| /* |
| * Copyright (C) 2009 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "updater/install.h" |
| |
| #include <ctype.h> |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <ftw.h> |
| #include <inttypes.h> |
| #include <stdarg.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/capability.h> |
| #include <sys/mount.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <sys/wait.h> |
| #include <sys/xattr.h> |
| #include <time.h> |
| #include <unistd.h> |
| #include <utime.h> |
| |
| #include <memory> |
| #include <string> |
| #include <vector> |
| |
| #include <android-base/file.h> |
| #include <android-base/logging.h> |
| #include <android-base/parsedouble.h> |
| #include <android-base/parseint.h> |
| #include <android-base/properties.h> |
| #include <android-base/stringprintf.h> |
| #include <android-base/strings.h> |
| #include <applypatch/applypatch.h> |
| #include <bootloader_message/bootloader_message.h> |
| #include <ext4_utils/wipe.h> |
| #include <openssl/sha.h> |
| #include <selinux/label.h> |
| #include <selinux/selinux.h> |
| #include <tune2fs.h> |
| #include <ziparchive/zip_archive.h> |
| |
| #include "edify/expr.h" |
| #include "otafault/ota_io.h" |
| #include "otautil/dirutil.h" |
| #include "otautil/error_code.h" |
| #include "otautil/mounts.h" |
| #include "otautil/print_sha1.h" |
| #include "otautil/sysutil.h" |
| #include "updater/updater.h" |
| |
| // Send over the buffer to recovery though the command pipe. |
| static void uiPrint(State* state, const std::string& buffer) { |
| UpdaterInfo* ui = static_cast<UpdaterInfo*>(state->cookie); |
| |
| // "line1\nline2\n" will be split into 3 tokens: "line1", "line2" and "". |
| // So skip sending empty strings to UI. |
| std::vector<std::string> lines = android::base::Split(buffer, "\n"); |
| for (auto& line : lines) { |
| if (!line.empty()) { |
| fprintf(ui->cmd_pipe, "ui_print %s\n", line.c_str()); |
| } |
| } |
| |
| // On the updater side, we need to dump the contents to stderr (which has |
| // been redirected to the log file). Because the recovery will only print |
| // the contents to screen when processing pipe command ui_print. |
| LOG(INFO) << buffer; |
| } |
| |
| void uiPrintf(State* _Nonnull state, const char* _Nonnull format, ...) { |
| std::string error_msg; |
| |
| va_list ap; |
| va_start(ap, format); |
| android::base::StringAppendV(&error_msg, format, ap); |
| va_end(ap); |
| |
| uiPrint(state, error_msg); |
| } |
| |
| // This is the updater side handler for ui_print() in edify script. Contents will be sent over to |
| // the recovery side for on-screen display. |
| Value* UIPrintFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { |
| std::vector<std::string> args; |
| if (!ReadArgs(state, argv, &args)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name); |
| } |
| |
| std::string buffer = android::base::Join(args, ""); |
| uiPrint(state, buffer); |
| return StringValue(buffer); |
| } |
| |
| // package_extract_file(package_file[, dest_file]) |
| // Extracts a single package_file from the update package and writes it to dest_file, |
| // overwriting existing files if necessary. Without the dest_file argument, returns the |
| // contents of the package file as a binary blob. |
| Value* PackageExtractFileFn(const char* name, State* state, |
| const std::vector<std::unique_ptr<Expr>>& argv) { |
| if (argv.size() < 1 || argv.size() > 2) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 or 2 args, got %zu", name, |
| argv.size()); |
| } |
| |
| if (argv.size() == 2) { |
| // The two-argument version extracts to a file. |
| |
| std::vector<std::string> args; |
| if (!ReadArgs(state, argv, &args)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse %zu args", name, |
| argv.size()); |
| } |
| const std::string& zip_path = args[0]; |
| const std::string& dest_path = args[1]; |
| |
| ZipArchiveHandle za = static_cast<UpdaterInfo*>(state->cookie)->package_zip; |
| ZipString zip_string_path(zip_path.c_str()); |
| ZipEntry entry; |
| if (FindEntry(za, zip_string_path, &entry) != 0) { |
| LOG(ERROR) << name << ": no " << zip_path << " in package"; |
| return StringValue(""); |
| } |
| |
| unique_fd fd(TEMP_FAILURE_RETRY( |
| ota_open(dest_path.c_str(), O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR))); |
| if (fd == -1) { |
| PLOG(ERROR) << name << ": can't open " << dest_path << " for write"; |
| return StringValue(""); |
| } |
| |
| bool success = true; |
| int32_t ret = ExtractEntryToFile(za, &entry, fd); |
| if (ret != 0) { |
| LOG(ERROR) << name << ": Failed to extract entry \"" << zip_path << "\" (" |
| << entry.uncompressed_length << " bytes) to \"" << dest_path |
| << "\": " << ErrorCodeString(ret); |
| success = false; |
| } |
| if (ota_fsync(fd) == -1) { |
| PLOG(ERROR) << "fsync of \"" << dest_path << "\" failed"; |
| success = false; |
| } |
| if (ota_close(fd) == -1) { |
| PLOG(ERROR) << "close of \"" << dest_path << "\" failed"; |
| success = false; |
| } |
| |
| return StringValue(success ? "t" : ""); |
| } else { |
| // The one-argument version returns the contents of the file as the result. |
| |
| std::vector<std::string> args; |
| if (!ReadArgs(state, argv, &args)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse %zu args", name, |
| argv.size()); |
| } |
| const std::string& zip_path = args[0]; |
| |
| ZipArchiveHandle za = static_cast<UpdaterInfo*>(state->cookie)->package_zip; |
| ZipString zip_string_path(zip_path.c_str()); |
| ZipEntry entry; |
| if (FindEntry(za, zip_string_path, &entry) != 0) { |
| return ErrorAbort(state, kPackageExtractFileFailure, "%s(): no %s in package", name, |
| zip_path.c_str()); |
| } |
| |
| std::string buffer; |
| buffer.resize(entry.uncompressed_length); |
| |
| int32_t ret = |
| ExtractToMemory(za, &entry, reinterpret_cast<uint8_t*>(&buffer[0]), buffer.size()); |
| if (ret != 0) { |
| return ErrorAbort(state, kPackageExtractFileFailure, |
| "%s: Failed to extract entry \"%s\" (%zu bytes) to memory: %s", name, |
| zip_path.c_str(), buffer.size(), ErrorCodeString(ret)); |
| } |
| |
| return new Value(Value::Type::BLOB, buffer); |
| } |
| } |
| |
| // apply_patch(src_file, tgt_file, tgt_sha1, tgt_size, patch1_sha1, patch1_blob, [...]) |
| // Applies a binary patch to the src_file to produce the tgt_file. If the desired target is the |
| // same as the source, pass "-" for tgt_file. tgt_sha1 and tgt_size are the expected final SHA1 |
| // hash and size of the target file. The remaining arguments must come in pairs: a SHA1 hash (a |
| // 40-character hex string) and a blob. The blob is the patch to be applied when the source |
| // file's current contents have the given SHA1. |
| // |
| // The patching is done in a safe manner that guarantees the target file either has the desired |
| // SHA1 hash and size, or it is untouched -- it will not be left in an unrecoverable intermediate |
| // state. If the process is interrupted during patching, the target file may be in an intermediate |
| // state; a copy exists in the cache partition so restarting the update can successfully update |
| // the file. |
| Value* ApplyPatchFn(const char* name, State* state, |
| const std::vector<std::unique_ptr<Expr>>& argv) { |
| if (argv.size() < 6 || (argv.size() % 2) == 1) { |
| return ErrorAbort(state, kArgsParsingFailure, |
| "%s(): expected at least 6 args and an " |
| "even number, got %zu", |
| name, argv.size()); |
| } |
| |
| std::vector<std::string> args; |
| if (!ReadArgs(state, argv, &args, 0, 4)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); |
| } |
| const std::string& source_filename = args[0]; |
| const std::string& target_filename = args[1]; |
| const std::string& target_sha1 = args[2]; |
| const std::string& target_size_str = args[3]; |
| |
| size_t target_size; |
| if (!android::base::ParseUint(target_size_str.c_str(), &target_size)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s(): can't parse \"%s\" as byte count", name, |
| target_size_str.c_str()); |
| } |
| |
| int patchcount = (argv.size() - 4) / 2; |
| std::vector<std::unique_ptr<Value>> arg_values; |
| if (!ReadValueArgs(state, argv, &arg_values, 4, argv.size() - 4)) { |
| return nullptr; |
| } |
| |
| for (int i = 0; i < patchcount; ++i) { |
| if (arg_values[i * 2]->type != Value::Type::STRING) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s(): sha-1 #%d is not string", name, i * 2); |
| } |
| if (arg_values[i * 2 + 1]->type != Value::Type::BLOB) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s(): patch #%d is not blob", name, i * 2 + 1); |
| } |
| } |
| |
| std::vector<std::string> patch_sha_str; |
| std::vector<std::unique_ptr<Value>> patches; |
| for (int i = 0; i < patchcount; ++i) { |
| patch_sha_str.push_back(arg_values[i * 2]->data); |
| patches.push_back(std::move(arg_values[i * 2 + 1])); |
| } |
| |
| int result = applypatch(source_filename.c_str(), target_filename.c_str(), target_sha1.c_str(), |
| target_size, patch_sha_str, patches, nullptr); |
| |
| return StringValue(result == 0 ? "t" : ""); |
| } |
| |
| // apply_patch_check(filename, [sha1, ...]) |
| // Returns true if the contents of filename or the temporary copy in the cache partition (if |
| // present) have a SHA-1 checksum equal to one of the given sha1 values. sha1 values are |
| // specified as 40 hex digits. |
| Value* ApplyPatchCheckFn(const char* name, State* state, |
| const std::vector<std::unique_ptr<Expr>>& argv) { |
| if (argv.size() < 1) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s(): expected at least 1 arg, got %zu", name, |
| argv.size()); |
| } |
| |
| std::vector<std::string> args; |
| if (!ReadArgs(state, argv, &args, 0, 1)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); |
| } |
| const std::string& filename = args[0]; |
| |
| std::vector<std::string> sha1s; |
| if (argv.size() > 1 && !ReadArgs(state, argv, &sha1s, 1, argv.size() - 1)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); |
| } |
| int result = applypatch_check(filename.c_str(), sha1s); |
| |
| return StringValue(result == 0 ? "t" : ""); |
| } |
| |
| // mount(fs_type, partition_type, location, mount_point) |
| // mount(fs_type, partition_type, location, mount_point, mount_options) |
| |
| // fs_type="ext4" partition_type="EMMC" location=device |
| Value* MountFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { |
| if (argv.size() != 4 && argv.size() != 5) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() expects 4-5 args, got %zu", name, |
| argv.size()); |
| } |
| |
| std::vector<std::string> args; |
| if (!ReadArgs(state, argv, &args)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); |
| } |
| const std::string& fs_type = args[0]; |
| const std::string& partition_type = args[1]; |
| const std::string& location = args[2]; |
| const std::string& mount_point = args[3]; |
| std::string mount_options; |
| |
| if (argv.size() == 5) { |
| mount_options = args[4]; |
| } |
| |
| if (fs_type.empty()) { |
| return ErrorAbort(state, kArgsParsingFailure, "fs_type argument to %s() can't be empty", name); |
| } |
| if (partition_type.empty()) { |
| return ErrorAbort(state, kArgsParsingFailure, "partition_type argument to %s() can't be empty", |
| name); |
| } |
| if (location.empty()) { |
| return ErrorAbort(state, kArgsParsingFailure, "location argument to %s() can't be empty", name); |
| } |
| if (mount_point.empty()) { |
| return ErrorAbort(state, kArgsParsingFailure, "mount_point argument to %s() can't be empty", |
| name); |
| } |
| |
| { |
| char* secontext = nullptr; |
| |
| if (sehandle) { |
| selabel_lookup(sehandle, &secontext, mount_point.c_str(), 0755); |
| setfscreatecon(secontext); |
| } |
| |
| mkdir(mount_point.c_str(), 0755); |
| |
| if (secontext) { |
| freecon(secontext); |
| setfscreatecon(nullptr); |
| } |
| } |
| |
| if (mount(location.c_str(), mount_point.c_str(), fs_type.c_str(), |
| MS_NOATIME | MS_NODEV | MS_NODIRATIME, mount_options.c_str()) < 0) { |
| uiPrintf(state, "%s: Failed to mount %s at %s: %s", name, location.c_str(), mount_point.c_str(), |
| strerror(errno)); |
| return StringValue(""); |
| } |
| |
| return StringValue(mount_point); |
| } |
| |
| // is_mounted(mount_point) |
| Value* IsMountedFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { |
| if (argv.size() != 1) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size()); |
| } |
| |
| std::vector<std::string> args; |
| if (!ReadArgs(state, argv, &args)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); |
| } |
| const std::string& mount_point = args[0]; |
| if (mount_point.empty()) { |
| return ErrorAbort(state, kArgsParsingFailure, |
| "mount_point argument to unmount() can't be empty"); |
| } |
| |
| scan_mounted_volumes(); |
| MountedVolume* vol = find_mounted_volume_by_mount_point(mount_point.c_str()); |
| if (vol == nullptr) { |
| return StringValue(""); |
| } |
| |
| return StringValue(mount_point); |
| } |
| |
| Value* UnmountFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { |
| if (argv.size() != 1) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size()); |
| } |
| std::vector<std::string> args; |
| if (!ReadArgs(state, argv, &args)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); |
| } |
| const std::string& mount_point = args[0]; |
| if (mount_point.empty()) { |
| return ErrorAbort(state, kArgsParsingFailure, |
| "mount_point argument to unmount() can't be empty"); |
| } |
| |
| scan_mounted_volumes(); |
| MountedVolume* vol = find_mounted_volume_by_mount_point(mount_point.c_str()); |
| if (vol == nullptr) { |
| uiPrintf(state, "Failed to unmount %s: No such volume", mount_point.c_str()); |
| return nullptr; |
| } else { |
| int ret = unmount_mounted_volume(vol); |
| if (ret != 0) { |
| uiPrintf(state, "Failed to unmount %s: %s", mount_point.c_str(), strerror(errno)); |
| } |
| } |
| |
| return StringValue(mount_point); |
| } |
| |
| static int exec_cmd(const char* path, char* const argv[]) { |
| pid_t child; |
| if ((child = vfork()) == 0) { |
| execv(path, argv); |
| _exit(EXIT_FAILURE); |
| } |
| |
| int status; |
| waitpid(child, &status, 0); |
| if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { |
| LOG(ERROR) << path << " failed with status " << WEXITSTATUS(status); |
| } |
| return WEXITSTATUS(status); |
| } |
| |
| // format(fs_type, partition_type, location, fs_size, mount_point) |
| // |
| // fs_type="ext4" partition_type="EMMC" location=device fs_size=<bytes> mount_point=<location> |
| // fs_type="f2fs" partition_type="EMMC" location=device fs_size=<bytes> mount_point=<location> |
| // if fs_size == 0, then make fs uses the entire partition. |
| // if fs_size > 0, that is the size to use |
| // if fs_size < 0, then reserve that many bytes at the end of the partition (not for "f2fs") |
| Value* FormatFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { |
| if (argv.size() != 5) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() expects 5 args, got %zu", name, |
| argv.size()); |
| } |
| |
| std::vector<std::string> args; |
| if (!ReadArgs(state, argv, &args)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); |
| } |
| const std::string& fs_type = args[0]; |
| const std::string& partition_type = args[1]; |
| const std::string& location = args[2]; |
| const std::string& fs_size = args[3]; |
| const std::string& mount_point = args[4]; |
| |
| if (fs_type.empty()) { |
| return ErrorAbort(state, kArgsParsingFailure, "fs_type argument to %s() can't be empty", name); |
| } |
| if (partition_type.empty()) { |
| return ErrorAbort(state, kArgsParsingFailure, "partition_type argument to %s() can't be empty", |
| name); |
| } |
| if (location.empty()) { |
| return ErrorAbort(state, kArgsParsingFailure, "location argument to %s() can't be empty", name); |
| } |
| if (mount_point.empty()) { |
| return ErrorAbort(state, kArgsParsingFailure, "mount_point argument to %s() can't be empty", |
| name); |
| } |
| |
| int64_t size; |
| if (!android::base::ParseInt(fs_size, &size)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse int in %s", name, |
| fs_size.c_str()); |
| } |
| |
| if (fs_type == "ext4") { |
| const char* mke2fs_argv[] = { "/system/bin/mke2fs", "-t", "ext4", "-b", "4096", |
| location.c_str(), nullptr, nullptr }; |
| std::string size_str; |
| if (size != 0) { |
| size_str = std::to_string(size / 4096LL); |
| mke2fs_argv[6] = size_str.c_str(); |
| } |
| |
| int status = exec_cmd(mke2fs_argv[0], const_cast<char**>(mke2fs_argv)); |
| if (status != 0) { |
| LOG(ERROR) << name << ": mke2fs failed (" << status << ") on " << location; |
| return StringValue(""); |
| } |
| |
| const char* e2fsdroid_argv[] = { "/system/bin/e2fsdroid", "-e", "-a", mount_point.c_str(), |
| location.c_str(), nullptr }; |
| status = exec_cmd(e2fsdroid_argv[0], const_cast<char**>(e2fsdroid_argv)); |
| if (status != 0) { |
| LOG(ERROR) << name << ": e2fsdroid failed (" << status << ") on " << location; |
| return StringValue(""); |
| } |
| return StringValue(location); |
| } else if (fs_type == "f2fs") { |
| if (size < 0) { |
| LOG(ERROR) << name << ": fs_size can't be negative for f2fs: " << fs_size; |
| return StringValue(""); |
| } |
| std::string num_sectors = std::to_string(size / 512); |
| |
| const char* f2fs_path = "/sbin/mkfs.f2fs"; |
| const char* f2fs_argv[] = { "mkfs.f2fs", |
| "-d1", |
| "-f", |
| "-O", |
| "encrypt", |
| "-O", |
| "quota", |
| "-w", |
| "512", |
| location.c_str(), |
| (size < 512) ? nullptr : num_sectors.c_str(), |
| nullptr }; |
| int status = exec_cmd(f2fs_path, const_cast<char**>(f2fs_argv)); |
| if (status != 0) { |
| LOG(ERROR) << name << ": mkfs.f2fs failed (" << status << ") on " << location; |
| return StringValue(""); |
| } |
| |
| const char* sload_argv[] = { "/sbin/sload.f2fs", "-t", mount_point.c_str(), location.c_str(), |
| nullptr }; |
| status = exec_cmd(sload_argv[0], const_cast<char**>(sload_argv)); |
| if (status != 0) { |
| LOG(ERROR) << name << ": sload.f2fs failed (" << status << ") on " << location; |
| return StringValue(""); |
| } |
| |
| return StringValue(location); |
| } else { |
| LOG(ERROR) << name << ": unsupported fs_type \"" << fs_type << "\" partition_type \"" |
| << partition_type << "\""; |
| } |
| |
| return nullptr; |
| } |
| |
| Value* ShowProgressFn(const char* name, State* state, |
| const std::vector<std::unique_ptr<Expr>>& argv) { |
| if (argv.size() != 2) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name, |
| argv.size()); |
| } |
| |
| std::vector<std::string> args; |
| if (!ReadArgs(state, argv, &args)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); |
| } |
| const std::string& frac_str = args[0]; |
| const std::string& sec_str = args[1]; |
| |
| double frac; |
| if (!android::base::ParseDouble(frac_str.c_str(), &frac)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse double in %s", name, |
| frac_str.c_str()); |
| } |
| int sec; |
| if (!android::base::ParseInt(sec_str.c_str(), &sec)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse int in %s", name, |
| sec_str.c_str()); |
| } |
| |
| UpdaterInfo* ui = static_cast<UpdaterInfo*>(state->cookie); |
| fprintf(ui->cmd_pipe, "progress %f %d\n", frac, sec); |
| |
| return StringValue(frac_str); |
| } |
| |
| Value* SetProgressFn(const char* name, State* state, |
| const std::vector<std::unique_ptr<Expr>>& argv) { |
| if (argv.size() != 1) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size()); |
| } |
| |
| std::vector<std::string> args; |
| if (!ReadArgs(state, argv, &args)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); |
| } |
| const std::string& frac_str = args[0]; |
| |
| double frac; |
| if (!android::base::ParseDouble(frac_str.c_str(), &frac)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse double in %s", name, |
| frac_str.c_str()); |
| } |
| |
| UpdaterInfo* ui = static_cast<UpdaterInfo*>(state->cookie); |
| fprintf(ui->cmd_pipe, "set_progress %f\n", frac); |
| |
| return StringValue(frac_str); |
| } |
| |
| Value* GetPropFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { |
| if (argv.size() != 1) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size()); |
| } |
| std::string key; |
| if (!Evaluate(state, argv[0], &key)) { |
| return nullptr; |
| } |
| std::string value = android::base::GetProperty(key, ""); |
| |
| return StringValue(value); |
| } |
| |
| // file_getprop(file, key) |
| // |
| // interprets 'file' as a getprop-style file (key=value pairs, one |
| // per line. # comment lines, blank lines, lines without '=' ignored), |
| // and returns the value for 'key' (or "" if it isn't defined). |
| Value* FileGetPropFn(const char* name, State* state, |
| const std::vector<std::unique_ptr<Expr>>& argv) { |
| if (argv.size() != 2) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name, |
| argv.size()); |
| } |
| |
| std::vector<std::string> args; |
| if (!ReadArgs(state, argv, &args)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); |
| } |
| const std::string& filename = args[0]; |
| const std::string& key = args[1]; |
| |
| struct stat st; |
| if (stat(filename.c_str(), &st) < 0) { |
| return ErrorAbort(state, kFileGetPropFailure, "%s: failed to stat \"%s\": %s", name, |
| filename.c_str(), strerror(errno)); |
| } |
| |
| constexpr off_t MAX_FILE_GETPROP_SIZE = 65536; |
| if (st.st_size > MAX_FILE_GETPROP_SIZE) { |
| return ErrorAbort(state, kFileGetPropFailure, "%s too large for %s (max %lld)", |
| filename.c_str(), name, static_cast<long long>(MAX_FILE_GETPROP_SIZE)); |
| } |
| |
| std::string buffer(st.st_size, '\0'); |
| unique_file f(ota_fopen(filename.c_str(), "rb")); |
| if (f == nullptr) { |
| return ErrorAbort(state, kFileOpenFailure, "%s: failed to open %s: %s", name, filename.c_str(), |
| strerror(errno)); |
| } |
| |
| if (ota_fread(&buffer[0], 1, st.st_size, f.get()) != static_cast<size_t>(st.st_size)) { |
| ErrorAbort(state, kFreadFailure, "%s: failed to read %zu bytes from %s", name, |
| static_cast<size_t>(st.st_size), filename.c_str()); |
| return nullptr; |
| } |
| |
| ota_fclose(f); |
| |
| std::vector<std::string> lines = android::base::Split(buffer, "\n"); |
| for (size_t i = 0; i < lines.size(); i++) { |
| std::string line = android::base::Trim(lines[i]); |
| |
| // comment or blank line: skip to next line |
| if (line.empty() || line[0] == '#') { |
| continue; |
| } |
| size_t equal_pos = line.find('='); |
| if (equal_pos == std::string::npos) { |
| continue; |
| } |
| |
| // trim whitespace between key and '=' |
| std::string str = android::base::Trim(line.substr(0, equal_pos)); |
| |
| // not the key we're looking for |
| if (key != str) continue; |
| |
| return StringValue(android::base::Trim(line.substr(equal_pos + 1))); |
| } |
| |
| return StringValue(""); |
| } |
| |
| // apply_patch_space(bytes) |
| Value* ApplyPatchSpaceFn(const char* name, State* state, |
| const std::vector<std::unique_ptr<Expr>>& argv) { |
| if (argv.size() != 1) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 args, got %zu", name, |
| argv.size()); |
| } |
| std::vector<std::string> args; |
| if (!ReadArgs(state, argv, &args)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); |
| } |
| const std::string& bytes_str = args[0]; |
| |
| size_t bytes; |
| if (!android::base::ParseUint(bytes_str.c_str(), &bytes)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s(): can't parse \"%s\" as byte count", name, |
| bytes_str.c_str()); |
| } |
| |
| // Skip the cache size check if the update is a retry. |
| if (state->is_retry || CacheSizeCheck(bytes) == 0) { |
| return StringValue("t"); |
| } |
| return StringValue(""); |
| } |
| |
| Value* WipeCacheFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { |
| if (!argv.empty()) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() expects no args, got %zu", name, |
| argv.size()); |
| } |
| fprintf(static_cast<UpdaterInfo*>(state->cookie)->cmd_pipe, "wipe_cache\n"); |
| return StringValue("t"); |
| } |
| |
| Value* RunProgramFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { |
| if (argv.size() < 1) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() expects at least 1 arg", name); |
| } |
| |
| std::vector<std::string> args; |
| if (!ReadArgs(state, argv, &args)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); |
| } |
| |
| char* args2[argv.size() + 1]; |
| for (size_t i = 0; i < argv.size(); i++) { |
| args2[i] = &args[i][0]; |
| } |
| args2[argv.size()] = nullptr; |
| |
| LOG(INFO) << "about to run program [" << args2[0] << "] with " << argv.size() << " args"; |
| |
| pid_t child = fork(); |
| if (child == 0) { |
| execv(args2[0], args2); |
| PLOG(ERROR) << "run_program: execv failed"; |
| _exit(EXIT_FAILURE); |
| } |
| |
| int status; |
| waitpid(child, &status, 0); |
| if (WIFEXITED(status)) { |
| if (WEXITSTATUS(status) != 0) { |
| LOG(ERROR) << "run_program: child exited with status " << WEXITSTATUS(status); |
| } |
| } else if (WIFSIGNALED(status)) { |
| LOG(ERROR) << "run_program: child terminated by signal " << WTERMSIG(status); |
| } |
| |
| return StringValue(std::to_string(status)); |
| } |
| |
| // read_file(filename) |
| // Reads a local file 'filename' and returns its contents as a string Value. |
| Value* ReadFileFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { |
| if (argv.size() != 1) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size()); |
| } |
| |
| std::vector<std::string> args; |
| if (!ReadArgs(state, argv, &args)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name); |
| } |
| const std::string& filename = args[0]; |
| |
| std::string contents; |
| if (android::base::ReadFileToString(filename, &contents)) { |
| return new Value(Value::Type::STRING, std::move(contents)); |
| } |
| |
| // Leave it to caller to handle the failure. |
| PLOG(ERROR) << name << ": Failed to read " << filename; |
| return StringValue(""); |
| } |
| |
| // write_value(value, filename) |
| // Writes 'value' to 'filename'. |
| // Example: write_value("960000", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq") |
| Value* WriteValueFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { |
| if (argv.size() != 2) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name, |
| argv.size()); |
| } |
| |
| std::vector<std::string> args; |
| if (!ReadArgs(state, argv, &args)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name); |
| } |
| |
| const std::string& filename = args[1]; |
| if (filename.empty()) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s(): Filename cannot be empty", name); |
| } |
| |
| const std::string& value = args[0]; |
| if (!android::base::WriteStringToFile(value, filename)) { |
| PLOG(ERROR) << name << ": Failed to write to \"" << filename << "\""; |
| return StringValue(""); |
| } else { |
| return StringValue("t"); |
| } |
| } |
| |
| // Immediately reboot the device. Recovery is not finished normally, |
| // so if you reboot into recovery it will re-start applying the |
| // current package (because nothing has cleared the copy of the |
| // arguments stored in the BCB). |
| // |
| // The argument is the partition name passed to the android reboot |
| // property. It can be "recovery" to boot from the recovery |
| // partition, or "" (empty string) to boot from the regular boot |
| // partition. |
| Value* RebootNowFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { |
| if (argv.size() != 2) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name, |
| argv.size()); |
| } |
| |
| std::vector<std::string> args; |
| if (!ReadArgs(state, argv, &args)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name); |
| } |
| const std::string& filename = args[0]; |
| const std::string& property = args[1]; |
| |
| // Zero out the 'command' field of the bootloader message. Leave the rest intact. |
| bootloader_message boot; |
| std::string err; |
| if (!read_bootloader_message_from(&boot, filename, &err)) { |
| LOG(ERROR) << name << "(): Failed to read from \"" << filename << "\": " << err; |
| return StringValue(""); |
| } |
| memset(boot.command, 0, sizeof(boot.command)); |
| if (!write_bootloader_message_to(boot, filename, &err)) { |
| LOG(ERROR) << name << "(): Failed to write to \"" << filename << "\": " << err; |
| return StringValue(""); |
| } |
| |
| reboot("reboot," + property); |
| |
| sleep(5); |
| return ErrorAbort(state, kRebootFailure, "%s() failed to reboot", name); |
| } |
| |
| // Store a string value somewhere that future invocations of recovery |
| // can access it. This value is called the "stage" and can be used to |
| // drive packages that need to do reboots in the middle of |
| // installation and keep track of where they are in the multi-stage |
| // install. |
| // |
| // The first argument is the block device for the misc partition |
| // ("/misc" in the fstab), which is where this value is stored. The |
| // second argument is the string to store; it should not exceed 31 |
| // bytes. |
| Value* SetStageFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { |
| if (argv.size() != 2) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name, |
| argv.size()); |
| } |
| |
| std::vector<std::string> args; |
| if (!ReadArgs(state, argv, &args)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); |
| } |
| const std::string& filename = args[0]; |
| const std::string& stagestr = args[1]; |
| |
| // Store this value in the misc partition, immediately after the |
| // bootloader message that the main recovery uses to save its |
| // arguments in case of the device restarting midway through |
| // package installation. |
| bootloader_message boot; |
| std::string err; |
| if (!read_bootloader_message_from(&boot, filename, &err)) { |
| LOG(ERROR) << name << "(): Failed to read from \"" << filename << "\": " << err; |
| return StringValue(""); |
| } |
| strlcpy(boot.stage, stagestr.c_str(), sizeof(boot.stage)); |
| if (!write_bootloader_message_to(boot, filename, &err)) { |
| LOG(ERROR) << name << "(): Failed to write to \"" << filename << "\": " << err; |
| return StringValue(""); |
| } |
| |
| return StringValue(filename); |
| } |
| |
| // Return the value most recently saved with SetStageFn. The argument |
| // is the block device for the misc partition. |
| Value* GetStageFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { |
| if (argv.size() != 1) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size()); |
| } |
| |
| std::vector<std::string> args; |
| if (!ReadArgs(state, argv, &args)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); |
| } |
| const std::string& filename = args[0]; |
| |
| bootloader_message boot; |
| std::string err; |
| if (!read_bootloader_message_from(&boot, filename, &err)) { |
| LOG(ERROR) << name << "(): Failed to read from \"" << filename << "\": " << err; |
| return StringValue(""); |
| } |
| |
| return StringValue(boot.stage); |
| } |
| |
| Value* WipeBlockDeviceFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { |
| if (argv.size() != 2) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name, |
| argv.size()); |
| } |
| |
| std::vector<std::string> args; |
| if (!ReadArgs(state, argv, &args)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); |
| } |
| const std::string& filename = args[0]; |
| const std::string& len_str = args[1]; |
| |
| size_t len; |
| if (!android::base::ParseUint(len_str.c_str(), &len)) { |
| return nullptr; |
| } |
| unique_fd fd(ota_open(filename.c_str(), O_WRONLY, 0644)); |
| // The wipe_block_device function in ext4_utils returns 0 on success and 1 |
| // for failure. |
| int status = wipe_block_device(fd, len); |
| return StringValue((status == 0) ? "t" : ""); |
| } |
| |
| Value* EnableRebootFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { |
| if (!argv.empty()) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() expects no args, got %zu", name, |
| argv.size()); |
| } |
| UpdaterInfo* ui = static_cast<UpdaterInfo*>(state->cookie); |
| fprintf(ui->cmd_pipe, "enable_reboot\n"); |
| return StringValue("t"); |
| } |
| |
| Value* Tune2FsFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { |
| if (argv.empty()) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() expects args, got %zu", name, argv.size()); |
| } |
| |
| std::vector<std::string> args; |
| if (!ReadArgs(state, argv, &args)) { |
| return ErrorAbort(state, kArgsParsingFailure, "%s() could not read args", name); |
| } |
| |
| char* args2[argv.size() + 1]; |
| // Tune2fs expects the program name as its args[0] |
| args2[0] = const_cast<char*>(name); |
| if (args2[0] == nullptr) { |
| return nullptr; |
| } |
| for (size_t i = 0; i < argv.size(); ++i) { |
| args2[i + 1] = &args[i][0]; |
| } |
| |
| // tune2fs changes the file system parameters on an ext2 file system; it |
| // returns 0 on success. |
| int result = tune2fs_main(argv.size() + 1, args2); |
| if (result != 0) { |
| return ErrorAbort(state, kTune2FsFailure, "%s() returned error code %d", name, result); |
| } |
| return StringValue("t"); |
| } |
| |
| void RegisterInstallFunctions() { |
| RegisterFunction("mount", MountFn); |
| RegisterFunction("is_mounted", IsMountedFn); |
| RegisterFunction("unmount", UnmountFn); |
| RegisterFunction("format", FormatFn); |
| RegisterFunction("show_progress", ShowProgressFn); |
| RegisterFunction("set_progress", SetProgressFn); |
| RegisterFunction("package_extract_file", PackageExtractFileFn); |
| |
| RegisterFunction("getprop", GetPropFn); |
| RegisterFunction("file_getprop", FileGetPropFn); |
| |
| RegisterFunction("apply_patch", ApplyPatchFn); |
| RegisterFunction("apply_patch_check", ApplyPatchCheckFn); |
| RegisterFunction("apply_patch_space", ApplyPatchSpaceFn); |
| |
| RegisterFunction("wipe_block_device", WipeBlockDeviceFn); |
| |
| RegisterFunction("read_file", ReadFileFn); |
| RegisterFunction("write_value", WriteValueFn); |
| |
| RegisterFunction("wipe_cache", WipeCacheFn); |
| |
| RegisterFunction("ui_print", UIPrintFn); |
| |
| RegisterFunction("run_program", RunProgramFn); |
| |
| RegisterFunction("reboot_now", RebootNowFn); |
| RegisterFunction("get_stage", GetStageFn); |
| RegisterFunction("set_stage", SetStageFn); |
| |
| RegisterFunction("enable_reboot", EnableRebootFn); |
| RegisterFunction("tune2fs", Tune2FsFn); |
| } |