buffer; |
| |
| ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); |
| if (ioctl(fd, DM_DEV_REMOVE, io)) { |
| printf("Cannot remove dm-crypt device\n"); |
| goto errout; |
| } |
| |
| /* We made it here with no errors. Woot! */ |
| retval = 0; |
| |
| errout: |
| close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */ |
| |
| return retval; |
| |
| } |
| |
| static void pbkdf2(char *passwd, unsigned char *salt, unsigned char *ikey) |
| { |
| /* Turn the password into a key and IV that can decrypt the master key */ |
| PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, SALT_LEN, |
| HASH_COUNT, KEY_LEN_BYTES+IV_LEN_BYTES, ikey); |
| } |
| |
| static int encrypt_master_key(char *passwd, unsigned char *salt, |
| unsigned char *decrypted_master_key, |
| unsigned char *encrypted_master_key) |
| { |
| unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */ |
| EVP_CIPHER_CTX e_ctx; |
| int encrypted_len, final_len; |
| |
| /* Turn the password into a key and IV that can decrypt the master key */ |
| pbkdf2(passwd, salt, ikey); |
| |
| /* Initialize the decryption engine */ |
| if (! EVP_EncryptInit(&e_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) { |
| SLOGE("EVP_EncryptInit failed\n"); |
| return -1; |
| } |
| EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */ |
| |
| /* Encrypt the master key */ |
| if (! EVP_EncryptUpdate(&e_ctx, encrypted_master_key, &encrypted_len, |
| decrypted_master_key, KEY_LEN_BYTES)) { |
| SLOGE("EVP_EncryptUpdate failed\n"); |
| return -1; |
| } |
| if (! EVP_EncryptFinal(&e_ctx, encrypted_master_key + encrypted_len, &final_len)) { |
| SLOGE("EVP_EncryptFinal failed\n"); |
| return -1; |
| } |
| |
| if (encrypted_len + final_len != KEY_LEN_BYTES) { |
| SLOGE("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len); |
| return -1; |
| } else { |
| return 0; |
| } |
| } |
| |
| static int decrypt_master_key(char *passwd, unsigned char *salt, |
| unsigned char *encrypted_master_key, |
| unsigned char *decrypted_master_key) |
| { |
| unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */ |
| EVP_CIPHER_CTX d_ctx; |
| int decrypted_len, final_len; |
| |
| /* Turn the password into a key and IV that can decrypt the master key */ |
| pbkdf2(passwd, salt, ikey); |
| |
| /* Initialize the decryption engine */ |
| if (! EVP_DecryptInit(&d_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) { |
| return -1; |
| } |
| EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */ |
| /* Decrypt the master key */ |
| if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len, |
| encrypted_master_key, KEY_LEN_BYTES)) { |
| return -1; |
| } |
| if (! EVP_DecryptFinal(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) { |
| return -1; |
| } |
| |
| if (decrypted_len + final_len != KEY_LEN_BYTES) { |
| return -1; |
| } else { |
| return 0; |
| } |
| } |
| |
| static int create_encrypted_random_key(char *passwd, unsigned char *master_key, unsigned char *salt) |
| { |
| int fd; |
| unsigned char key_buf[KEY_LEN_BYTES]; |
| EVP_CIPHER_CTX e_ctx; |
| int encrypted_len, final_len; |
| |
| /* Get some random bits for a key */ |
| fd = open("/dev/urandom", O_RDONLY); |
| read(fd, key_buf, sizeof(key_buf)); |
| read(fd, salt, SALT_LEN); |
| close(fd); |
| |
| /* Now encrypt it with the password */ |
| return encrypt_master_key(passwd, salt, key_buf, master_key); |
| } |
| |
| static int get_orig_mount_parms(char *mount_point, char *fs_type, char *real_blkdev, |
| unsigned long *mnt_flags, char *fs_options) |
| { |
| char mount_point2[PROPERTY_VALUE_MAX]; |
| char fs_flags[PROPERTY_VALUE_MAX]; |
| |
| property_get("ro.crypto.fs_type", fs_type, ""); |
| property_get("ro.crypto.fs_real_blkdev", real_blkdev, ""); |
| property_get("ro.crypto.fs_mnt_point", mount_point2, ""); |
| property_get("ro.crypto.fs_options", fs_options, ""); |
| property_get("ro.crypto.fs_flags", fs_flags, ""); |
| *mnt_flags = strtol(fs_flags, 0, 0); |
| |
| if (strcmp(mount_point, mount_point2)) { |
| /* Consistency check. These should match. If not, something odd happened. */ |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int wait_and_unmount(char *mountpoint) |
| { |
| int i, rc; |
| #define WAIT_UNMOUNT_COUNT 20 |
| |
| /* Now umount the tmpfs filesystem */ |
| for (i=0; i<WAIT_UNMOUNT_COUNT; i++) { |
| if (umount(mountpoint)) { |
| if (errno == EINVAL) { |
| /* EINVAL is returned if the directory is not a mountpoint, |
| * i.e. there is no filesystem mounted there. So just get out. |
| */ |
| break; |
| } |
| sleep(1); |
| i++; |
| } else { |
| break; |
| } |
| } |
| |
| if (i < WAIT_UNMOUNT_COUNT) { |
| SLOGD("unmounting %s succeeded\n", mountpoint); |
| rc = 0; |
| } else { |
| SLOGE("unmounting %s failed\n", mountpoint); |
| rc = -1; |
| } |
| |
| return rc; |
| } |
| |
| #define DATA_PREP_TIMEOUT 100 |
| static int prep_data_fs(void) |
| { |
| int i; |
| |
| /* Do the prep of the /data filesystem */ |
| property_set("vold.post_fs_data_done", "0"); |
| property_set("vold.decrypt", "trigger_post_fs_data"); |
| SLOGD("Just triggered post_fs_data\n"); |
| |
| /* Wait a max of 25 seconds, hopefully it takes much less */ |
| for (i=0; i<DATA_PREP_TIMEOUT; i++) { |
| char p[PROPERTY_VALUE_MAX]; |
| |
| property_get("vold.post_fs_data_done", p, "0"); |
| if (*p == '1') { |
| break; |
| } else { |
| usleep(250000); |
| } |
| } |
| if (i == DATA_PREP_TIMEOUT) { |
| /* Ugh, we failed to prep /data in time. Bail. */ |
| return -1; |
| } else { |
| SLOGD("post_fs_data done\n"); |
| return 0; |
| } |
| } |
| |
| int cryptfs_restart(void) |
| { |
| char fs_type[32]; |
| char real_blkdev[MAXPATHLEN]; |
| char crypto_blkdev[MAXPATHLEN]; |
| char fs_options[256]; |
| unsigned long mnt_flags; |
| struct stat statbuf; |
| int rc = -1, i; |
| static int restart_successful = 0; |
| |
| /* Validate that it's OK to call this routine */ |
| if (! master_key_saved) { |
| SLOGE("Encrypted filesystem not validated, aborting"); |
| return -1; |
| } |
| |
| if (restart_successful) { |
| SLOGE("System already restarted with encrypted disk, aborting"); |
| return -1; |
| } |
| |
| /* Here is where we shut down the framework. The init scripts |
| * start all services in one of three classes: core, main or late_start. |
| * On boot, we start core and main. Now, we stop main, but not core, |
| * as core includes vold and a few other really important things that |
| * we need to keep running. Once main has stopped, we should be able |
| * to umount the tmpfs /data, then mount the encrypted /data. |
| * We then restart the class main, and also the class late_start. |
| * At the moment, I've only put a few things in late_start that I know |
| * are not needed to bring up the framework, and that also cause problems |
| * with unmounting the tmpfs /data, but I hope to add add more services |
| * to the late_start class as we optimize this to decrease the delay |
| * till the user is asked for the password to the filesystem. |
| */ |
| |
| /* The init files are setup to stop the class main when vold.decrypt is |
| * set to trigger_reset_main. |
| */ |
| property_set("vold.decrypt", "trigger_reset_main"); |
| SLOGD("Just asked init to shut down class main\n"); |
| |
| /* Now that the framework is shutdown, we should be able to umount() |
| * the tmpfs filesystem, and mount the real one. |
| */ |
| |
| property_get("ro.crypto.fs_crypto_blkdev", crypto_blkdev, ""); |
| if (strlen(crypto_blkdev) == 0) { |
| SLOGE("fs_crypto_blkdev not set\n"); |
| return -1; |
| } |
| |
| if (! get_orig_mount_parms(DATA_MNT_POINT, fs_type, real_blkdev, &mnt_flags, fs_options)) { |
| SLOGD("Just got orig mount parms\n"); |
| |
| if (! (rc = wait_and_unmount(DATA_MNT_POINT)) ) { |
| /* If that succeeded, then mount the decrypted filesystem */ |
| mount(crypto_blkdev, DATA_MNT_POINT, fs_type, mnt_flags, fs_options); |
| |
| property_set("vold.decrypt", "trigger_load_persist_props"); |
| /* Create necessary paths on /data */ |
| if (prep_data_fs()) { |
| return -1; |
| } |
| |
| /* startup service classes main and late_start */ |
| property_set("vold.decrypt", "trigger_restart_framework"); |
| SLOGD("Just triggered restart_framework\n"); |
| |
| /* Give it a few moments to get started */ |
| sleep(1); |
| } |
| } |
| |
| if (rc == 0) { |
| restart_successful = 1; |
| } |
| |
| return rc; |
| } |
| |
| static int do_crypto_complete(char *mount_point) |
| { |
| struct crypt_mnt_ftr crypt_ftr; |
| unsigned char encrypted_master_key[32]; |
| unsigned char salt[SALT_LEN]; |
| char real_blkdev[MAXPATHLEN]; |
| char fs_type[PROPERTY_VALUE_MAX]; |
| char fs_options[PROPERTY_VALUE_MAX]; |
| unsigned long mnt_flags; |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if (strcmp(encrypted_state, "encrypted") ) { |
| SLOGE("not running with encryption, aborting"); |
| return 1; |
| } |
| |
| if (get_orig_mount_parms(mount_point, fs_type, real_blkdev, &mnt_flags, fs_options)) { |
| SLOGE("Error reading original mount parms for mount point %s\n", mount_point); |
| return -1; |
| } |
| |
| if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) { |
| SLOGE("Error getting crypt footer and key\n"); |
| return -1; |
| } |
| |
| if (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS) { |
| SLOGE("Encryption process didn't finish successfully\n"); |
| return -2; /* -2 is the clue to the UI that there is no usable data on the disk, |
| * and give the user an option to wipe the disk */ |
| } |
| |
| /* We passed the test! We shall diminish, and return to the west */ |
| return 0; |
| } |
| |
| static int test_mount_encrypted_fs(char *passwd, char *mount_point, char *label) |
| { |
| struct crypt_mnt_ftr crypt_ftr; |
| /* Allocate enough space for a 256 bit key, but we may use less */ |
| unsigned char encrypted_master_key[32], decrypted_master_key[32]; |
| unsigned char salt[SALT_LEN]; |
| char crypto_blkdev[MAXPATHLEN]; |
| char real_blkdev[MAXPATHLEN]; |
| char fs_type[PROPERTY_VALUE_MAX]; |
| char fs_options[PROPERTY_VALUE_MAX]; |
| char tmp_mount_point[64]; |
| unsigned long mnt_flags; |
| unsigned int orig_failed_decrypt_count; |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| int rc; |
| |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if ( master_key_saved || strcmp(encrypted_state, "encrypted") ) { |
| printf("encrypted fs already validated or not running with encryption, aborting"); |
| return -1; |
| } |
| |
| if (get_orig_mount_parms(mount_point, fs_type, real_blkdev, &mnt_flags, fs_options)) { |
| printf("Error reading original mount parms for mount point %s\n", mount_point); |
| return -1; |
| } |
| |
| if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) { |
| printf("Error getting crypt footer and key\n"); |
| return -1; |
| } |
| |
| printf("crypt_ftr->fs_size = %lld\n", crypt_ftr.fs_size); |
| orig_failed_decrypt_count = crypt_ftr.failed_decrypt_count; |
| |
| if (! (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) ) { |
| decrypt_master_key(passwd, salt, encrypted_master_key, decrypted_master_key); |
| } |
| |
| if (create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, |
| real_blkdev, crypto_blkdev, label)) { |
| printf("Error creating decrypted block device\n"); |
| return -1; |
| } |
| |
| /* If init detects an encrypted filesystme, it writes a file for each such |
| * encrypted fs into the tmpfs /data filesystem, and then the framework finds those |
| * files and passes that data to me */ |
| /* Create a tmp mount point to try mounting the decryptd fs |
| * Since we're here, the mount_point should be a tmpfs filesystem, so make |
| * a directory in it to test mount the decrypted filesystem. |
| */ |
| sprintf(tmp_mount_point, "%s/tmp_mnt", mount_point); |
| mkdir(tmp_mount_point, 0755); |
| if ( mount(crypto_blkdev, tmp_mount_point, "ext4", MS_RDONLY, "") ) { |
| printf("Error temp mounting decrypted block device\n"); |
| delete_crypto_blk_dev(label); |
| crypt_ftr.failed_decrypt_count++; |
| } else { |
| /* Success, so just umount and we'll mount it properly when we restart |
| * the framework. |
| */ |
| umount(tmp_mount_point); |
| crypt_ftr.failed_decrypt_count = 0; |
| } |
| |
| if (orig_failed_decrypt_count != crypt_ftr.failed_decrypt_count) { |
| put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, 0, 0); |
| } |
| |
| if (crypt_ftr.failed_decrypt_count) { |
| /* We failed to mount the device, so return an error */ |
| rc = crypt_ftr.failed_decrypt_count; |
| |
| } else { |
| /* Woot! Success! Save the name of the crypto block device |
| * so we can mount it when restarting the framework. |
| */ |
| property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev); |
| |
| /* Also save a the master key so we can reencrypted the key |
| * the key when we want to change the password on it. |
| */ |
| memcpy(saved_master_key, decrypted_master_key, KEY_LEN_BYTES); |
| saved_data_blkdev = strdup(real_blkdev); |
| saved_mount_point = strdup(mount_point); |
| master_key_saved = 1; |
| rc = 0; |
| } |
| |
| return rc; |
| } |
| |
| /* Called by vold when it wants to undo the crypto mapping of a volume it |
| * manages. This is usually in response to a factory reset, when we want |
| * to undo the crypto mapping so the volume is formatted in the clear. |
| */ |
| int cryptfs_revert_volume(const char *label) |
| { |
| return delete_crypto_blk_dev((char *)label); |
| } |
| |
| /* |
| * Called by vold when it's asked to mount an encrypted, nonremovable volume. |
| * Setup a dm-crypt mapping, use the saved master key from |
| * setting up the /data mapping, and return the new device path. |
| */ |
| int cryptfs_setup_volume(const char *label, int major, int minor, |
| char *crypto_sys_path, unsigned int max_path, |
| int *new_major, int *new_minor) |
| { |
| char real_blkdev[MAXPATHLEN], crypto_blkdev[MAXPATHLEN]; |
| struct crypt_mnt_ftr sd_crypt_ftr; |
| unsigned char key[32], salt[32]; |
| struct stat statbuf; |
| int nr_sec, fd; |
| |
| sprintf(real_blkdev, "/dev/block/vold/%d:%d", major, minor); |
| |
| /* Just want the footer, but gotta get it all */ |
| get_crypt_ftr_and_key(saved_data_blkdev, &sd_crypt_ftr, key, salt); |
| |
| /* Update the fs_size field to be the size of the volume */ |
| fd = open(real_blkdev, O_RDONLY); |
| nr_sec = get_blkdev_size(fd); |
| close(fd); |
| if (nr_sec == 0) { |
| SLOGE("Cannot get size of volume %s\n", real_blkdev); |
| return -1; |
| } |
| |
| sd_crypt_ftr.fs_size = nr_sec; |
| create_crypto_blk_dev(&sd_crypt_ftr, saved_master_key, real_blkdev, |
| crypto_blkdev, label); |
| |
| stat(crypto_blkdev, &statbuf); |
| *new_major = MAJOR(statbuf.st_rdev); |
| *new_minor = MINOR(statbuf.st_rdev); |
| |
| /* Create path to sys entry for this block device */ |
| snprintf(crypto_sys_path, max_path, "/devices/virtual/block/%s", strrchr(crypto_blkdev, '/')+1); |
| |
| return 0; |
| } |
| |
| int cryptfs_crypto_complete(void) |
| { |
| return do_crypto_complete("/data"); |
| } |
| |
| int cryptfs_check_passwd(char *passwd) |
| { |
| int rc = -1; |
| |
| rc = test_mount_encrypted_fs(passwd, DATA_MNT_POINT, "userdata"); |
| |
| return rc; |
| } |
| |
| int cryptfs_verify_passwd(char *passwd) |
| { |
| struct crypt_mnt_ftr crypt_ftr; |
| /* Allocate enough space for a 256 bit key, but we may use less */ |
| unsigned char encrypted_master_key[32], decrypted_master_key[32]; |
| unsigned char salt[SALT_LEN]; |
| char real_blkdev[MAXPATHLEN]; |
| char fs_type[PROPERTY_VALUE_MAX]; |
| char fs_options[PROPERTY_VALUE_MAX]; |
| unsigned long mnt_flags; |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| int rc; |
| |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if (strcmp(encrypted_state, "encrypted") ) { |
| SLOGE("device not encrypted, aborting"); |
| return -2; |
| } |
| |
| if (!master_key_saved) { |
| SLOGE("encrypted fs not yet mounted, aborting"); |
| return -1; |
| } |
| |
| if (!saved_mount_point) { |
| SLOGE("encrypted fs failed to save mount point, aborting"); |
| return -1; |
| } |
| |
| if (get_orig_mount_parms(saved_mount_point, fs_type, real_blkdev, &mnt_flags, fs_options)) { |
| SLOGE("Error reading original mount parms for mount point %s\n", saved_mount_point); |
| return -1; |
| } |
| |
| if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) { |
| SLOGE("Error getting crypt footer and key\n"); |
| return -1; |
| } |
| |
| if (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) { |
| /* If the device has no password, then just say the password is valid */ |
| rc = 0; |
| } else { |
| decrypt_master_key(passwd, salt, encrypted_master_key, decrypted_master_key); |
| if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) { |
| /* They match, the password is correct */ |
| rc = 0; |
| } else { |
| /* If incorrect, sleep for a bit to prevent dictionary attacks */ |
| sleep(1); |
| rc = 1; |
| } |
| } |
| |
| return rc; |
| } |
| |
| /* Initialize a crypt_mnt_ftr structure. The keysize is |
| * defaulted to 16 bytes, and the filesystem size to 0. |
| * Presumably, at a minimum, the caller will update the |
| * filesystem size and crypto_type_name after calling this function. |
| */ |
| static void cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr *ftr) |
| { |
| ftr->magic = CRYPT_MNT_MAGIC; |
| ftr->major_version = 1; |
| ftr->minor_version = 0; |
| ftr->ftr_size = sizeof(struct crypt_mnt_ftr); |
| ftr->flags = 0; |
| ftr->keysize = KEY_LEN_BYTES; |
| ftr->spare1 = 0; |
| ftr->fs_size = 0; |
| ftr->failed_decrypt_count = 0; |
| ftr->crypto_type_name[0] = '\0'; |
| } |
| |
| static int cryptfs_enable_wipe(char *crypto_blkdev, off64_t size, int type) |
| { |
| char cmdline[256]; |
| int rc = -1; |
| |
| if (type == EXT4_FS) { |
| snprintf(cmdline, sizeof(cmdline), "/system/bin/make_ext4fs -a /data -l %lld %s", |
| size * 512, crypto_blkdev); |
| SLOGI("Making empty filesystem with command %s\n", cmdline); |
| } else if (type== FAT_FS) { |
| snprintf(cmdline, sizeof(cmdline), "/system/bin/newfs_msdos -F 32 -O android -c 8 -s %lld %s", |
| size, crypto_blkdev); |
| SLOGI("Making empty filesystem with command %s\n", cmdline); |
| } else { |
| SLOGE("cryptfs_enable_wipe(): unknown filesystem type %d\n", type); |
| return -1; |
| } |
| |
| if (system(cmdline)) { |
| SLOGE("Error creating empty filesystem on %s\n", crypto_blkdev); |
| } else { |
| SLOGD("Successfully created empty filesystem on %s\n", crypto_blkdev); |
| rc = 0; |
| } |
| |
| return rc; |
| } |
| |
| static inline int unix_read(int fd, void* buff, int len) |
| { |
| int ret; |
| do { ret = read(fd, buff, len); } while (ret < 0 && errno == EINTR); |
| return ret; |
| } |
| |
| static inline int unix_write(int fd, const void* buff, int len) |
| { |
| int ret; |
| do { ret = write(fd, buff, len); } while (ret < 0 && errno == EINTR); |
| return ret; |
| } |
| |
| #define CRYPT_INPLACE_BUFSIZE 4096 |
| #define CRYPT_SECTORS_PER_BUFSIZE (CRYPT_INPLACE_BUFSIZE / 512) |
| static int cryptfs_enable_inplace(char *crypto_blkdev, char *real_blkdev, off64_t size, |
| off64_t *size_already_done, off64_t tot_size) |
| { |
| int realfd, cryptofd; |
| char *buf[CRYPT_INPLACE_BUFSIZE]; |
| int rc = -1; |
| off64_t numblocks, i, remainder; |
| off64_t one_pct, cur_pct, new_pct; |
| off64_t blocks_already_done, tot_numblocks; |
| |
| if ( (realfd = open(real_blkdev, O_RDONLY)) < 0) { |
| SLOGE("Error opening real_blkdev %s for inplace encrypt\n", real_blkdev); |
| return -1; |
| } |
| |
| if ( (cryptofd = open(crypto_blkdev, O_WRONLY)) < 0) { |
| SLOGE("Error opening crypto_blkdev %s for inplace encrypt\n", crypto_blkdev); |
| close(realfd); |
| return -1; |
| } |
| |
| /* This is pretty much a simple loop of reading 4K, and writing 4K. |
| * The size passed in is the number of 512 byte sectors in the filesystem. |
| * So compute the number of whole 4K blocks we should read/write, |
| * and the remainder. |
| */ |
| numblocks = size / CRYPT_SECTORS_PER_BUFSIZE; |
| remainder = size % CRYPT_SECTORS_PER_BUFSIZE; |
| tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE; |
| blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE; |
| |
| SLOGE("Encrypting filesystem in place..."); |
| |
| one_pct = tot_numblocks / 100; |
| cur_pct = 0; |
| /* process the majority of the filesystem in blocks */ |
| for (i=0; i<numblocks; i++) { |
| new_pct = (i + blocks_already_done) / one_pct; |
| if (new_pct > cur_pct) { |
| char buf[8]; |
| |
| cur_pct = new_pct; |
| snprintf(buf, sizeof(buf), "%lld", cur_pct); |
| property_set("vold.encrypt_progress", buf); |
| } |
| if (unix_read(realfd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) { |
| SLOGE("Error reading real_blkdev %s for inplace encrypt\n", crypto_blkdev); |
| goto errout; |
| } |
| if (unix_write(cryptofd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) { |
| SLOGE("Error writing crypto_blkdev %s for inplace encrypt\n", crypto_blkdev); |
| goto errout; |
| } |
| } |
| |
| /* Do any remaining sectors */ |
| for (i=0; i<remainder; i++) { |
| if (unix_read(realfd, buf, 512) <= 0) { |
| SLOGE("Error reading rival sectors from real_blkdev %s for inplace encrypt\n", crypto_blkdev); |
| goto errout; |
| } |
| if (unix_write(cryptofd, buf, 512) <= 0) { |
| SLOGE("Error writing final sectors to crypto_blkdev %s for inplace encrypt\n", crypto_blkdev); |
| goto errout; |
| } |
| } |
| |
| *size_already_done += size; |
| rc = 0; |
| |
| errout: |
| close(realfd); |
| close(cryptofd); |
| |
| return rc; |
| } |
| |
| #define CRYPTO_ENABLE_WIPE 1 |
| #define CRYPTO_ENABLE_INPLACE 2 |
| |
| #define FRAMEWORK_BOOT_WAIT 60 |
| |
| static inline int should_encrypt(struct volume_info *volume) |
| { |
| return (volume->flags & (VOL_ENCRYPTABLE | VOL_NONREMOVABLE)) == |
| (VOL_ENCRYPTABLE | VOL_NONREMOVABLE); |
| } |
| |
| int cryptfs_enable(char *howarg, char *passwd) |
| { |
| // Code removed because it needs other parts of vold that aren't needed for decryption |
| return -1; |
| } |
| |
| int cryptfs_changepw(char *newpw) |
| { |
| struct crypt_mnt_ftr crypt_ftr; |
| unsigned char encrypted_master_key[KEY_LEN_BYTES], decrypted_master_key[KEY_LEN_BYTES]; |
| unsigned char salt[SALT_LEN]; |
| char real_blkdev[MAXPATHLEN]; |
| |
| /* This is only allowed after we've successfully decrypted the master key */ |
| if (! master_key_saved) { |
| SLOGE("Key not saved, aborting"); |
| return -1; |
| } |
| |
| property_get("ro.crypto.fs_real_blkdev", real_blkdev, ""); |
| if (strlen(real_blkdev) == 0) { |
| SLOGE("Can't find real blkdev"); |
| return -1; |
| } |
| |
| /* get key */ |
| if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) { |
| SLOGE("Error getting crypt footer and key"); |
| return -1; |
| } |
| |
| encrypt_master_key(newpw, salt, saved_master_key, encrypted_master_key); |
| |
| /* save the key */ |
| put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt); |
| |
| return 0; |
| } |