| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <unistd.h> |
| #include <fcntl.h> |
| #include <ctype.h> |
| #include <sys/mount.h> |
| #include <sys/stat.h> |
| #include <errno.h> |
| #include <sys/types.h> |
| #include <sys/wait.h> |
| #include <libgen.h> |
| #include <time.h> |
| //#include <sys/swap.h> |
| /* XXX These need to be obtained from kernel headers. See b/9336527 */ |
| #define SWAP_FLAG_PREFER 0x8000 |
| #define SWAP_FLAG_PRIO_MASK 0x7fff |
| #define SWAP_FLAG_PRIO_SHIFT 0 |
| #define SWAP_FLAG_DISCARD 0x10000 |
| |
| #include <linux/loop.h> |
| #include <private/android_filesystem_config.h> |
| #include <cutils/partition_utils.h> |
| #include <cutils/properties.h> |
| #include <logwrap/logwrap.h> |
| |
| #include "mincrypt/rsa.h" |
| #include "mincrypt/sha.h" |
| #include "mincrypt/sha256.h" |
| |
| #include "fs_mgr_priv.h" |
| #include "fs_mgr_priv_verity.h" |
| |
| #define KEY_LOC_PROP "ro.crypto.keyfile.userdata" |
| #define KEY_IN_FOOTER "footer" |
| |
| #define E2FSCK_BIN "/system/bin/e2fsck" |
| #define MKSWAP_BIN "/system/bin/mkswap" |
| |
| #define FSCK_LOG_FILE "/dev/fscklogs/log" |
| |
| #define ZRAM_CONF_DEV "/sys/block/zram0/disksize" |
| |
| #define ARRAY_SIZE(a) (sizeof(a) / sizeof(*(a))) |
| |
| struct flag_list { |
| const char *name; |
| unsigned flag; |
| }; |
| |
| static struct flag_list mount_flags[] = { |
| { "noatime", MS_NOATIME }, |
| { "noexec", MS_NOEXEC }, |
| { "nosuid", MS_NOSUID }, |
| { "nodev", MS_NODEV }, |
| { "nodiratime", MS_NODIRATIME }, |
| { "ro", MS_RDONLY }, |
| { "rw", 0 }, |
| { "remount", MS_REMOUNT }, |
| { "bind", MS_BIND }, |
| { "rec", MS_REC }, |
| { "unbindable", MS_UNBINDABLE }, |
| { "private", MS_PRIVATE }, |
| { "slave", MS_SLAVE }, |
| { "shared", MS_SHARED }, |
| { "defaults", 0 }, |
| { 0, 0 }, |
| }; |
| |
| static struct flag_list fs_mgr_flags[] = { |
| { "wait", MF_WAIT }, |
| { "check", MF_CHECK }, |
| { "encryptable=",MF_CRYPT }, |
| { "nonremovable",MF_NONREMOVABLE }, |
| { "voldmanaged=",MF_VOLDMANAGED}, |
| { "length=", MF_LENGTH }, |
| { "recoveryonly",MF_RECOVERYONLY }, |
| { "swapprio=", MF_SWAPPRIO }, |
| { "zramsize=", MF_ZRAMSIZE }, |
| { "verify", MF_VERIFY }, |
| { "noemulatedsd", MF_NOEMULATEDSD }, |
| { "defaults", 0 }, |
| { 0, 0 }, |
| }; |
| |
| struct fs_mgr_flag_values { |
| char *key_loc; |
| long long part_length; |
| char *label; |
| int partnum; |
| int swap_prio; |
| unsigned int zram_size; |
| }; |
| |
| /* |
| * gettime() - returns the time in seconds of the system's monotonic clock or |
| * zero on error. |
| */ |
| static time_t gettime(void) |
| { |
| struct timespec ts; |
| int ret; |
| |
| ret = clock_gettime(CLOCK_MONOTONIC, &ts); |
| if (ret < 0) { |
| ERROR("clock_gettime(CLOCK_MONOTONIC) failed: %s\n", strerror(errno)); |
| return 0; |
| } |
| |
| return ts.tv_sec; |
| } |
| |
| static int wait_for_file(const char *filename, int timeout) |
| { |
| struct stat info; |
| time_t timeout_time = gettime() + timeout; |
| int ret = -1; |
| |
| while (gettime() < timeout_time && ((ret = stat(filename, &info)) < 0)) |
| usleep(10000); |
| |
| return ret; |
| } |
| |
| static int parse_flags(char *flags, struct flag_list *fl, |
| struct fs_mgr_flag_values *flag_vals, |
| char *fs_options, int fs_options_len) |
| { |
| int f = 0; |
| int i; |
| char *p; |
| char *savep; |
| |
| /* initialize flag values. If we find a relevant flag, we'll |
| * update the value */ |
| if (flag_vals) { |
| memset(flag_vals, 0, sizeof(*flag_vals)); |
| flag_vals->partnum = -1; |
| flag_vals->swap_prio = -1; /* negative means it wasn't specified. */ |
| } |
| |
| /* initialize fs_options to the null string */ |
| if (fs_options && (fs_options_len > 0)) { |
| fs_options[0] = '\0'; |
| } |
| |
| p = strtok_r(flags, ",", &savep); |
| while (p) { |
| /* Look for the flag "p" in the flag list "fl" |
| * If not found, the loop exits with fl[i].name being null. |
| */ |
| for (i = 0; fl[i].name; i++) { |
| if (!strncmp(p, fl[i].name, strlen(fl[i].name))) { |
| f |= fl[i].flag; |
| if ((fl[i].flag == MF_CRYPT) && flag_vals) { |
| /* The encryptable flag is followed by an = and the |
| * location of the keys. Get it and return it. |
| */ |
| flag_vals->key_loc = strdup(strchr(p, '=') + 1); |
| } else if ((fl[i].flag == MF_LENGTH) && flag_vals) { |
| /* The length flag is followed by an = and the |
| * size of the partition. Get it and return it. |
| */ |
| flag_vals->part_length = strtoll(strchr(p, '=') + 1, NULL, 0); |
| } else if ((fl[i].flag == MF_VOLDMANAGED) && flag_vals) { |
| /* The voldmanaged flag is followed by an = and the |
| * label, a colon and the partition number or the |
| * word "auto", e.g. |
| * voldmanaged=sdcard:3 |
| * Get and return them. |
| */ |
| char *label_start; |
| char *label_end; |
| char *part_start; |
| |
| label_start = strchr(p, '=') + 1; |
| label_end = strchr(p, ':'); |
| if (label_end) { |
| flag_vals->label = strndup(label_start, |
| (int) (label_end - label_start)); |
| part_start = strchr(p, ':') + 1; |
| if (!strcmp(part_start, "auto")) { |
| flag_vals->partnum = -1; |
| } else { |
| flag_vals->partnum = strtol(part_start, NULL, 0); |
| } |
| } else { |
| ERROR("Warning: voldmanaged= flag malformed\n"); |
| } |
| } else if ((fl[i].flag == MF_SWAPPRIO) && flag_vals) { |
| flag_vals->swap_prio = strtoll(strchr(p, '=') + 1, NULL, 0); |
| } else if ((fl[i].flag == MF_ZRAMSIZE) && flag_vals) { |
| flag_vals->zram_size = strtoll(strchr(p, '=') + 1, NULL, 0); |
| } |
| break; |
| } |
| } |
| |
| if (!fl[i].name) { |
| if (fs_options) { |
| /* It's not a known flag, so it must be a filesystem specific |
| * option. Add it to fs_options if it was passed in. |
| */ |
| strlcat(fs_options, p, fs_options_len); |
| strlcat(fs_options, ",", fs_options_len); |
| } else { |
| /* fs_options was not passed in, so if the flag is unknown |
| * it's an error. |
| */ |
| ERROR("Warning: unknown flag %s\n", p); |
| } |
| } |
| p = strtok_r(NULL, ",", &savep); |
| } |
| |
| out: |
| if (fs_options && fs_options[0]) { |
| /* remove the last trailing comma from the list of options */ |
| fs_options[strlen(fs_options) - 1] = '\0'; |
| } |
| |
| return f; |
| } |
| |
| /* Read a line of text till the next newline character. |
| * If no newline is found before the buffer is full, continue reading till a new line is seen, |
| * then return an empty buffer. This effectively ignores lines that are too long. |
| * On EOF, return null. |
| */ |
| static char *fs_getline(char *buf, int size, FILE *file) |
| { |
| int cnt = 0; |
| int eof = 0; |
| int eol = 0; |
| int c; |
| |
| if (size < 1) { |
| return NULL; |
| } |
| |
| while (cnt < (size - 1)) { |
| c = getc(file); |
| if (c == EOF) { |
| eof = 1; |
| break; |
| } |
| |
| *(buf + cnt) = c; |
| cnt++; |
| |
| if (c == '\n') { |
| eol = 1; |
| break; |
| } |
| } |
| |
| /* Null terminate what we've read */ |
| *(buf + cnt) = '\0'; |
| |
| if (eof) { |
| if (cnt) { |
| return buf; |
| } else { |
| return NULL; |
| } |
| } else if (eol) { |
| return buf; |
| } else { |
| /* The line is too long. Read till a newline or EOF. |
| * If EOF, return null, if newline, return an empty buffer. |
| */ |
| while(1) { |
| c = getc(file); |
| if (c == EOF) { |
| return NULL; |
| } else if (c == '\n') { |
| *buf = '\0'; |
| return buf; |
| } |
| } |
| } |
| } |
| |
| struct fstab *fs_mgr_read_fstab(const char *fstab_path) |
| { |
| FILE *fstab_file; |
| int cnt, entries; |
| int len; |
| char line[256]; |
| const char *delim = " \t"; |
| char *save_ptr, *p; |
| struct fstab *fstab; |
| struct fstab_rec *recs; |
| struct fs_mgr_flag_values flag_vals; |
| #define FS_OPTIONS_LEN 1024 |
| char tmp_fs_options[FS_OPTIONS_LEN]; |
| |
| fstab_file = fopen(fstab_path, "r"); |
| if (!fstab_file) { |
| ERROR("Cannot open file %s\n", fstab_path); |
| return 0; |
| } |
| |
| entries = 0; |
| while (fs_getline(line, sizeof(line), fstab_file)) { |
| /* if the last character is a newline, shorten the string by 1 byte */ |
| len = strlen(line); |
| if (line[len - 1] == '\n') { |
| line[len - 1] = '\0'; |
| } |
| /* Skip any leading whitespace */ |
| p = line; |
| while (isspace(*p)) { |
| p++; |
| } |
| /* ignore comments or empty lines */ |
| if (*p == '#' || *p == '\0') |
| continue; |
| entries++; |
| } |
| |
| if (!entries) { |
| ERROR("No entries found in fstab\n"); |
| return 0; |
| } |
| |
| /* Allocate and init the fstab structure */ |
| fstab = calloc(1, sizeof(struct fstab)); |
| fstab->num_entries = entries; |
| fstab->fstab_filename = strdup(fstab_path); |
| fstab->recs = calloc(fstab->num_entries, sizeof(struct fstab_rec)); |
| |
| fseek(fstab_file, 0, SEEK_SET); |
| |
| cnt = 0; |
| while (fs_getline(line, sizeof(line), fstab_file)) { |
| /* if the last character is a newline, shorten the string by 1 byte */ |
| len = strlen(line); |
| if (line[len - 1] == '\n') { |
| line[len - 1] = '\0'; |
| } |
| |
| /* Skip any leading whitespace */ |
| p = line; |
| while (isspace(*p)) { |
| p++; |
| } |
| /* ignore comments or empty lines */ |
| if (*p == '#' || *p == '\0') |
| continue; |
| |
| /* If a non-comment entry is greater than the size we allocated, give an |
| * error and quit. This can happen in the unlikely case the file changes |
| * between the two reads. |
| */ |
| if (cnt >= entries) { |
| ERROR("Tried to process more entries than counted\n"); |
| break; |
| } |
| |
| if (!(p = strtok_r(line, delim, &save_ptr))) { |
| ERROR("Error parsing mount source\n"); |
| return 0; |
| } |
| fstab->recs[cnt].blk_device = strdup(p); |
| |
| if (!(p = strtok_r(NULL, delim, &save_ptr))) { |
| ERROR("Error parsing mount_point\n"); |
| return 0; |
| } |
| fstab->recs[cnt].mount_point = strdup(p); |
| |
| if (!(p = strtok_r(NULL, delim, &save_ptr))) { |
| ERROR("Error parsing fs_type\n"); |
| return 0; |
| } |
| fstab->recs[cnt].fs_type = strdup(p); |
| |
| if (!(p = strtok_r(NULL, delim, &save_ptr))) { |
| ERROR("Error parsing mount_flags\n"); |
| return 0; |
| } |
| tmp_fs_options[0] = '\0'; |
| fstab->recs[cnt].flags = parse_flags(p, mount_flags, NULL, |
| tmp_fs_options, FS_OPTIONS_LEN); |
| |
| /* fs_options are optional */ |
| if (tmp_fs_options[0]) { |
| fstab->recs[cnt].fs_options = strdup(tmp_fs_options); |
| } else { |
| fstab->recs[cnt].fs_options = NULL; |
| } |
| |
| if (!(p = strtok_r(NULL, delim, &save_ptr))) { |
| ERROR("Error parsing fs_mgr_options\n"); |
| return 0; |
| } |
| fstab->recs[cnt].fs_mgr_flags = parse_flags(p, fs_mgr_flags, |
| &flag_vals, NULL, 0); |
| fstab->recs[cnt].key_loc = flag_vals.key_loc; |
| fstab->recs[cnt].length = flag_vals.part_length; |
| fstab->recs[cnt].label = flag_vals.label; |
| fstab->recs[cnt].partnum = flag_vals.partnum; |
| fstab->recs[cnt].swap_prio = flag_vals.swap_prio; |
| fstab->recs[cnt].zram_size = flag_vals.zram_size; |
| cnt++; |
| } |
| fclose(fstab_file); |
| |
| return fstab; |
| } |
| |
| void fs_mgr_free_fstab(struct fstab *fstab) |
| { |
| int i; |
| |
| if (!fstab) { |
| return; |
| } |
| |
| for (i = 0; i < fstab->num_entries; i++) { |
| /* Free the pointers return by strdup(3) */ |
| free(fstab->recs[i].blk_device); |
| free(fstab->recs[i].mount_point); |
| free(fstab->recs[i].fs_type); |
| free(fstab->recs[i].fs_options); |
| free(fstab->recs[i].key_loc); |
| free(fstab->recs[i].label); |
| i++; |
| } |
| |
| /* Free the fstab_recs array created by calloc(3) */ |
| free(fstab->recs); |
| |
| /* Free the fstab filename */ |
| free(fstab->fstab_filename); |
| |
| /* Free fstab */ |
| free(fstab); |
| } |
| |
| static void check_fs(char *blk_device, char *fs_type, char *target) |
| { |
| int status; |
| int ret; |
| long tmpmnt_flags = MS_NOATIME | MS_NOEXEC | MS_NOSUID; |
| char *tmpmnt_opts = "nomblk_io_submit,errors=remount-ro"; |
| char *e2fsck_argv[] = { |
| E2FSCK_BIN, |
| "-y", |
| blk_device |
| }; |
| |
| /* Check for the types of filesystems we know how to check */ |
| if (!strcmp(fs_type, "ext2") || !strcmp(fs_type, "ext3") || !strcmp(fs_type, "ext4")) { |
| /* |
| * First try to mount and unmount the filesystem. We do this because |
| * the kernel is more efficient than e2fsck in running the journal and |
| * processing orphaned inodes, and on at least one device with a |
| * performance issue in the emmc firmware, it can take e2fsck 2.5 minutes |
| * to do what the kernel does in about a second. |
| * |
| * After mounting and unmounting the filesystem, run e2fsck, and if an |
| * error is recorded in the filesystem superblock, e2fsck will do a full |
| * check. Otherwise, it does nothing. If the kernel cannot mount the |
| * filesytsem due to an error, e2fsck is still run to do a full check |
| * fix the filesystem. |
| */ |
| ret = mount(blk_device, target, fs_type, tmpmnt_flags, tmpmnt_opts); |
| if (!ret) { |
| umount(target); |
| } |
| |
| INFO("Running %s on %s\n", E2FSCK_BIN, blk_device); |
| |
| ret = android_fork_execvp_ext(ARRAY_SIZE(e2fsck_argv), e2fsck_argv, |
| &status, true, LOG_KLOG | LOG_FILE, |
| true, FSCK_LOG_FILE); |
| |
| if (ret < 0) { |
| /* No need to check for error in fork, we can't really handle it now */ |
| ERROR("Failed trying to run %s\n", E2FSCK_BIN); |
| } |
| } |
| |
| return; |
| } |
| |
| static void remove_trailing_slashes(char *n) |
| { |
| int len; |
| |
| len = strlen(n) - 1; |
| while ((*(n + len) == '/') && len) { |
| *(n + len) = '\0'; |
| len--; |
| } |
| } |
| |
| /* |
| * Mark the given block device as read-only, using the BLKROSET ioctl. |
| * Return 0 on success, and -1 on error. |
| */ |
| static void fs_set_blk_ro(const char *blockdev) |
| { |
| int fd; |
| int ON = 1; |
| |
| fd = open(blockdev, O_RDONLY); |
| if (fd < 0) { |
| // should never happen |
| return; |
| } |
| |
| ioctl(fd, BLKROSET, &ON); |
| close(fd); |
| } |
| |
| /* |
| * __mount(): wrapper around the mount() system call which also |
| * sets the underlying block device to read-only if the mount is read-only. |
| * See "man 2 mount" for return values. |
| */ |
| static int __mount(const char *source, const char *target, |
| const char *filesystemtype, unsigned long mountflags, |
| const void *data) |
| { |
| int ret = mount(source, target, filesystemtype, mountflags, data); |
| |
| if ((ret == 0) && (mountflags & MS_RDONLY) != 0) { |
| fs_set_blk_ro(source); |
| } |
| |
| return ret; |
| } |
| |
| static int fs_match(char *in1, char *in2) |
| { |
| char *n1; |
| char *n2; |
| int ret; |
| |
| n1 = strdup(in1); |
| n2 = strdup(in2); |
| |
| remove_trailing_slashes(n1); |
| remove_trailing_slashes(n2); |
| |
| ret = !strcmp(n1, n2); |
| |
| free(n1); |
| free(n2); |
| |
| return ret; |
| } |
| |
| int fs_mgr_mount_all(struct fstab *fstab) |
| { |
| int i = 0; |
| int encrypted = 0; |
| int ret = -1; |
| int mret; |
| |
| if (!fstab) { |
| return ret; |
| } |
| |
| for (i = 0; i < fstab->num_entries; i++) { |
| /* Don't mount entries that are managed by vold */ |
| if (fstab->recs[i].fs_mgr_flags & (MF_VOLDMANAGED | MF_RECOVERYONLY)) { |
| continue; |
| } |
| |
| /* Skip swap and raw partition entries such as boot, recovery, etc */ |
| if (!strcmp(fstab->recs[i].fs_type, "swap") || |
| !strcmp(fstab->recs[i].fs_type, "emmc") || |
| !strcmp(fstab->recs[i].fs_type, "mtd")) { |
| continue; |
| } |
| |
| if (fstab->recs[i].fs_mgr_flags & MF_WAIT) { |
| wait_for_file(fstab->recs[i].blk_device, WAIT_TIMEOUT); |
| } |
| |
| if (fstab->recs[i].fs_mgr_flags & MF_CHECK) { |
| check_fs(fstab->recs[i].blk_device, fstab->recs[i].fs_type, |
| fstab->recs[i].mount_point); |
| } |
| |
| if (fstab->recs[i].fs_mgr_flags & MF_VERIFY) { |
| if (fs_mgr_setup_verity(&fstab->recs[i]) < 0) { |
| ERROR("Could not set up verified partition, skipping!"); |
| continue; |
| } |
| } |
| |
| mret = __mount(fstab->recs[i].blk_device, fstab->recs[i].mount_point, |
| fstab->recs[i].fs_type, fstab->recs[i].flags, |
| fstab->recs[i].fs_options); |
| |
| if (!mret) { |
| /* Success! Go get the next one */ |
| continue; |
| } |
| |
| /* mount(2) returned an error, check if it's encrypted and deal with it */ |
| if ((fstab->recs[i].fs_mgr_flags & MF_CRYPT) && |
| !partition_wiped(fstab->recs[i].blk_device)) { |
| /* Need to mount a tmpfs at this mountpoint for now, and set |
| * properties that vold will query later for decrypting |
| */ |
| if (mount("tmpfs", fstab->recs[i].mount_point, "tmpfs", |
| MS_NOATIME | MS_NOSUID | MS_NODEV, CRYPTO_TMPFS_OPTIONS) < 0) { |
| ERROR("Cannot mount tmpfs filesystem for encrypted fs at %s\n", |
| fstab->recs[i].mount_point); |
| goto out; |
| } |
| encrypted = 1; |
| } else { |
| ERROR("Cannot mount filesystem on %s at %s\n", |
| fstab->recs[i].blk_device, fstab->recs[i].mount_point); |
| goto out; |
| } |
| } |
| |
| if (encrypted) { |
| ret = 1; |
| } else { |
| ret = 0; |
| } |
| |
| out: |
| return ret; |
| } |
| |
| /* If tmp_mount_point is non-null, mount the filesystem there. This is for the |
| * tmp mount we do to check the user password |
| */ |
| int fs_mgr_do_mount(struct fstab *fstab, char *n_name, char *n_blk_device, |
| char *tmp_mount_point) |
| { |
| int i = 0; |
| int ret = -1; |
| char *m; |
| |
| if (!fstab) { |
| return ret; |
| } |
| |
| for (i = 0; i < fstab->num_entries; i++) { |
| if (!fs_match(fstab->recs[i].mount_point, n_name)) { |
| continue; |
| } |
| |
| /* We found our match */ |
| /* If this swap or a raw partition, report an error */ |
| if (!strcmp(fstab->recs[i].fs_type, "swap") || |
| !strcmp(fstab->recs[i].fs_type, "emmc") || |
| !strcmp(fstab->recs[i].fs_type, "mtd")) { |
| ERROR("Cannot mount filesystem of type %s on %s\n", |
| fstab->recs[i].fs_type, n_blk_device); |
| goto out; |
| } |
| |
| /* First check the filesystem if requested */ |
| if (fstab->recs[i].fs_mgr_flags & MF_WAIT) { |
| wait_for_file(n_blk_device, WAIT_TIMEOUT); |
| } |
| |
| if (fstab->recs[i].fs_mgr_flags & MF_CHECK) { |
| check_fs(n_blk_device, fstab->recs[i].fs_type, |
| fstab->recs[i].mount_point); |
| } |
| |
| if (fstab->recs[i].fs_mgr_flags & MF_VERIFY) { |
| if (fs_mgr_setup_verity(&fstab->recs[i]) < 0) { |
| ERROR("Could not set up verified partition, skipping!"); |
| continue; |
| } |
| } |
| |
| /* Now mount it where requested */ |
| if (tmp_mount_point) { |
| m = tmp_mount_point; |
| } else { |
| m = fstab->recs[i].mount_point; |
| } |
| if (__mount(n_blk_device, m, fstab->recs[i].fs_type, |
| fstab->recs[i].flags, fstab->recs[i].fs_options)) { |
| ERROR("Cannot mount filesystem on %s at %s\n", |
| n_blk_device, m); |
| goto out; |
| } else { |
| ret = 0; |
| goto out; |
| } |
| } |
| |
| /* We didn't find a match, say so and return an error */ |
| ERROR("Cannot find mount point %s in fstab\n", fstab->recs[i].mount_point); |
| |
| out: |
| return ret; |
| } |
| |
| /* |
| * mount a tmpfs filesystem at the given point. |
| * return 0 on success, non-zero on failure. |
| */ |
| int fs_mgr_do_tmpfs_mount(char *n_name) |
| { |
| int ret; |
| |
| ret = mount("tmpfs", n_name, "tmpfs", |
| MS_NOATIME | MS_NOSUID | MS_NODEV, CRYPTO_TMPFS_OPTIONS); |
| if (ret < 0) { |
| ERROR("Cannot mount tmpfs filesystem at %s\n", n_name); |
| return -1; |
| } |
| |
| /* Success */ |
| return 0; |
| } |
| |
| int fs_mgr_unmount_all(struct fstab *fstab) |
| { |
| int i = 0; |
| int ret = 0; |
| |
| if (!fstab) { |
| return -1; |
| } |
| |
| while (fstab->recs[i].blk_device) { |
| if (umount(fstab->recs[i].mount_point)) { |
| ERROR("Cannot unmount filesystem at %s\n", fstab->recs[i].mount_point); |
| ret = -1; |
| } |
| i++; |
| } |
| |
| return ret; |
| } |
| |
| /* This must be called after mount_all, because the mkswap command needs to be |
| * available. |
| */ |
| int fs_mgr_swapon_all(struct fstab *fstab) |
| { |
| int i = 0; |
| int flags = 0; |
| int err = 0; |
| int ret = 0; |
| int status; |
| char *mkswap_argv[2] = { |
| MKSWAP_BIN, |
| NULL |
| }; |
| |
| if (!fstab) { |
| return -1; |
| } |
| |
| for (i = 0; i < fstab->num_entries; i++) { |
| /* Skip non-swap entries */ |
| if (strcmp(fstab->recs[i].fs_type, "swap")) { |
| continue; |
| } |
| |
| if (fstab->recs[i].zram_size > 0) { |
| /* A zram_size was specified, so we need to configure the |
| * device. There is no point in having multiple zram devices |
| * on a system (all the memory comes from the same pool) so |
| * we can assume the device number is 0. |
| */ |
| FILE *zram_fp; |
| |
| zram_fp = fopen(ZRAM_CONF_DEV, "r+"); |
| if (zram_fp == NULL) { |
| ERROR("Unable to open zram conf device " ZRAM_CONF_DEV); |
| ret = -1; |
| continue; |
| } |
| fprintf(zram_fp, "%d\n", fstab->recs[i].zram_size); |
| fclose(zram_fp); |
| } |
| |
| if (fstab->recs[i].fs_mgr_flags & MF_WAIT) { |
| wait_for_file(fstab->recs[i].blk_device, WAIT_TIMEOUT); |
| } |
| |
| /* Initialize the swap area */ |
| mkswap_argv[1] = fstab->recs[i].blk_device; |
| err = android_fork_execvp_ext(ARRAY_SIZE(mkswap_argv), mkswap_argv, |
| &status, true, LOG_KLOG, false, NULL); |
| if (err) { |
| ERROR("mkswap failed for %s\n", fstab->recs[i].blk_device); |
| ret = -1; |
| continue; |
| } |
| |
| /* If -1, then no priority was specified in fstab, so don't set |
| * SWAP_FLAG_PREFER or encode the priority */ |
| if (fstab->recs[i].swap_prio >= 0) { |
| flags = (fstab->recs[i].swap_prio << SWAP_FLAG_PRIO_SHIFT) & |
| SWAP_FLAG_PRIO_MASK; |
| flags |= SWAP_FLAG_PREFER; |
| } else { |
| flags = 0; |
| } |
| // requires sys/swap.h which is not available in older trees |
| // this entire function does not appear to be used for decrypt |
| err = -1; //swapon(fstab->recs[i].blk_device, flags); |
| if (err) { |
| ERROR("swapon failed for %s\n", fstab->recs[i].blk_device); |
| ret = -1; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * key_loc must be at least PROPERTY_VALUE_MAX bytes long |
| * |
| * real_blk_device must be at least PROPERTY_VALUE_MAX bytes long |
| */ |
| int fs_mgr_get_crypt_info(struct fstab *fstab, char *key_loc, char *real_blk_device, int size) |
| { |
| int i = 0; |
| |
| if (!fstab) { |
| return -1; |
| } |
| /* Initialize return values to null strings */ |
| if (key_loc) { |
| *key_loc = '\0'; |
| } |
| if (real_blk_device) { |
| *real_blk_device = '\0'; |
| } |
| |
| /* Look for the encryptable partition to find the data */ |
| for (i = 0; i < fstab->num_entries; i++) { |
| /* Don't deal with vold managed enryptable partitions here */ |
| if (fstab->recs[i].fs_mgr_flags & MF_VOLDMANAGED) { |
| continue; |
| } |
| if (!(fstab->recs[i].fs_mgr_flags & MF_CRYPT)) { |
| continue; |
| } |
| |
| /* We found a match */ |
| if (key_loc) { |
| strlcpy(key_loc, fstab->recs[i].key_loc, size); |
| } |
| if (real_blk_device) { |
| strlcpy(real_blk_device, fstab->recs[i].blk_device, size); |
| } |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* Add an entry to the fstab, and return 0 on success or -1 on error */ |
| int fs_mgr_add_entry(struct fstab *fstab, |
| const char *mount_point, const char *fs_type, |
| const char *blk_device, long long length) |
| { |
| struct fstab_rec *new_fstab_recs; |
| int n = fstab->num_entries; |
| |
| new_fstab_recs = (struct fstab_rec *) |
| realloc(fstab->recs, sizeof(struct fstab_rec) * (n + 1)); |
| |
| if (!new_fstab_recs) { |
| return -1; |
| } |
| |
| /* A new entry was added, so initialize it */ |
| memset(&new_fstab_recs[n], 0, sizeof(struct fstab_rec)); |
| new_fstab_recs[n].mount_point = strdup(mount_point); |
| new_fstab_recs[n].fs_type = strdup(fs_type); |
| new_fstab_recs[n].blk_device = strdup(blk_device); |
| new_fstab_recs[n].length = 0; |
| |
| /* Update the fstab struct */ |
| fstab->recs = new_fstab_recs; |
| fstab->num_entries++; |
| |
| return 0; |
| } |
| |
| struct fstab_rec *fs_mgr_get_entry_for_mount_point(struct fstab *fstab, const char *path) |
| { |
| int i; |
| |
| if (!fstab) { |
| return NULL; |
| } |
| |
| for (i = 0; i < fstab->num_entries; i++) { |
| int len = strlen(fstab->recs[i].mount_point); |
| if (strncmp(path, fstab->recs[i].mount_point, len) == 0 && |
| (path[len] == '\0' || path[len] == '/')) { |
| return &fstab->recs[i]; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| int fs_mgr_is_voldmanaged(struct fstab_rec *fstab) |
| { |
| return fstab->fs_mgr_flags & MF_VOLDMANAGED; |
| } |
| |
| int fs_mgr_is_nonremovable(struct fstab_rec *fstab) |
| { |
| return fstab->fs_mgr_flags & MF_NONREMOVABLE; |
| } |
| |
| int fs_mgr_is_encryptable(struct fstab_rec *fstab) |
| { |
| return fstab->fs_mgr_flags & MF_CRYPT; |
| } |
| |
| int fs_mgr_is_noemulatedsd(struct fstab_rec *fstab) |
| { |
| return fstab->fs_mgr_flags & MF_NOEMULATEDSD; |
| } |