| /* |
| * Copyright (C) 2009 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* |
| * This program constructs binary patches for images -- such as boot.img |
| * and recovery.img -- that consist primarily of large chunks of gzipped |
| * data interspersed with uncompressed data. Doing a naive bsdiff of |
| * these files is not useful because small changes in the data lead to |
| * large changes in the compressed bitstream; bsdiff patches of gzipped |
| * data are typically as large as the data itself. |
| * |
| * To patch these usefully, we break the source and target images up into |
| * chunks of two types: "normal" and "gzip". Normal chunks are simply |
| * patched using a plain bsdiff. Gzip chunks are first expanded, then a |
| * bsdiff is applied to the uncompressed data, then the patched data is |
| * gzipped using the same encoder parameters. Patched chunks are |
| * concatenated together to create the output file; the output image |
| * should be *exactly* the same series of bytes as the target image used |
| * originally to generate the patch. |
| * |
| * To work well with this tool, the gzipped sections of the target |
| * image must have been generated using the same deflate encoder that |
| * is available in applypatch, namely, the one in the zlib library. |
| * In practice this means that images should be compressed using the |
| * "minigzip" tool included in the zlib distribution, not the GNU gzip |
| * program. |
| * |
| * An "imgdiff" patch consists of a header describing the chunk structure |
| * of the file and any encoding parameters needed for the gzipped |
| * chunks, followed by N bsdiff patches, one per chunk. |
| * |
| * For a diff to be generated, the source and target images must have the |
| * same "chunk" structure: that is, the same number of gzipped and normal |
| * chunks in the same order. Android boot and recovery images currently |
| * consist of five chunks: a small normal header, a gzipped kernel, a |
| * small normal section, a gzipped ramdisk, and finally a small normal |
| * footer. |
| * |
| * Caveats: we locate gzipped sections within the source and target |
| * images by searching for the byte sequence 1f8b0800: 1f8b is the gzip |
| * magic number; 08 specifies the "deflate" encoding [the only encoding |
| * supported by the gzip standard]; and 00 is the flags byte. We do not |
| * currently support any extra header fields (which would be indicated by |
| * a nonzero flags byte). We also don't handle the case when that byte |
| * sequence appears spuriously in the file. (Note that it would have to |
| * occur spuriously within a normal chunk to be a problem.) |
| * |
| * |
| * The imgdiff patch header looks like this: |
| * |
| * "IMGDIFF1" (8) [magic number and version] |
| * chunk count (4) |
| * for each chunk: |
| * chunk type (4) [CHUNK_{NORMAL, GZIP, DEFLATE, RAW}] |
| * if chunk type == CHUNK_NORMAL: |
| * source start (8) |
| * source len (8) |
| * bsdiff patch offset (8) [from start of patch file] |
| * if chunk type == CHUNK_GZIP: (version 1 only) |
| * source start (8) |
| * source len (8) |
| * bsdiff patch offset (8) [from start of patch file] |
| * source expanded len (8) [size of uncompressed source] |
| * target expected len (8) [size of uncompressed target] |
| * gzip level (4) |
| * method (4) |
| * windowBits (4) |
| * memLevel (4) |
| * strategy (4) |
| * gzip header len (4) |
| * gzip header (gzip header len) |
| * gzip footer (8) |
| * if chunk type == CHUNK_DEFLATE: (version 2 only) |
| * source start (8) |
| * source len (8) |
| * bsdiff patch offset (8) [from start of patch file] |
| * source expanded len (8) [size of uncompressed source] |
| * target expected len (8) [size of uncompressed target] |
| * gzip level (4) |
| * method (4) |
| * windowBits (4) |
| * memLevel (4) |
| * strategy (4) |
| * if chunk type == RAW: (version 2 only) |
| * target len (4) |
| * data (target len) |
| * |
| * All integers are little-endian. "source start" and "source len" |
| * specify the section of the input image that comprises this chunk, |
| * including the gzip header and footer for gzip chunks. "source |
| * expanded len" is the size of the uncompressed source data. "target |
| * expected len" is the size of the uncompressed data after applying |
| * the bsdiff patch. The next five parameters specify the zlib |
| * parameters to be used when compressing the patched data, and the |
| * next three specify the header and footer to be wrapped around the |
| * compressed data to create the output chunk (so that header contents |
| * like the timestamp are recreated exactly). |
| * |
| * After the header there are 'chunk count' bsdiff patches; the offset |
| * of each from the beginning of the file is specified in the header. |
| * |
| * This tool can take an optional file of "bonus data". This is an |
| * extra file of data that is appended to chunk #1 after it is |
| * compressed (it must be a CHUNK_DEFLATE chunk). The same file must |
| * be available (and passed to applypatch with -b) when applying the |
| * patch. This is used to reduce the size of recovery-from-boot |
| * patches by combining the boot image with recovery ramdisk |
| * information that is stored on the system partition. |
| */ |
| |
| #include "applypatch/imgdiff.h" |
| |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include <algorithm> |
| #include <string> |
| #include <vector> |
| |
| #include <android-base/file.h> |
| #include <android-base/logging.h> |
| #include <android-base/memory.h> |
| #include <android-base/unique_fd.h> |
| #include <bsdiff.h> |
| #include <ziparchive/zip_archive.h> |
| #include <zlib.h> |
| |
| #include "applypatch/imgdiff_image.h" |
| |
| using android::base::get_unaligned; |
| |
| static constexpr auto BUFFER_SIZE = 0x8000; |
| |
| // If we use this function to write the offset and length (type size_t), their values should not |
| // exceed 2^63; because the signed bit will be casted away. |
| static inline bool Write8(int fd, int64_t value) { |
| return android::base::WriteFully(fd, &value, sizeof(int64_t)); |
| } |
| |
| // Similarly, the value should not exceed 2^31 if we are casting from size_t (e.g. target chunk |
| // size). |
| static inline bool Write4(int fd, int32_t value) { |
| return android::base::WriteFully(fd, &value, sizeof(int32_t)); |
| } |
| |
| ImageChunk::ImageChunk(int type, size_t start, const std::vector<uint8_t>* file_content, |
| size_t raw_data_len, std::string entry_name) |
| : type_(type), |
| start_(start), |
| input_file_ptr_(file_content), |
| raw_data_len_(raw_data_len), |
| compress_level_(6), |
| entry_name_(std::move(entry_name)) { |
| CHECK(file_content != nullptr) << "input file container can't be nullptr"; |
| } |
| |
| const uint8_t* ImageChunk::GetRawData() const { |
| CHECK_LE(start_ + raw_data_len_, input_file_ptr_->size()); |
| return input_file_ptr_->data() + start_; |
| } |
| |
| const uint8_t * ImageChunk::DataForPatch() const { |
| if (type_ == CHUNK_DEFLATE) { |
| return uncompressed_data_.data(); |
| } |
| return GetRawData(); |
| } |
| |
| size_t ImageChunk::DataLengthForPatch() const { |
| if (type_ == CHUNK_DEFLATE) { |
| return uncompressed_data_.size(); |
| } |
| return raw_data_len_; |
| } |
| |
| bool ImageChunk::operator==(const ImageChunk& other) const { |
| if (type_ != other.type_) { |
| return false; |
| } |
| return (raw_data_len_ == other.raw_data_len_ && |
| memcmp(GetRawData(), other.GetRawData(), raw_data_len_) == 0); |
| } |
| |
| void ImageChunk::SetUncompressedData(std::vector<uint8_t> data) { |
| uncompressed_data_ = std::move(data); |
| } |
| |
| bool ImageChunk::SetBonusData(const std::vector<uint8_t>& bonus_data) { |
| if (type_ != CHUNK_DEFLATE) { |
| return false; |
| } |
| uncompressed_data_.insert(uncompressed_data_.end(), bonus_data.begin(), bonus_data.end()); |
| return true; |
| } |
| |
| void ImageChunk::ChangeDeflateChunkToNormal() { |
| if (type_ != CHUNK_DEFLATE) return; |
| type_ = CHUNK_NORMAL; |
| // No need to clear the entry name. |
| uncompressed_data_.clear(); |
| } |
| |
| bool ImageChunk::IsAdjacentNormal(const ImageChunk& other) const { |
| if (type_ != CHUNK_NORMAL || other.type_ != CHUNK_NORMAL) { |
| return false; |
| } |
| return (other.start_ == start_ + raw_data_len_); |
| } |
| |
| void ImageChunk::MergeAdjacentNormal(const ImageChunk& other) { |
| CHECK(IsAdjacentNormal(other)); |
| raw_data_len_ = raw_data_len_ + other.raw_data_len_; |
| } |
| |
| bool ImageChunk::MakePatch(const ImageChunk& tgt, const ImageChunk& src, |
| std::vector<uint8_t>* patch_data, saidx_t** bsdiff_cache) { |
| #if defined(__ANDROID__) |
| char ptemp[] = "/data/local/tmp/imgdiff-patch-XXXXXX"; |
| #else |
| char ptemp[] = "/tmp/imgdiff-patch-XXXXXX"; |
| #endif |
| |
| int fd = mkstemp(ptemp); |
| if (fd == -1) { |
| printf("MakePatch failed to create a temporary file: %s\n", strerror(errno)); |
| return false; |
| } |
| close(fd); |
| |
| int r = bsdiff::bsdiff(src.DataForPatch(), src.DataLengthForPatch(), tgt.DataForPatch(), |
| tgt.DataLengthForPatch(), ptemp, bsdiff_cache); |
| if (r != 0) { |
| printf("bsdiff() failed: %d\n", r); |
| return false; |
| } |
| |
| android::base::unique_fd patch_fd(open(ptemp, O_RDONLY)); |
| if (patch_fd == -1) { |
| printf("failed to open %s: %s\n", ptemp, strerror(errno)); |
| return false; |
| } |
| struct stat st; |
| if (fstat(patch_fd, &st) != 0) { |
| printf("failed to stat patch file %s: %s\n", ptemp, strerror(errno)); |
| return false; |
| } |
| |
| size_t sz = static_cast<size_t>(st.st_size); |
| |
| patch_data->resize(sz); |
| if (!android::base::ReadFully(patch_fd, patch_data->data(), sz)) { |
| printf("failed to read \"%s\" %s\n", ptemp, strerror(errno)); |
| unlink(ptemp); |
| return false; |
| } |
| |
| unlink(ptemp); |
| |
| return true; |
| } |
| |
| bool ImageChunk::ReconstructDeflateChunk() { |
| if (type_ != CHUNK_DEFLATE) { |
| printf("attempt to reconstruct non-deflate chunk\n"); |
| return false; |
| } |
| |
| // We only check two combinations of encoder parameters: level 6 (the default) and level 9 |
| // (the maximum). |
| for (int level = 6; level <= 9; level += 3) { |
| if (TryReconstruction(level)) { |
| compress_level_ = level; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Takes the uncompressed data stored in the chunk, compresses it using the zlib parameters stored |
| * in the chunk, and checks that it matches exactly the compressed data we started with (also |
| * stored in the chunk). |
| */ |
| bool ImageChunk::TryReconstruction(int level) { |
| z_stream strm; |
| strm.zalloc = Z_NULL; |
| strm.zfree = Z_NULL; |
| strm.opaque = Z_NULL; |
| strm.avail_in = uncompressed_data_.size(); |
| strm.next_in = uncompressed_data_.data(); |
| int ret = deflateInit2(&strm, level, METHOD, WINDOWBITS, MEMLEVEL, STRATEGY); |
| if (ret < 0) { |
| printf("failed to initialize deflate: %d\n", ret); |
| return false; |
| } |
| |
| std::vector<uint8_t> buffer(BUFFER_SIZE); |
| size_t offset = 0; |
| do { |
| strm.avail_out = buffer.size(); |
| strm.next_out = buffer.data(); |
| ret = deflate(&strm, Z_FINISH); |
| if (ret < 0) { |
| printf("failed to deflate: %d\n", ret); |
| return false; |
| } |
| |
| size_t compressed_size = buffer.size() - strm.avail_out; |
| if (memcmp(buffer.data(), input_file_ptr_->data() + start_ + offset, compressed_size) != 0) { |
| // mismatch; data isn't the same. |
| deflateEnd(&strm); |
| return false; |
| } |
| offset += compressed_size; |
| } while (ret != Z_STREAM_END); |
| deflateEnd(&strm); |
| |
| if (offset != raw_data_len_) { |
| // mismatch; ran out of data before we should have. |
| return false; |
| } |
| return true; |
| } |
| |
| PatchChunk::PatchChunk(const ImageChunk& tgt, const ImageChunk& src, std::vector<uint8_t> data) |
| : type_(tgt.GetType()), |
| source_start_(src.GetStartOffset()), |
| source_len_(src.GetRawDataLength()), |
| source_uncompressed_len_(src.DataLengthForPatch()), |
| target_start_(tgt.GetStartOffset()), |
| target_len_(tgt.GetRawDataLength()), |
| target_uncompressed_len_(tgt.DataLengthForPatch()), |
| target_compress_level_(tgt.GetCompressLevel()), |
| data_(std::move(data)) {} |
| |
| // Construct a CHUNK_RAW patch from the target data directly. |
| PatchChunk::PatchChunk(const ImageChunk& tgt) |
| : type_(CHUNK_RAW), |
| source_start_(0), |
| source_len_(0), |
| source_uncompressed_len_(0), |
| target_start_(tgt.GetStartOffset()), |
| target_len_(tgt.GetRawDataLength()), |
| target_uncompressed_len_(tgt.DataLengthForPatch()), |
| target_compress_level_(tgt.GetCompressLevel()), |
| data_(tgt.DataForPatch(), tgt.DataForPatch() + tgt.DataLengthForPatch()) {} |
| |
| // Return true if raw data is smaller than the patch size. |
| bool PatchChunk::RawDataIsSmaller(const ImageChunk& tgt, size_t patch_size) { |
| size_t target_len = tgt.GetRawDataLength(); |
| return (tgt.GetType() == CHUNK_NORMAL && (target_len <= 160 || target_len < patch_size)); |
| } |
| |
| // Header size: |
| // header_type 4 bytes |
| // CHUNK_NORMAL 8*3 = 24 bytes |
| // CHUNK_DEFLATE 8*5 + 4*5 = 60 bytes |
| // CHUNK_RAW 4 bytes + patch_size |
| size_t PatchChunk::GetHeaderSize() const { |
| switch (type_) { |
| case CHUNK_NORMAL: |
| return 4 + 8 * 3; |
| case CHUNK_DEFLATE: |
| return 4 + 8 * 5 + 4 * 5; |
| case CHUNK_RAW: |
| return 4 + 4 + data_.size(); |
| default: |
| CHECK(false) << "unexpected chunk type: " << type_; // Should not reach here. |
| return 0; |
| } |
| } |
| |
| // Return the offset of the next patch into the patch data. |
| size_t PatchChunk::WriteHeaderToFd(int fd, size_t offset) const { |
| Write4(fd, type_); |
| switch (type_) { |
| case CHUNK_NORMAL: |
| printf("normal (%10zu, %10zu) %10zu\n", target_start_, target_len_, data_.size()); |
| Write8(fd, static_cast<int64_t>(source_start_)); |
| Write8(fd, static_cast<int64_t>(source_len_)); |
| Write8(fd, static_cast<int64_t>(offset)); |
| return offset + data_.size(); |
| case CHUNK_DEFLATE: |
| printf("deflate (%10zu, %10zu) %10zu\n", target_start_, target_len_, data_.size()); |
| Write8(fd, static_cast<int64_t>(source_start_)); |
| Write8(fd, static_cast<int64_t>(source_len_)); |
| Write8(fd, static_cast<int64_t>(offset)); |
| Write8(fd, static_cast<int64_t>(source_uncompressed_len_)); |
| Write8(fd, static_cast<int64_t>(target_uncompressed_len_)); |
| Write4(fd, target_compress_level_); |
| Write4(fd, ImageChunk::METHOD); |
| Write4(fd, ImageChunk::WINDOWBITS); |
| Write4(fd, ImageChunk::MEMLEVEL); |
| Write4(fd, ImageChunk::STRATEGY); |
| return offset + data_.size(); |
| case CHUNK_RAW: |
| printf("raw (%10zu, %10zu)\n", target_start_, target_len_); |
| Write4(fd, static_cast<int32_t>(data_.size())); |
| if (!android::base::WriteFully(fd, data_.data(), data_.size())) { |
| CHECK(false) << "failed to write " << data_.size() << " bytes patch"; |
| } |
| return offset; |
| default: |
| CHECK(false) << "unexpected chunk type: " << type_; |
| return offset; |
| } |
| } |
| |
| // Write the contents of |patch_chunks| to |patch_fd|. |
| bool PatchChunk::WritePatchDataToFd(const std::vector<PatchChunk>& patch_chunks, int patch_fd) { |
| // Figure out how big the imgdiff file header is going to be, so that we can correctly compute |
| // the offset of each bsdiff patch within the file. |
| size_t total_header_size = 12; |
| for (const auto& patch : patch_chunks) { |
| total_header_size += patch.GetHeaderSize(); |
| } |
| |
| size_t offset = total_header_size; |
| |
| // Write out the headers. |
| if (!android::base::WriteStringToFd("IMGDIFF2", patch_fd)) { |
| printf("failed to write \"IMGDIFF2\": %s\n", strerror(errno)); |
| return false; |
| } |
| |
| Write4(patch_fd, static_cast<int32_t>(patch_chunks.size())); |
| for (size_t i = 0; i < patch_chunks.size(); ++i) { |
| printf("chunk %zu: ", i); |
| offset = patch_chunks[i].WriteHeaderToFd(patch_fd, offset); |
| } |
| |
| // Append each chunk's bsdiff patch, in order. |
| for (const auto& patch : patch_chunks) { |
| if (patch.type_ == CHUNK_RAW) { |
| continue; |
| } |
| if (!android::base::WriteFully(patch_fd, patch.data_.data(), patch.data_.size())) { |
| printf("failed to write %zu bytes patch to patch_fd\n", patch.data_.size()); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| ImageChunk& Image::operator[](size_t i) { |
| CHECK_LT(i, chunks_.size()); |
| return chunks_[i]; |
| } |
| |
| const ImageChunk& Image::operator[](size_t i) const { |
| CHECK_LT(i, chunks_.size()); |
| return chunks_[i]; |
| } |
| |
| void Image::MergeAdjacentNormalChunks() { |
| size_t merged_last = 0, cur = 0; |
| while (cur < chunks_.size()) { |
| // Look for normal chunks adjacent to the current one. If such chunk exists, extend the |
| // length of the current normal chunk. |
| size_t to_check = cur + 1; |
| while (to_check < chunks_.size() && chunks_[cur].IsAdjacentNormal(chunks_[to_check])) { |
| chunks_[cur].MergeAdjacentNormal(chunks_[to_check]); |
| to_check++; |
| } |
| |
| if (merged_last != cur) { |
| chunks_[merged_last] = std::move(chunks_[cur]); |
| } |
| merged_last++; |
| cur = to_check; |
| } |
| if (merged_last < chunks_.size()) { |
| chunks_.erase(chunks_.begin() + merged_last, chunks_.end()); |
| } |
| } |
| |
| void Image::DumpChunks() const { |
| std::string type = is_source_ ? "source" : "target"; |
| printf("Dumping chunks for %s\n", type.c_str()); |
| for (size_t i = 0; i < chunks_.size(); ++i) { |
| printf("chunk %zu: ", i); |
| chunks_[i].Dump(); |
| } |
| } |
| |
| bool Image::ReadFile(const std::string& filename, std::vector<uint8_t>* file_content) { |
| CHECK(file_content != nullptr); |
| |
| android::base::unique_fd fd(open(filename.c_str(), O_RDONLY)); |
| if (fd == -1) { |
| printf("failed to open \"%s\" %s\n", filename.c_str(), strerror(errno)); |
| return false; |
| } |
| struct stat st; |
| if (fstat(fd, &st) != 0) { |
| printf("failed to stat \"%s\": %s\n", filename.c_str(), strerror(errno)); |
| return false; |
| } |
| |
| size_t sz = static_cast<size_t>(st.st_size); |
| file_content->resize(sz); |
| if (!android::base::ReadFully(fd, file_content->data(), sz)) { |
| printf("failed to read \"%s\" %s\n", filename.c_str(), strerror(errno)); |
| return false; |
| } |
| fd.reset(); |
| |
| return true; |
| } |
| |
| bool ZipModeImage::Initialize(const std::string& filename) { |
| if (!ReadFile(filename, &file_content_)) { |
| return false; |
| } |
| |
| // Omit the trailing zeros before we pass the file to ziparchive handler. |
| size_t zipfile_size; |
| if (!GetZipFileSize(&zipfile_size)) { |
| printf("failed to parse the actual size of %s\n", filename.c_str()); |
| return false; |
| } |
| ZipArchiveHandle handle; |
| int err = OpenArchiveFromMemory(const_cast<uint8_t*>(file_content_.data()), zipfile_size, |
| filename.c_str(), &handle); |
| if (err != 0) { |
| printf("failed to open zip file %s: %s\n", filename.c_str(), ErrorCodeString(err)); |
| CloseArchive(handle); |
| return false; |
| } |
| |
| if (!InitializeChunks(filename, handle)) { |
| CloseArchive(handle); |
| return false; |
| } |
| |
| CloseArchive(handle); |
| return true; |
| } |
| |
| // Iterate the zip entries and compose the image chunks accordingly. |
| bool ZipModeImage::InitializeChunks(const std::string& filename, ZipArchiveHandle handle) { |
| void* cookie; |
| int ret = StartIteration(handle, &cookie, nullptr, nullptr); |
| if (ret != 0) { |
| printf("failed to iterate over entries in %s: %s\n", filename.c_str(), ErrorCodeString(ret)); |
| return false; |
| } |
| |
| // Create a list of deflated zip entries, sorted by offset. |
| std::vector<std::pair<std::string, ZipEntry>> temp_entries; |
| ZipString name; |
| ZipEntry entry; |
| while ((ret = Next(cookie, &entry, &name)) == 0) { |
| if (entry.method == kCompressDeflated) { |
| std::string entry_name(name.name, name.name + name.name_length); |
| temp_entries.emplace_back(entry_name, entry); |
| } |
| } |
| |
| if (ret != -1) { |
| printf("Error while iterating over zip entries: %s\n", ErrorCodeString(ret)); |
| return false; |
| } |
| std::sort(temp_entries.begin(), temp_entries.end(), |
| [](auto& entry1, auto& entry2) { return entry1.second.offset < entry2.second.offset; }); |
| |
| EndIteration(cookie); |
| |
| // For source chunks, we don't need to compose chunks for the metadata. |
| if (is_source_) { |
| for (auto& entry : temp_entries) { |
| if (!AddZipEntryToChunks(handle, entry.first, &entry.second)) { |
| printf("Failed to add %s to source chunks\n", entry.first.c_str()); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // For target chunks, add the deflate entries as CHUNK_DEFLATE and the contents between two |
| // deflate entries as CHUNK_NORMAL. |
| size_t pos = 0; |
| size_t nextentry = 0; |
| while (pos < file_content_.size()) { |
| if (nextentry < temp_entries.size() && |
| static_cast<off64_t>(pos) == temp_entries[nextentry].second.offset) { |
| // Add the next zip entry. |
| std::string entry_name = temp_entries[nextentry].first; |
| if (!AddZipEntryToChunks(handle, entry_name, &temp_entries[nextentry].second)) { |
| printf("Failed to add %s to target chunks\n", entry_name.c_str()); |
| return false; |
| } |
| |
| pos += temp_entries[nextentry].second.compressed_length; |
| ++nextentry; |
| continue; |
| } |
| |
| // Use a normal chunk to take all the data up to the start of the next entry. |
| size_t raw_data_len; |
| if (nextentry < temp_entries.size()) { |
| raw_data_len = temp_entries[nextentry].second.offset - pos; |
| } else { |
| raw_data_len = file_content_.size() - pos; |
| } |
| chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, raw_data_len); |
| |
| pos += raw_data_len; |
| } |
| |
| return true; |
| } |
| |
| bool ZipModeImage::AddZipEntryToChunks(ZipArchiveHandle handle, const std::string& entry_name, |
| ZipEntry* entry) { |
| size_t compressed_len = entry->compressed_length; |
| if (entry->method == kCompressDeflated) { |
| size_t uncompressed_len = entry->uncompressed_length; |
| std::vector<uint8_t> uncompressed_data(uncompressed_len); |
| int ret = ExtractToMemory(handle, entry, uncompressed_data.data(), uncompressed_len); |
| if (ret != 0) { |
| printf("failed to extract %s with size %zu: %s\n", entry_name.c_str(), uncompressed_len, |
| ErrorCodeString(ret)); |
| return false; |
| } |
| ImageChunk curr(CHUNK_DEFLATE, entry->offset, &file_content_, compressed_len, entry_name); |
| curr.SetUncompressedData(std::move(uncompressed_data)); |
| chunks_.push_back(std::move(curr)); |
| } else { |
| chunks_.emplace_back(CHUNK_NORMAL, entry->offset, &file_content_, compressed_len, entry_name); |
| } |
| |
| return true; |
| } |
| |
| // EOCD record |
| // offset 0: signature 0x06054b50, 4 bytes |
| // offset 4: number of this disk, 2 bytes |
| // ... |
| // offset 20: comment length, 2 bytes |
| // offset 22: comment, n bytes |
| bool ZipModeImage::GetZipFileSize(size_t* input_file_size) { |
| if (file_content_.size() < 22) { |
| printf("file is too small to be a zip file\n"); |
| return false; |
| } |
| |
| // Look for End of central directory record of the zip file, and calculate the actual |
| // zip_file size. |
| for (int i = file_content_.size() - 22; i >= 0; i--) { |
| if (file_content_[i] == 0x50) { |
| if (get_unaligned<uint32_t>(&file_content_[i]) == 0x06054b50) { |
| // double-check: this archive consists of a single "disk". |
| CHECK_EQ(get_unaligned<uint16_t>(&file_content_[i + 4]), 0); |
| |
| uint16_t comment_length = get_unaligned<uint16_t>(&file_content_[i + 20]); |
| size_t file_size = i + 22 + comment_length; |
| CHECK_LE(file_size, file_content_.size()); |
| *input_file_size = file_size; |
| return true; |
| } |
| } |
| } |
| |
| // EOCD not found, this file is likely not a valid zip file. |
| return false; |
| } |
| |
| ImageChunk ZipModeImage::PseudoSource() const { |
| CHECK(is_source_); |
| return ImageChunk(CHUNK_NORMAL, 0, &file_content_, file_content_.size()); |
| } |
| |
| const ImageChunk* ZipModeImage::FindChunkByName(const std::string& name, bool find_normal) const { |
| if (name.empty()) { |
| return nullptr; |
| } |
| for (auto& chunk : chunks_) { |
| if ((chunk.GetType() == CHUNK_DEFLATE || find_normal) && chunk.GetEntryName() == name) { |
| return &chunk; |
| } |
| } |
| return nullptr; |
| } |
| |
| ImageChunk* ZipModeImage::FindChunkByName(const std::string& name, bool find_normal) { |
| return const_cast<ImageChunk*>( |
| static_cast<const ZipModeImage*>(this)->FindChunkByName(name, find_normal)); |
| } |
| |
| bool ZipModeImage::CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage* src_image) { |
| for (auto& tgt_chunk : *tgt_image) { |
| if (tgt_chunk.GetType() != CHUNK_DEFLATE) { |
| continue; |
| } |
| |
| ImageChunk* src_chunk = src_image->FindChunkByName(tgt_chunk.GetEntryName()); |
| if (src_chunk == nullptr) { |
| tgt_chunk.ChangeDeflateChunkToNormal(); |
| } else if (tgt_chunk == *src_chunk) { |
| // If two deflate chunks are identical (eg, the kernel has not changed between two builds), |
| // treat them as normal chunks. This makes applypatch much faster -- it can apply a trivial |
| // patch to the compressed data, rather than uncompressing and recompressing to apply the |
| // trivial patch to the uncompressed data. |
| tgt_chunk.ChangeDeflateChunkToNormal(); |
| src_chunk->ChangeDeflateChunkToNormal(); |
| } else if (!tgt_chunk.ReconstructDeflateChunk()) { |
| // We cannot recompress the data and get exactly the same bits as are in the input target |
| // image. Treat the chunk as a normal non-deflated chunk. |
| printf("failed to reconstruct target deflate chunk [%s]; treating as normal\n", |
| tgt_chunk.GetEntryName().c_str()); |
| |
| tgt_chunk.ChangeDeflateChunkToNormal(); |
| src_chunk->ChangeDeflateChunkToNormal(); |
| } |
| } |
| |
| // For zips, we only need merge normal chunks for the target: deflated chunks are matched via |
| // filename, and normal chunks are patched using the entire source file as the source. |
| tgt_image->MergeAdjacentNormalChunks(); |
| tgt_image->DumpChunks(); |
| |
| return true; |
| } |
| |
| bool ZipModeImage::GeneratePatches(const ZipModeImage& tgt_image, const ZipModeImage& src_image, |
| const std::string& patch_name) { |
| printf("Construct patches for %zu chunks...\n", tgt_image.NumOfChunks()); |
| std::vector<PatchChunk> patch_chunks; |
| patch_chunks.reserve(tgt_image.NumOfChunks()); |
| |
| saidx_t* bsdiff_cache = nullptr; |
| for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) { |
| const auto& tgt_chunk = tgt_image[i]; |
| |
| if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) { |
| patch_chunks.emplace_back(tgt_chunk); |
| continue; |
| } |
| |
| const ImageChunk* src_chunk = (tgt_chunk.GetType() != CHUNK_DEFLATE) |
| ? nullptr |
| : src_image.FindChunkByName(tgt_chunk.GetEntryName()); |
| |
| const auto& src_ref = (src_chunk == nullptr) ? src_image.PseudoSource() : *src_chunk; |
| saidx_t** bsdiff_cache_ptr = (src_chunk == nullptr) ? &bsdiff_cache : nullptr; |
| |
| std::vector<uint8_t> patch_data; |
| if (!ImageChunk::MakePatch(tgt_chunk, src_ref, &patch_data, bsdiff_cache_ptr)) { |
| printf("Failed to generate patch, name: %s\n", tgt_chunk.GetEntryName().c_str()); |
| return false; |
| } |
| |
| printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data.size(), |
| tgt_chunk.GetRawDataLength()); |
| |
| if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) { |
| patch_chunks.emplace_back(tgt_chunk); |
| } else { |
| patch_chunks.emplace_back(tgt_chunk, src_ref, std::move(patch_data)); |
| } |
| } |
| free(bsdiff_cache); |
| |
| CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size()); |
| |
| android::base::unique_fd patch_fd( |
| open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR)); |
| if (patch_fd == -1) { |
| printf("failed to open \"%s\": %s\n", patch_name.c_str(), strerror(errno)); |
| return false; |
| } |
| |
| return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd); |
| } |
| |
| bool ImageModeImage::Initialize(const std::string& filename) { |
| if (!ReadFile(filename, &file_content_)) { |
| return false; |
| } |
| |
| size_t sz = file_content_.size(); |
| size_t pos = 0; |
| while (pos < sz) { |
| // 0x00 no header flags, 0x08 deflate compression, 0x1f8b gzip magic number |
| if (sz - pos >= 4 && get_unaligned<uint32_t>(file_content_.data() + pos) == 0x00088b1f) { |
| // 'pos' is the offset of the start of a gzip chunk. |
| size_t chunk_offset = pos; |
| |
| // The remaining data is too small to be a gzip chunk; treat them as a normal chunk. |
| if (sz - pos < GZIP_HEADER_LEN + GZIP_FOOTER_LEN) { |
| chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, sz - pos); |
| break; |
| } |
| |
| // We need three chunks for the deflated image in total, one normal chunk for the header, |
| // one deflated chunk for the body, and another normal chunk for the footer. |
| chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_HEADER_LEN); |
| pos += GZIP_HEADER_LEN; |
| |
| // We must decompress this chunk in order to discover where it ends, and so we can update |
| // the uncompressed_data of the image body and its length. |
| |
| z_stream strm; |
| strm.zalloc = Z_NULL; |
| strm.zfree = Z_NULL; |
| strm.opaque = Z_NULL; |
| strm.avail_in = sz - pos; |
| strm.next_in = file_content_.data() + pos; |
| |
| // -15 means we are decoding a 'raw' deflate stream; zlib will |
| // not expect zlib headers. |
| int ret = inflateInit2(&strm, -15); |
| if (ret < 0) { |
| printf("failed to initialize inflate: %d\n", ret); |
| return false; |
| } |
| |
| size_t allocated = BUFFER_SIZE; |
| std::vector<uint8_t> uncompressed_data(allocated); |
| size_t uncompressed_len = 0, raw_data_len = 0; |
| do { |
| strm.avail_out = allocated - uncompressed_len; |
| strm.next_out = uncompressed_data.data() + uncompressed_len; |
| ret = inflate(&strm, Z_NO_FLUSH); |
| if (ret < 0) { |
| printf("Warning: inflate failed [%s] at offset [%zu], treating as a normal chunk\n", |
| strm.msg, chunk_offset); |
| break; |
| } |
| uncompressed_len = allocated - strm.avail_out; |
| if (strm.avail_out == 0) { |
| allocated *= 2; |
| uncompressed_data.resize(allocated); |
| } |
| } while (ret != Z_STREAM_END); |
| |
| raw_data_len = sz - strm.avail_in - pos; |
| inflateEnd(&strm); |
| |
| if (ret < 0) { |
| continue; |
| } |
| |
| // The footer contains the size of the uncompressed data. Double-check to make sure that it |
| // matches the size of the data we got when we actually did the decompression. |
| size_t footer_index = pos + raw_data_len + GZIP_FOOTER_LEN - 4; |
| if (sz - footer_index < 4) { |
| printf("Warning: invalid footer position; treating as a nomal chunk\n"); |
| continue; |
| } |
| size_t footer_size = get_unaligned<uint32_t>(file_content_.data() + footer_index); |
| if (footer_size != uncompressed_len) { |
| printf("Warning: footer size %zu != decompressed size %zu; treating as a nomal chunk\n", |
| footer_size, uncompressed_len); |
| continue; |
| } |
| |
| ImageChunk body(CHUNK_DEFLATE, pos, &file_content_, raw_data_len); |
| uncompressed_data.resize(uncompressed_len); |
| body.SetUncompressedData(std::move(uncompressed_data)); |
| chunks_.push_back(std::move(body)); |
| |
| pos += raw_data_len; |
| |
| // create a normal chunk for the footer |
| chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_FOOTER_LEN); |
| |
| pos += GZIP_FOOTER_LEN; |
| } else { |
| // Use a normal chunk to take all the contents until the next gzip chunk (or EOF); we expect |
| // the number of chunks to be small (5 for typical boot and recovery images). |
| |
| // Scan forward until we find a gzip header. |
| size_t data_len = 0; |
| while (data_len + pos < sz) { |
| if (data_len + pos + 4 <= sz && |
| get_unaligned<uint32_t>(file_content_.data() + pos + data_len) == 0x00088b1f) { |
| break; |
| } |
| data_len++; |
| } |
| chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, data_len); |
| |
| pos += data_len; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool ImageModeImage::SetBonusData(const std::vector<uint8_t>& bonus_data) { |
| CHECK(is_source_); |
| if (chunks_.size() < 2 || !chunks_[1].SetBonusData(bonus_data)) { |
| printf("Failed to set bonus data\n"); |
| DumpChunks(); |
| return false; |
| } |
| |
| printf(" using %zu bytes of bonus data\n", bonus_data.size()); |
| return true; |
| } |
| |
| // In Image Mode, verify that the source and target images have the same chunk structure (ie, the |
| // same sequence of deflate and normal chunks). |
| bool ImageModeImage::CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeImage* src_image) { |
| // In image mode, merge the gzip header and footer in with any adjacent normal chunks. |
| tgt_image->MergeAdjacentNormalChunks(); |
| src_image->MergeAdjacentNormalChunks(); |
| |
| if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) { |
| printf("source and target don't have same number of chunks!\n"); |
| tgt_image->DumpChunks(); |
| src_image->DumpChunks(); |
| return false; |
| } |
| for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) { |
| if ((*tgt_image)[i].GetType() != (*src_image)[i].GetType()) { |
| printf("source and target don't have same chunk structure! (chunk %zu)\n", i); |
| tgt_image->DumpChunks(); |
| src_image->DumpChunks(); |
| return false; |
| } |
| } |
| |
| for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) { |
| auto& tgt_chunk = (*tgt_image)[i]; |
| auto& src_chunk = (*src_image)[i]; |
| if (tgt_chunk.GetType() != CHUNK_DEFLATE) { |
| continue; |
| } |
| |
| // If two deflate chunks are identical treat them as normal chunks. |
| if (tgt_chunk == src_chunk) { |
| tgt_chunk.ChangeDeflateChunkToNormal(); |
| src_chunk.ChangeDeflateChunkToNormal(); |
| } else if (!tgt_chunk.ReconstructDeflateChunk()) { |
| // We cannot recompress the data and get exactly the same bits as are in the input target |
| // image, fall back to normal |
| printf("failed to reconstruct target deflate chunk %zu [%s]; treating as normal\n", i, |
| tgt_chunk.GetEntryName().c_str()); |
| tgt_chunk.ChangeDeflateChunkToNormal(); |
| src_chunk.ChangeDeflateChunkToNormal(); |
| } |
| } |
| |
| // For images, we need to maintain the parallel structure of the chunk lists, so do the merging |
| // in both the source and target lists. |
| tgt_image->MergeAdjacentNormalChunks(); |
| src_image->MergeAdjacentNormalChunks(); |
| if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) { |
| // This shouldn't happen. |
| printf("merging normal chunks went awry\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // In image mode, generate patches against the given source chunks and bonus_data; write the |
| // result to |patch_name|. |
| bool ImageModeImage::GeneratePatches(const ImageModeImage& tgt_image, |
| const ImageModeImage& src_image, |
| const std::string& patch_name) { |
| printf("Construct patches for %zu chunks...\n", tgt_image.NumOfChunks()); |
| std::vector<PatchChunk> patch_chunks; |
| patch_chunks.reserve(tgt_image.NumOfChunks()); |
| |
| for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) { |
| const auto& tgt_chunk = tgt_image[i]; |
| const auto& src_chunk = src_image[i]; |
| |
| if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) { |
| patch_chunks.emplace_back(tgt_chunk); |
| continue; |
| } |
| |
| std::vector<uint8_t> patch_data; |
| if (!ImageChunk::MakePatch(tgt_chunk, src_chunk, &patch_data, nullptr)) { |
| printf("Failed to generate patch for target chunk %zu: ", i); |
| return false; |
| } |
| printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data.size(), |
| tgt_chunk.GetRawDataLength()); |
| |
| if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) { |
| patch_chunks.emplace_back(tgt_chunk); |
| } else { |
| patch_chunks.emplace_back(tgt_chunk, src_chunk, std::move(patch_data)); |
| } |
| } |
| |
| CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size()); |
| |
| android::base::unique_fd patch_fd( |
| open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR)); |
| if (patch_fd == -1) { |
| printf("failed to open \"%s\": %s\n", patch_name.c_str(), strerror(errno)); |
| return false; |
| } |
| |
| return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd); |
| } |
| |
| int imgdiff(int argc, const char** argv) { |
| bool zip_mode = false; |
| std::vector<uint8_t> bonus_data; |
| |
| int opt; |
| optind = 1; // Reset the getopt state so that we can call it multiple times for test. |
| |
| while ((opt = getopt(argc, const_cast<char**>(argv), "zb:")) != -1) { |
| switch (opt) { |
| case 'z': |
| zip_mode = true; |
| break; |
| case 'b': { |
| android::base::unique_fd fd(open(optarg, O_RDONLY)); |
| if (fd == -1) { |
| printf("failed to open bonus file %s: %s\n", optarg, strerror(errno)); |
| return 1; |
| } |
| struct stat st; |
| if (fstat(fd, &st) != 0) { |
| printf("failed to stat bonus file %s: %s\n", optarg, strerror(errno)); |
| return 1; |
| } |
| |
| size_t bonus_size = st.st_size; |
| bonus_data.resize(bonus_size); |
| if (!android::base::ReadFully(fd, bonus_data.data(), bonus_size)) { |
| printf("failed to read bonus file %s: %s\n", optarg, strerror(errno)); |
| return 1; |
| } |
| break; |
| } |
| default: |
| printf("unexpected opt: %s\n", optarg); |
| return 2; |
| } |
| } |
| |
| if (argc - optind != 3) { |
| printf("usage: %s [-z] [-b <bonus-file>] <src-img> <tgt-img> <patch-file>\n", argv[0]); |
| return 2; |
| } |
| |
| if (zip_mode) { |
| ZipModeImage src_image(true); |
| ZipModeImage tgt_image(false); |
| |
| if (!src_image.Initialize(argv[optind])) { |
| return 1; |
| } |
| if (!tgt_image.Initialize(argv[optind + 1])) { |
| return 1; |
| } |
| |
| if (!ZipModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) { |
| return 1; |
| } |
| // Compute bsdiff patches for each chunk's data (the uncompressed data, in the case of |
| // deflate chunks). |
| if (!ZipModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) { |
| return 1; |
| } |
| } else { |
| ImageModeImage src_image(true); |
| ImageModeImage tgt_image(false); |
| |
| if (!src_image.Initialize(argv[optind])) { |
| return 1; |
| } |
| if (!tgt_image.Initialize(argv[optind + 1])) { |
| return 1; |
| } |
| |
| if (!ImageModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) { |
| return 1; |
| } |
| |
| if (!bonus_data.empty() && !src_image.SetBonusData(bonus_data)) { |
| return 1; |
| } |
| |
| if (!ImageModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) { |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |