blob: daa10c6cfeff6de1574d3543713130d075f315a0 [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <dirent.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/epoll.h>
#include <unistd.h>
#include <linux/input.h>
#include "minui.h"
#define MAX_DEVICES 16
#define MAX_MISC_FDS 16
#define BITS_PER_LONG (sizeof(unsigned long) * 8)
#define BITS_TO_LONGS(x) (((x) + BITS_PER_LONG - 1) / BITS_PER_LONG)
struct fd_info {
int fd;
ev_callback cb;
void* data;
};
static int g_epoll_fd;
static struct epoll_event polledevents[MAX_DEVICES + MAX_MISC_FDS];
static int npolledevents;
static struct fd_info ev_fdinfo[MAX_DEVICES + MAX_MISC_FDS];
static unsigned ev_count = 0;
static unsigned ev_dev_count = 0;
static unsigned ev_misc_count = 0;
static bool test_bit(size_t bit, unsigned long* array) {
return (array[bit/BITS_PER_LONG] & (1UL << (bit % BITS_PER_LONG))) != 0;
}
int ev_init(ev_callback input_cb, void* data) {
bool epollctlfail = false;
g_epoll_fd = epoll_create(MAX_DEVICES + MAX_MISC_FDS);
if (g_epoll_fd == -1) {
return -1;
}
DIR* dir = opendir("/dev/input");
if (dir != NULL) {
struct dirent* de;
while ((de = readdir(dir))) {
unsigned long ev_bits[BITS_TO_LONGS(EV_MAX)];
// fprintf(stderr,"/dev/input/%s\n", de->d_name);
if (strncmp(de->d_name, "event", 5)) continue;
int fd = openat(dirfd(dir), de->d_name, O_RDONLY);
if (fd == -1) continue;
// Read the evbits of the input device.
if (ioctl(fd, EVIOCGBIT(0, sizeof(ev_bits)), ev_bits) == -1) {
close(fd);
continue;
}
// We assume that only EV_KEY, EV_REL, and EV_SW event types are ever needed.
if (!test_bit(EV_KEY, ev_bits) && !test_bit(EV_REL, ev_bits) && !test_bit(EV_SW, ev_bits)) {
close(fd);
continue;
}
struct epoll_event ev;
ev.events = EPOLLIN | EPOLLWAKEUP;
ev.data.ptr = &ev_fdinfo[ev_count];
if (epoll_ctl(g_epoll_fd, EPOLL_CTL_ADD, fd, &ev) == -1) {
close(fd);
epollctlfail = true;
continue;
}
ev_fdinfo[ev_count].fd = fd;
ev_fdinfo[ev_count].cb = input_cb;
ev_fdinfo[ev_count].data = data;
ev_count++;
ev_dev_count++;
if (ev_dev_count == MAX_DEVICES) break;
}
closedir(dir);
}
if (epollctlfail && !ev_count) {
close(g_epoll_fd);
g_epoll_fd = -1;
return -1;
}
return 0;
}
int ev_get_epollfd(void) {
return g_epoll_fd;
}
int ev_add_fd(int fd, ev_callback cb, void* data) {
if (ev_misc_count == MAX_MISC_FDS || cb == NULL) {
return -1;
}
struct epoll_event ev;
ev.events = EPOLLIN | EPOLLWAKEUP;
ev.data.ptr = (void *)&ev_fdinfo[ev_count];
int ret = epoll_ctl(g_epoll_fd, EPOLL_CTL_ADD, fd, &ev);
if (!ret) {
ev_fdinfo[ev_count].fd = fd;
ev_fdinfo[ev_count].cb = cb;
ev_fdinfo[ev_count].data = data;
ev_count++;
ev_misc_count++;
}
return ret;
}
void ev_exit(void) {
while (ev_count > 0) {
close(ev_fdinfo[--ev_count].fd);
}
ev_misc_count = 0;
ev_dev_count = 0;
close(g_epoll_fd);
}
int ev_wait(int timeout) {
npolledevents = epoll_wait(g_epoll_fd, polledevents, ev_count, timeout);
if (npolledevents <= 0) {
return -1;
}
return 0;
}
void ev_dispatch(void) {
for (int n = 0; n < npolledevents; n++) {
fd_info* fdi = reinterpret_cast<fd_info*>(polledevents[n].data.ptr);
ev_callback cb = fdi->cb;
if (cb) {
cb(fdi->fd, polledevents[n].events, fdi->data);
}
}
}
int ev_get_input(int fd, uint32_t epevents, struct input_event* ev) {
if (epevents & EPOLLIN) {
ssize_t r = read(fd, ev, sizeof(*ev));
if (r == sizeof(*ev)) {
return 0;
}
}
return -1;
}
int ev_sync_key_state(ev_set_key_callback set_key_cb, void* data) {
unsigned long ev_bits[BITS_TO_LONGS(EV_MAX)];
unsigned long key_bits[BITS_TO_LONGS(KEY_MAX)];
for (size_t i = 0; i < ev_dev_count; ++i) {
memset(ev_bits, 0, sizeof(ev_bits));
memset(key_bits, 0, sizeof(key_bits));
if (ioctl(ev_fdinfo[i].fd, EVIOCGBIT(0, sizeof(ev_bits)), ev_bits) == -1) {
continue;
}
if (!test_bit(EV_KEY, ev_bits)) {
continue;
}
if (ioctl(ev_fdinfo[i].fd, EVIOCGKEY(sizeof(key_bits)), key_bits) == -1) {
continue;
}
for (int code = 0; code <= KEY_MAX; code++) {
if (test_bit(code, key_bits)) {
set_key_cb(code, 1, data);
}
}
}
return 0;
}
void ev_iterate_available_keys(std::function<void(int)> f) {
unsigned long ev_bits[BITS_TO_LONGS(EV_MAX)];
unsigned long key_bits[BITS_TO_LONGS(KEY_MAX)];
for (size_t i = 0; i < ev_dev_count; ++i) {
memset(ev_bits, 0, sizeof(ev_bits));
memset(key_bits, 0, sizeof(key_bits));
// Does this device even have keys?
if (ioctl(ev_fdinfo[i].fd, EVIOCGBIT(0, sizeof(ev_bits)), ev_bits) == -1) {
continue;
}
if (!test_bit(EV_KEY, ev_bits)) {
continue;
}
int rc = ioctl(ev_fdinfo[i].fd, EVIOCGBIT(EV_KEY, KEY_MAX), key_bits);
if (rc == -1) {
continue;
}
for (int key_code = 0; key_code <= KEY_MAX; ++key_code) {
if (test_bit(key_code, key_bits)) {
f(key_code);
}
}
}
}