blob: 73ddf5e92aa540a46095efb3501afd779c64a94c [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "install.h"
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <limits.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <unistd.h>
#include <algorithm>
#include <chrono>
#include <condition_variable>
#include <functional>
#include <limits>
#include <map>
#include <mutex>
#include <string>
#include <thread>
#include <vector>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/parsedouble.h>
#include <android-base/parseint.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <ziparchive/zip_archive.h>
#include "common.h"
#include "error_code.h"
#include "otautil/SysUtil.h"
#include "otautil/ThermalUtil.h"
#include "roots.h"
#include "ui.h"
#include "verifier.h"
using namespace std::chrono_literals;
// Default allocation of progress bar segments to operations
static constexpr int VERIFICATION_PROGRESS_TIME = 60;
static constexpr float VERIFICATION_PROGRESS_FRACTION = 0.25;
static std::condition_variable finish_log_temperature;
// This function parses and returns the build.version.incremental
static int parse_build_number(const std::string& str) {
size_t pos = str.find('=');
if (pos != std::string::npos) {
std::string num_string = android::base::Trim(str.substr(pos+1));
int build_number;
if (android::base::ParseInt(num_string.c_str(), &build_number, 0)) {
return build_number;
}
}
LOG(ERROR) << "Failed to parse build number in " << str;
return -1;
}
bool read_metadata_from_package(ZipArchiveHandle zip, std::string* metadata) {
CHECK(metadata != nullptr);
static constexpr const char* METADATA_PATH = "META-INF/com/android/metadata";
ZipString path(METADATA_PATH);
ZipEntry entry;
if (FindEntry(zip, path, &entry) != 0) {
LOG(ERROR) << "Failed to find " << METADATA_PATH;
return false;
}
uint32_t length = entry.uncompressed_length;
metadata->resize(length, '\0');
int32_t err = ExtractToMemory(zip, &entry, reinterpret_cast<uint8_t*>(&(*metadata)[0]), length);
if (err != 0) {
LOG(ERROR) << "Failed to extract " << METADATA_PATH << ": " << ErrorCodeString(err);
return false;
}
return true;
}
// Read the build.version.incremental of src/tgt from the metadata and log it to last_install.
static void read_source_target_build(ZipArchiveHandle zip, std::vector<std::string>& log_buffer) {
std::string metadata;
if (!read_metadata_from_package(zip, &metadata)) {
return;
}
// Examples of the pre-build and post-build strings in metadata:
// pre-build-incremental=2943039
// post-build-incremental=2951741
std::vector<std::string> lines = android::base::Split(metadata, "\n");
for (const std::string& line : lines) {
std::string str = android::base::Trim(line);
if (android::base::StartsWith(str, "pre-build-incremental")) {
int source_build = parse_build_number(str);
if (source_build != -1) {
log_buffer.push_back(android::base::StringPrintf("source_build: %d", source_build));
}
} else if (android::base::StartsWith(str, "post-build-incremental")) {
int target_build = parse_build_number(str);
if (target_build != -1) {
log_buffer.push_back(android::base::StringPrintf("target_build: %d", target_build));
}
}
}
}
// Extract the update binary from the open zip archive |zip| located at |path| and store into |cmd|
// the command line that should be called. The |status_fd| is the file descriptor the child process
// should use to report back the progress of the update.
int update_binary_command(const std::string& path, ZipArchiveHandle zip, int retry_count,
int status_fd, std::vector<std::string>* cmd);
#ifdef AB_OTA_UPDATER
// Parses the metadata of the OTA package in |zip| and checks whether we are
// allowed to accept this A/B package. Downgrading is not allowed unless
// explicitly enabled in the package and only for incremental packages.
static int check_newer_ab_build(ZipArchiveHandle zip) {
std::string metadata_str;
if (!read_metadata_from_package(zip, &metadata_str)) {
return INSTALL_CORRUPT;
}
std::map<std::string, std::string> metadata;
for (const std::string& line : android::base::Split(metadata_str, "\n")) {
size_t eq = line.find('=');
if (eq != std::string::npos) {
metadata[line.substr(0, eq)] = line.substr(eq + 1);
}
}
std::string value = android::base::GetProperty("ro.product.device", "");
const std::string& pkg_device = metadata["pre-device"];
if (pkg_device != value || pkg_device.empty()) {
LOG(ERROR) << "Package is for product " << pkg_device << " but expected " << value;
return INSTALL_ERROR;
}
// We allow the package to not have any serialno, but if it has a non-empty
// value it should match.
value = android::base::GetProperty("ro.serialno", "");
const std::string& pkg_serial_no = metadata["serialno"];
if (!pkg_serial_no.empty() && pkg_serial_no != value) {
LOG(ERROR) << "Package is for serial " << pkg_serial_no;
return INSTALL_ERROR;
}
if (metadata["ota-type"] != "AB") {
LOG(ERROR) << "Package is not A/B";
return INSTALL_ERROR;
}
// Incremental updates should match the current build.
value = android::base::GetProperty("ro.build.version.incremental", "");
const std::string& pkg_pre_build = metadata["pre-build-incremental"];
if (!pkg_pre_build.empty() && pkg_pre_build != value) {
LOG(ERROR) << "Package is for source build " << pkg_pre_build << " but expected " << value;
return INSTALL_ERROR;
}
value = android::base::GetProperty("ro.build.fingerprint", "");
const std::string& pkg_pre_build_fingerprint = metadata["pre-build"];
if (!pkg_pre_build_fingerprint.empty() && pkg_pre_build_fingerprint != value) {
LOG(ERROR) << "Package is for source build " << pkg_pre_build_fingerprint << " but expected "
<< value;
return INSTALL_ERROR;
}
// Check for downgrade version.
int64_t build_timestamp =
android::base::GetIntProperty("ro.build.date.utc", std::numeric_limits<int64_t>::max());
int64_t pkg_post_timestamp = 0;
// We allow to full update to the same version we are running, in case there
// is a problem with the current copy of that version.
if (metadata["post-timestamp"].empty() ||
!android::base::ParseInt(metadata["post-timestamp"].c_str(), &pkg_post_timestamp) ||
pkg_post_timestamp < build_timestamp) {
if (metadata["ota-downgrade"] != "yes") {
LOG(ERROR) << "Update package is older than the current build, expected a build "
"newer than timestamp "
<< build_timestamp << " but package has timestamp " << pkg_post_timestamp
<< " and downgrade not allowed.";
return INSTALL_ERROR;
}
if (pkg_pre_build_fingerprint.empty()) {
LOG(ERROR) << "Downgrade package must have a pre-build version set, not allowed.";
return INSTALL_ERROR;
}
}
return 0;
}
int update_binary_command(const std::string& path, ZipArchiveHandle zip, int retry_count,
int status_fd, std::vector<std::string>* cmd) {
CHECK(cmd != nullptr);
int ret = check_newer_ab_build(zip);
if (ret != 0) {
return ret;
}
// For A/B updates we extract the payload properties to a buffer and obtain the RAW payload offset
// in the zip file.
static constexpr const char* AB_OTA_PAYLOAD_PROPERTIES = "payload_properties.txt";
ZipString property_name(AB_OTA_PAYLOAD_PROPERTIES);
ZipEntry properties_entry;
if (FindEntry(zip, property_name, &properties_entry) != 0) {
LOG(ERROR) << "Failed to find " << AB_OTA_PAYLOAD_PROPERTIES;
return INSTALL_CORRUPT;
}
uint32_t properties_entry_length = properties_entry.uncompressed_length;
std::vector<uint8_t> payload_properties(properties_entry_length);
int32_t err =
ExtractToMemory(zip, &properties_entry, payload_properties.data(), properties_entry_length);
if (err != 0) {
LOG(ERROR) << "Failed to extract " << AB_OTA_PAYLOAD_PROPERTIES << ": " << ErrorCodeString(err);
return INSTALL_CORRUPT;
}
static constexpr const char* AB_OTA_PAYLOAD = "payload.bin";
ZipString payload_name(AB_OTA_PAYLOAD);
ZipEntry payload_entry;
if (FindEntry(zip, payload_name, &payload_entry) != 0) {
LOG(ERROR) << "Failed to find " << AB_OTA_PAYLOAD;
return INSTALL_CORRUPT;
}
long payload_offset = payload_entry.offset;
*cmd = {
"/sbin/update_engine_sideload",
"--payload=file://" + path,
android::base::StringPrintf("--offset=%ld", payload_offset),
"--headers=" + std::string(payload_properties.begin(), payload_properties.end()),
android::base::StringPrintf("--status_fd=%d", status_fd),
};
return 0;
}
#else // !AB_OTA_UPDATER
int update_binary_command(const std::string& path, ZipArchiveHandle zip, int retry_count,
int status_fd, std::vector<std::string>* cmd) {
CHECK(cmd != nullptr);
// On traditional updates we extract the update binary from the package.
static constexpr const char* UPDATE_BINARY_NAME = "META-INF/com/google/android/update-binary";
ZipString binary_name(UPDATE_BINARY_NAME);
ZipEntry binary_entry;
if (FindEntry(zip, binary_name, &binary_entry) != 0) {
LOG(ERROR) << "Failed to find update binary " << UPDATE_BINARY_NAME;
return INSTALL_CORRUPT;
}
const char* binary = "/tmp/update_binary";
unlink(binary);
int fd = creat(binary, 0755);
if (fd == -1) {
PLOG(ERROR) << "Failed to create " << binary;
return INSTALL_ERROR;
}
int32_t error = ExtractEntryToFile(zip, &binary_entry, fd);
close(fd);
if (error != 0) {
LOG(ERROR) << "Failed to extract " << UPDATE_BINARY_NAME << ": " << ErrorCodeString(error);
return INSTALL_ERROR;
}
*cmd = {
binary,
EXPAND(RECOVERY_API_VERSION), // defined in Android.mk
std::to_string(status_fd),
path,
};
if (retry_count > 0) {
cmd->push_back("retry");
}
return 0;
}
#endif // !AB_OTA_UPDATER
static void log_max_temperature(int* max_temperature) {
CHECK(max_temperature != nullptr);
std::mutex mtx;
std::unique_lock<std::mutex> lck(mtx);
while (finish_log_temperature.wait_for(lck, 20s) == std::cv_status::timeout) {
*max_temperature = std::max(*max_temperature, GetMaxValueFromThermalZone());
}
}
// If the package contains an update binary, extract it and run it.
static int try_update_binary(const char* path, ZipArchiveHandle zip, bool* wipe_cache,
std::vector<std::string>& log_buffer, int retry_count,
int* max_temperature) {
read_source_target_build(zip, log_buffer);
int pipefd[2];
pipe(pipefd);
std::vector<std::string> args;
int ret = update_binary_command(path, zip, retry_count, pipefd[1], &args);
if (ret) {
close(pipefd[0]);
close(pipefd[1]);
return ret;
}
// When executing the update binary contained in the package, the
// arguments passed are:
//
// - the version number for this interface
//
// - an FD to which the program can write in order to update the
// progress bar. The program can write single-line commands:
//
// progress <frac> <secs>
// fill up the next <frac> part of of the progress bar
// over <secs> seconds. If <secs> is zero, use
// set_progress commands to manually control the
// progress of this segment of the bar.
//
// set_progress <frac>
// <frac> should be between 0.0 and 1.0; sets the
// progress bar within the segment defined by the most
// recent progress command.
//
// ui_print <string>
// display <string> on the screen.
//
// wipe_cache
// a wipe of cache will be performed following a successful
// installation.
//
// clear_display
// turn off the text display.
//
// enable_reboot
// packages can explicitly request that they want the user
// to be able to reboot during installation (useful for
// debugging packages that don't exit).
//
// retry_update
// updater encounters some issue during the update. It requests
// a reboot to retry the same package automatically.
//
// log <string>
// updater requests logging the string (e.g. cause of the
// failure).
//
// - the name of the package zip file.
//
// - an optional argument "retry" if this update is a retry of a failed
// update attempt.
//
// Convert the vector to a NULL-terminated char* array suitable for execv.
const char* chr_args[args.size() + 1];
chr_args[args.size()] = nullptr;
for (size_t i = 0; i < args.size(); i++) {
chr_args[i] = args[i].c_str();
}
pid_t pid = fork();
if (pid == -1) {
close(pipefd[0]);
close(pipefd[1]);
PLOG(ERROR) << "Failed to fork update binary";
return INSTALL_ERROR;
}
if (pid == 0) {
umask(022);
close(pipefd[0]);
execv(chr_args[0], const_cast<char**>(chr_args));
// Bug: 34769056
// We shouldn't use LOG/PLOG in the forked process, since they may cause
// the child process to hang. This deadlock results from an improperly
// copied mutex in the ui functions.
fprintf(stdout, "E:Can't run %s (%s)\n", chr_args[0], strerror(errno));
_exit(EXIT_FAILURE);
}
close(pipefd[1]);
std::thread temperature_logger(log_max_temperature, max_temperature);
*wipe_cache = false;
bool retry_update = false;
char buffer[1024];
FILE* from_child = fdopen(pipefd[0], "r");
while (fgets(buffer, sizeof(buffer), from_child) != nullptr) {
std::string line(buffer);
size_t space = line.find_first_of(" \n");
std::string command(line.substr(0, space));
if (command.empty()) continue;
// Get rid of the leading and trailing space and/or newline.
std::string args = space == std::string::npos ? "" : android::base::Trim(line.substr(space));
if (command == "progress") {
std::vector<std::string> tokens = android::base::Split(args, " ");
double fraction;
int seconds;
if (tokens.size() == 2 && android::base::ParseDouble(tokens[0].c_str(), &fraction) &&
android::base::ParseInt(tokens[1], &seconds)) {
ui->ShowProgress(fraction * (1 - VERIFICATION_PROGRESS_FRACTION), seconds);
} else {
LOG(ERROR) << "invalid \"progress\" parameters: " << line;
}
} else if (command == "set_progress") {
std::vector<std::string> tokens = android::base::Split(args, " ");
double fraction;
if (tokens.size() == 1 && android::base::ParseDouble(tokens[0].c_str(), &fraction)) {
ui->SetProgress(fraction);
} else {
LOG(ERROR) << "invalid \"set_progress\" parameters: " << line;
}
} else if (command == "ui_print") {
ui->PrintOnScreenOnly("%s\n", args.c_str());
fflush(stdout);
} else if (command == "wipe_cache") {
*wipe_cache = true;
} else if (command == "clear_display") {
ui->SetBackground(RecoveryUI::NONE);
} else if (command == "enable_reboot") {
// packages can explicitly request that they want the user
// to be able to reboot during installation (useful for
// debugging packages that don't exit).
ui->SetEnableReboot(true);
} else if (command == "retry_update") {
retry_update = true;
} else if (command == "log") {
if (!args.empty()) {
// Save the logging request from updater and write to last_install later.
log_buffer.push_back(args);
} else {
LOG(ERROR) << "invalid \"log\" parameters: " << line;
}
} else {
LOG(ERROR) << "unknown command [" << command << "]";
}
}
fclose(from_child);
int status;
waitpid(pid, &status, 0);
finish_log_temperature.notify_one();
temperature_logger.join();
if (retry_update) {
return INSTALL_RETRY;
}
if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
LOG(ERROR) << "Error in " << path << " (Status " << WEXITSTATUS(status) << ")";
return INSTALL_ERROR;
}
return INSTALL_SUCCESS;
}
// Verifes the compatibility info in a Treble-compatible package. Returns true directly if the
// entry doesn't exist. Note that the compatibility info is packed in a zip file inside the OTA
// package.
bool verify_package_compatibility(ZipArchiveHandle package_zip) {
LOG(INFO) << "Verifying package compatibility...";
static constexpr const char* COMPATIBILITY_ZIP_ENTRY = "compatibility.zip";
ZipString compatibility_entry_name(COMPATIBILITY_ZIP_ENTRY);
ZipEntry compatibility_entry;
if (FindEntry(package_zip, compatibility_entry_name, &compatibility_entry) != 0) {
LOG(INFO) << "Package doesn't contain " << COMPATIBILITY_ZIP_ENTRY << " entry";
return true;
}
std::string zip_content(compatibility_entry.uncompressed_length, '\0');
int32_t ret;
if ((ret = ExtractToMemory(package_zip, &compatibility_entry,
reinterpret_cast<uint8_t*>(&zip_content[0]),
compatibility_entry.uncompressed_length)) != 0) {
LOG(ERROR) << "Failed to read " << COMPATIBILITY_ZIP_ENTRY << ": " << ErrorCodeString(ret);
return false;
}
ZipArchiveHandle zip_handle;
ret = OpenArchiveFromMemory(static_cast<void*>(const_cast<char*>(zip_content.data())),
zip_content.size(), COMPATIBILITY_ZIP_ENTRY, &zip_handle);
if (ret != 0) {
LOG(ERROR) << "Failed to OpenArchiveFromMemory: " << ErrorCodeString(ret);
return false;
}
// Iterate all the entries inside COMPATIBILITY_ZIP_ENTRY and read the contents.
void* cookie;
ret = StartIteration(zip_handle, &cookie, nullptr, nullptr);
if (ret != 0) {
LOG(ERROR) << "Failed to start iterating zip entries: " << ErrorCodeString(ret);
CloseArchive(zip_handle);
return false;
}
std::unique_ptr<void, decltype(&EndIteration)> guard(cookie, EndIteration);
std::vector<std::string> compatibility_info;
ZipEntry info_entry;
ZipString info_name;
while (Next(cookie, &info_entry, &info_name) == 0) {
std::string content(info_entry.uncompressed_length, '\0');
int32_t ret = ExtractToMemory(zip_handle, &info_entry, reinterpret_cast<uint8_t*>(&content[0]),
info_entry.uncompressed_length);
if (ret != 0) {
LOG(ERROR) << "Failed to read " << info_name.name << ": " << ErrorCodeString(ret);
CloseArchive(zip_handle);
return false;
}
compatibility_info.emplace_back(std::move(content));
}
CloseArchive(zip_handle);
// TODO(b/36814503): Enable the actual verification when VintfObject::CheckCompatibility() lands.
// VintfObject::CheckCompatibility returns zero on success.
// return (android::vintf::VintfObject::CheckCompatibility(compatibility_info, true) == 0);
return true;
}
static int
really_install_package(const char *path, bool* wipe_cache, bool needs_mount,
std::vector<std::string>& log_buffer, int retry_count, int* max_temperature)
{
ui->SetBackground(RecoveryUI::INSTALLING_UPDATE);
ui->Print("Finding update package...\n");
// Give verification half the progress bar...
ui->SetProgressType(RecoveryUI::DETERMINATE);
ui->ShowProgress(VERIFICATION_PROGRESS_FRACTION, VERIFICATION_PROGRESS_TIME);
LOG(INFO) << "Update location: " << path;
// Map the update package into memory.
ui->Print("Opening update package...\n");
if (path && needs_mount) {
if (path[0] == '@') {
ensure_path_mounted(path+1);
} else {
ensure_path_mounted(path);
}
}
MemMapping map;
if (sysMapFile(path, &map) != 0) {
LOG(ERROR) << "failed to map file";
return INSTALL_CORRUPT;
}
// Verify package.
if (!verify_package(map.addr, map.length)) {
log_buffer.push_back(android::base::StringPrintf("error: %d", kZipVerificationFailure));
sysReleaseMap(&map);
return INSTALL_CORRUPT;
}
// Try to open the package.
ZipArchiveHandle zip;
int err = OpenArchiveFromMemory(map.addr, map.length, path, &zip);
if (err != 0) {
LOG(ERROR) << "Can't open " << path << " : " << ErrorCodeString(err);
log_buffer.push_back(android::base::StringPrintf("error: %d", kZipOpenFailure));
sysReleaseMap(&map);
CloseArchive(zip);
return INSTALL_CORRUPT;
}
// Additionally verify the compatibility of the package.
if (!verify_package_compatibility(zip)) {
LOG(ERROR) << "Failed to verify package compatibility";
log_buffer.push_back(android::base::StringPrintf("error: %d", kPackageCompatibilityFailure));
sysReleaseMap(&map);
CloseArchive(zip);
return INSTALL_CORRUPT;
}
// Verify and install the contents of the package.
ui->Print("Installing update...\n");
if (retry_count > 0) {
ui->Print("Retry attempt: %d\n", retry_count);
}
ui->SetEnableReboot(false);
int result = try_update_binary(path, zip, wipe_cache, log_buffer, retry_count, max_temperature);
ui->SetEnableReboot(true);
ui->Print("\n");
sysReleaseMap(&map);
CloseArchive(zip);
return result;
}
int install_package(const char* path, bool* wipe_cache, const char* install_file, bool needs_mount,
int retry_count) {
modified_flash = true;
auto start = std::chrono::system_clock::now();
int start_temperature = GetMaxValueFromThermalZone();
int max_temperature = start_temperature;
int result;
std::vector<std::string> log_buffer;
if (setup_install_mounts() != 0) {
LOG(ERROR) << "failed to set up expected mounts for install; aborting";
result = INSTALL_ERROR;
} else {
result = really_install_package(path, wipe_cache, needs_mount, log_buffer, retry_count,
&max_temperature);
}
// Measure the time spent to apply OTA update in seconds.
std::chrono::duration<double> duration = std::chrono::system_clock::now() - start;
int time_total = static_cast<int>(duration.count());
bool has_cache = volume_for_path("/cache") != nullptr;
// Skip logging the uncrypt_status on devices without /cache.
if (has_cache) {
static constexpr const char* UNCRYPT_STATUS = "/cache/recovery/uncrypt_status";
if (ensure_path_mounted(UNCRYPT_STATUS) != 0) {
LOG(WARNING) << "Can't mount " << UNCRYPT_STATUS;
} else {
std::string uncrypt_status;
if (!android::base::ReadFileToString(UNCRYPT_STATUS, &uncrypt_status)) {
PLOG(WARNING) << "failed to read uncrypt status";
} else if (!android::base::StartsWith(uncrypt_status, "uncrypt_")) {
LOG(WARNING) << "corrupted uncrypt_status: " << uncrypt_status;
} else {
log_buffer.push_back(android::base::Trim(uncrypt_status));
}
}
}
// The first two lines need to be the package name and install result.
std::vector<std::string> log_header = {
path,
result == INSTALL_SUCCESS ? "1" : "0",
"time_total: " + std::to_string(time_total),
"retry: " + std::to_string(retry_count),
};
int end_temperature = GetMaxValueFromThermalZone();
max_temperature = std::max(end_temperature, max_temperature);
if (start_temperature > 0) {
log_buffer.push_back("temperature_start: " + std::to_string(start_temperature));
}
if (end_temperature > 0) {
log_buffer.push_back("temperature_end: " + std::to_string(end_temperature));
}
if (max_temperature > 0) {
log_buffer.push_back("temperature_max: " + std::to_string(max_temperature));
}
std::string log_content =
android::base::Join(log_header, "\n") + "\n" + android::base::Join(log_buffer, "\n") + "\n";
if (!android::base::WriteStringToFile(log_content, install_file)) {
PLOG(ERROR) << "failed to write " << install_file;
}
// Write a copy into last_log.
LOG(INFO) << log_content;
return result;
}
bool verify_package(const unsigned char* package_data, size_t package_size) {
static constexpr const char* PUBLIC_KEYS_FILE = "/res/keys";
std::vector<Certificate> loadedKeys;
if (!load_keys(PUBLIC_KEYS_FILE, loadedKeys)) {
LOG(ERROR) << "Failed to load keys";
return false;
}
LOG(INFO) << loadedKeys.size() << " key(s) loaded from " << PUBLIC_KEYS_FILE;
// Verify package.
ui->Print("Verifying update package...\n");
auto t0 = std::chrono::system_clock::now();
int err = verify_file(package_data, package_size, loadedKeys,
std::bind(&RecoveryUI::SetProgress, ui, std::placeholders::_1));
std::chrono::duration<double> duration = std::chrono::system_clock::now() - t0;
ui->Print("Update package verification took %.1f s (result %d).\n", duration.count(), err);
if (err != VERIFY_SUCCESS) {
LOG(ERROR) << "Signature verification failed";
LOG(ERROR) << "error: " << kZipVerificationFailure;
return false;
}
return true;
}