blob: 83522968beec4f8615d4715a38a98860e572cc1e [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* TO DO:
* 1. Perhaps keep several copies of the encrypted key, in case something
* goes horribly wrong?
*
*/
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <ctype.h>
#include <fcntl.h>
#include <inttypes.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/ioctl.h>
#include <linux/dm-ioctl.h>
#include <libgen.h>
#include <stdlib.h>
#include <sys/param.h>
#include <string.h>
#include <sys/mount.h>
#include <openssl/evp.h>
#include <openssl/sha.h>
#include <errno.h>
//#include <ext4_utils/ext4_crypt.h>
//#include <ext4_utils/ext4_utils.h>
#include <linux/kdev_t.h>
//#include <fs_mgr.h>
#include <time.h>
#include <math.h>
//#include <selinux/selinux.h>
#include "cryptfs.h"
//#include "secontext.h"
#define LOG_TAG "Cryptfs"
//#include "cutils/log.h"
#include "cutils/properties.h"
//#include "cutils/android_reboot.h"
//#include "hardware_legacy/power.h"
//#include <logwrap/logwrap.h>
//#include "ScryptParameters.h"
//#include "VolumeManager.h"
//#include "VoldUtil.h"
//#include "Ext4Crypt.h"
//#include "f2fs_sparseblock.h"
//#include "EncryptInplace.h"
//#include "Process.h"
#if TW_KEYMASTER_MAX_API == 3
#include "../ext4crypt/Keymaster3.h"
#endif
#if TW_KEYMASTER_MAX_API == 4
#include "../ext4crypt/Keymaster4.h"
#endif
#if TW_KEYMASTER_MAX_API == 0
#include <hardware/keymaster.h>
#else // so far, all trees that have keymaster >= 1 have keymaster 1 support
#include <stdbool.h>
#include <openssl/evp.h>
#include <openssl/sha.h>
#include <hardware/keymaster0.h>
#include <hardware/keymaster1.h>
#endif
//#include "android-base/properties.h"
//#include <bootloader_message/bootloader_message.h>
#ifdef CONFIG_HW_DISK_ENCRYPTION
#include <cryptfs_hw.h>
#endif
extern "C" {
#include <crypto_scrypt.h>
}
#include <string>
#include <vector>
#define ALOGE(...) fprintf(stdout, "E:" __VA_ARGS__)
#define SLOGE(...) fprintf(stdout, "E:" __VA_ARGS__)
#define SLOGW(...) fprintf(stdout, "W:" __VA_ARGS__)
#define SLOGI(...) fprintf(stdout, "I:" __VA_ARGS__)
#define SLOGD(...) fprintf(stdout, "D:" __VA_ARGS__)
#define UNUSED __attribute__((unused))
#define DM_CRYPT_BUF_SIZE 4096
#define HASH_COUNT 2000
#ifndef min /* already defined by windows.h */
#define min(a, b) ((a) < (b) ? (a) : (b))
#endif
constexpr size_t INTERMEDIATE_KEY_LEN_BYTES = 16;
constexpr size_t INTERMEDIATE_IV_LEN_BYTES = 16;
constexpr size_t INTERMEDIATE_BUF_SIZE =
(INTERMEDIATE_KEY_LEN_BYTES + INTERMEDIATE_IV_LEN_BYTES);
// SCRYPT_LEN is used by struct crypt_mnt_ftr for its intermediate key.
static_assert(INTERMEDIATE_BUF_SIZE == SCRYPT_LEN,
"Mismatch of intermediate key sizes");
#define KEY_IN_FOOTER "footer"
#define DEFAULT_HEX_PASSWORD "64656661756c745f70617373776f7264"
#define DEFAULT_PASSWORD "default_password"
#define CRYPTO_BLOCK_DEVICE "userdata"
#define TABLE_LOAD_RETRIES 10
#define RSA_KEY_SIZE 2048
#define RSA_KEY_SIZE_BYTES (RSA_KEY_SIZE / 8)
#define RSA_EXPONENT 0x10001
#define KEYMASTER_CRYPTFS_RATE_LIMIT 1 // Maximum one try per second
#define KEY_LEN_BYTES 16
#define RETRY_MOUNT_ATTEMPTS 10
#define RETRY_MOUNT_DELAY_SECONDS 1
#define CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE (1)
static unsigned char saved_master_key[MAX_KEY_LEN];
static char *saved_mount_point;
static int master_key_saved = 0;
static struct crypt_persist_data *persist_data = NULL;
static int previous_type;
static char key_fname[PROPERTY_VALUE_MAX] = "";
static char real_blkdev[PROPERTY_VALUE_MAX] = "";
static char file_system[PROPERTY_VALUE_MAX] = "";
static void get_blkdev_size(int fd, unsigned long *nr_sec)
{
if ( (ioctl(fd, BLKGETSIZE, nr_sec)) == -1) {
*nr_sec = 0;
}
}
#if TW_KEYMASTER_MAX_API == 0
static int keymaster_init(keymaster_device_t **keymaster_dev)
{
int rc;
const hw_module_t* mod;
rc = hw_get_module_by_class(KEYSTORE_HARDWARE_MODULE_ID, NULL, &mod);
if (rc) {
printf("could not find any keystore module\n");
goto out;
}
rc = keymaster_open(mod, keymaster_dev);
if (rc) {
printf("could not open keymaster device in %s (%s)\n",
KEYSTORE_HARDWARE_MODULE_ID, strerror(-rc));
goto out;
}
return 0;
out:
*keymaster_dev = NULL;
return rc;
}
#else //TW_KEYMASTER_MAX_API == 0
static int keymaster_init(keymaster0_device_t **keymaster0_dev,
keymaster1_device_t **keymaster1_dev)
{
int rc;
const hw_module_t* mod;
rc = hw_get_module_by_class(KEYSTORE_HARDWARE_MODULE_ID, NULL, &mod);
if (rc) {
printf("could not find any keystore module\n");
goto err;
}
printf("keymaster module name is %s\n", mod->name);
printf("keymaster version is %d\n", mod->module_api_version);
*keymaster0_dev = NULL;
*keymaster1_dev = NULL;
if (mod->module_api_version == KEYMASTER_MODULE_API_VERSION_1_0) {
printf("Found keymaster1 module, using keymaster1 API.\n");
rc = keymaster1_open(mod, keymaster1_dev);
} else {
printf("Found keymaster0 module, using keymaster0 API.\n");
rc = keymaster0_open(mod, keymaster0_dev);
}
if (rc) {
printf("could not open keymaster device in %s (%s)\n",
KEYSTORE_HARDWARE_MODULE_ID, strerror(-rc));
goto err;
}
return 0;
err:
*keymaster0_dev = NULL;
*keymaster1_dev = NULL;
return rc;
}
#endif //TW_KEYMASTER_MAX_API == 0
#ifdef CONFIG_HW_DISK_ENCRYPTION
static int scrypt_keymaster(const char *passwd, const unsigned char *salt,
unsigned char *ikey, void *params);
static void convert_key_to_hex_ascii(const unsigned char *master_key,
unsigned int keysize, char *master_key_ascii);
static int test_mount_hw_encrypted_fs(struct crypt_mnt_ftr* crypt_ftr,
const char *passwd, const char *mount_point, const char *label);
int cryptfs_check_passwd_hw(char *passwd);
int cryptfs_get_master_key(struct crypt_mnt_ftr* ftr, const char* password,
unsigned char* master_key);
static void convert_key_to_hex_ascii_for_upgrade(const unsigned char *master_key,
unsigned int keysize, char *master_key_ascii)
{
unsigned int i, a;
unsigned char nibble;
for (i = 0, a = 0; i < keysize; i++, a += 2) {
/* For each byte, write out two ascii hex digits */
nibble = (master_key[i] >> 4) & 0xf;
master_key_ascii[a] = nibble + (nibble > 9 ? 0x57 : 0x30);
nibble = master_key[i] & 0xf;
master_key_ascii[a + 1] = nibble + (nibble > 9 ? 0x57 : 0x30);
}
/* Add the null termination */
master_key_ascii[a] = '\0';
}
static int get_keymaster_hw_fde_passwd(const char* passwd, unsigned char* newpw,
unsigned char* salt,
const struct crypt_mnt_ftr *ftr)
{
/* if newpw updated, return 0
* if newpw not updated return -1
*/
int rc = -1;
if (should_use_keymaster()) {
if (scrypt_keymaster(passwd, salt, newpw, (void*)ftr)) {
SLOGE("scrypt failed");
} else {
rc = 0;
}
}
return rc;
}
static int verify_hw_fde_passwd(const char *passwd, struct crypt_mnt_ftr* crypt_ftr)
{
unsigned char newpw[32] = {0};
int key_index;
SLOGI("starting verify_hw_fde_passwd\n");
if (get_keymaster_hw_fde_passwd(passwd, newpw, crypt_ftr->salt, crypt_ftr))
key_index = set_hw_device_encryption_key(passwd,
(char*) crypt_ftr->crypto_type_name);
else
key_index = set_hw_device_encryption_key((const char*)newpw,
(char*) crypt_ftr->crypto_type_name);
return key_index;
}
static int verify_and_update_hw_fde_passwd(const char *passwd,
struct crypt_mnt_ftr* crypt_ftr)
{
char* new_passwd = NULL;
unsigned char newpw[32] = {0};
int key_index = -1;
int passwd_updated = -1;
int ascii_passwd_updated = (crypt_ftr->flags & CRYPT_ASCII_PASSWORD_UPDATED);
key_index = verify_hw_fde_passwd(passwd, crypt_ftr);
if (key_index < 0) {
++crypt_ftr->failed_decrypt_count;
if (ascii_passwd_updated) {
SLOGI("Ascii password was updated");
} else {
/* Code in else part would execute only once:
* When device is upgraded from L->M release.
* Once upgraded, code flow should never come here.
* L release passed actual password in hex, so try with hex
* Each nible of passwd was encoded as a byte, so allocate memory
* twice of password len plus one more byte for null termination
*/
if (crypt_ftr->crypt_type == CRYPT_TYPE_DEFAULT) {
new_passwd = (char*)malloc(strlen(DEFAULT_HEX_PASSWORD) + 1);
if (new_passwd == NULL) {
SLOGE("System out of memory. Password verification incomplete");
goto out;
}
strlcpy(new_passwd, DEFAULT_HEX_PASSWORD, strlen(DEFAULT_HEX_PASSWORD) + 1);
} else {
new_passwd = (char*)malloc(strlen(passwd) * 2 + 1);
if (new_passwd == NULL) {
SLOGE("System out of memory. Password verification incomplete");
goto out;
}
convert_key_to_hex_ascii_for_upgrade((const unsigned char*)passwd,
strlen(passwd), new_passwd);
}
key_index = set_hw_device_encryption_key((const char*)new_passwd,
(char*) crypt_ftr->crypto_type_name);
if (key_index >=0) {
crypt_ftr->failed_decrypt_count = 0;
SLOGI("Hex password verified...will try to update with Ascii value");
/* Before updating password, tie that with keymaster to tie with ROT */
if (get_keymaster_hw_fde_passwd(passwd, newpw,
crypt_ftr->salt, crypt_ftr)) {
passwd_updated = update_hw_device_encryption_key(new_passwd,
passwd, (char*)crypt_ftr->crypto_type_name);
} else {
passwd_updated = update_hw_device_encryption_key(new_passwd,
(const char*)newpw, (char*)crypt_ftr->crypto_type_name);
}
if (passwd_updated >= 0) {
crypt_ftr->flags |= CRYPT_ASCII_PASSWORD_UPDATED;
SLOGI("Ascii password recorded and updated");
} else {
SLOGI("Passwd verified, could not update...Will try next time");
}
} else {
++crypt_ftr->failed_decrypt_count;
}
free(new_passwd);
}
} else {
if (!ascii_passwd_updated)
crypt_ftr->flags |= CRYPT_ASCII_PASSWORD_UPDATED;
}
out:
// update footer before leaving
//put_crypt_ftr_and_key(crypt_ftr);
return key_index;
}
#endif
void set_partition_data(const char* block_device, const char* key_location, const char* fs)
{
strcpy(key_fname, key_location);
strcpy(real_blkdev, block_device);
strcpy(file_system, fs);
}
/* This signs the given object using the keymaster key. */
static int keymaster_sign_object(struct crypt_mnt_ftr *ftr,
const unsigned char *object,
const size_t object_size,
unsigned char **signature,
size_t *signature_size)
{
SLOGI("TWRP keymaster max API: %i\n", TW_KEYMASTER_MAX_API);
unsigned char to_sign[RSA_KEY_SIZE_BYTES];
size_t to_sign_size = sizeof(to_sign);
memset(to_sign, 0, RSA_KEY_SIZE_BYTES);
// To sign a message with RSA, the message must satisfy two
// constraints:
//
// 1. The message, when interpreted as a big-endian numeric value, must
// be strictly less than the public modulus of the RSA key. Note
// that because the most significant bit of the public modulus is
// guaranteed to be 1 (else it's an (n-1)-bit key, not an n-bit
// key), an n-bit message with most significant bit 0 always
// satisfies this requirement.
//
// 2. The message must have the same length in bits as the public
// modulus of the RSA key. This requirement isn't mathematically
// necessary, but is necessary to ensure consistency in
// implementations.
switch (ftr->kdf_type) {
case KDF_SCRYPT_KEYMASTER_UNPADDED:
// This is broken: It produces a message which is shorter than
// the public modulus, failing criterion 2.
memcpy(to_sign, object, object_size);
to_sign_size = object_size;
SLOGI("Signing unpadded object\n");
break;
case KDF_SCRYPT_KEYMASTER_BADLY_PADDED:
// This is broken: Since the value of object is uniformly
// distributed, it produces a message that is larger than the
// public modulus with probability 0.25.
memcpy(to_sign, object, min(RSA_KEY_SIZE_BYTES, object_size));
SLOGI("Signing end-padded object\n");
break;
case KDF_SCRYPT_KEYMASTER:
// This ensures the most significant byte of the signed message
// is zero. We could have zero-padded to the left instead, but
// this approach is slightly more robust against changes in
// object size. However, it's still broken (but not unusably
// so) because we really should be using a proper deterministic
// RSA padding function, such as PKCS1.
memcpy(to_sign + 1, object, min((size_t)RSA_KEY_SIZE_BYTES - 1, object_size));
SLOGI("Signing safely-padded object");
break;
default:
SLOGE("Unknown KDF type %d", ftr->kdf_type);
return -1;
}
int rc = -1;
#if TW_KEYMASTER_MAX_API >= 1
keymaster0_device_t *keymaster0_dev = 0;
keymaster1_device_t *keymaster1_dev = 0;
if (keymaster_init(&keymaster0_dev, &keymaster1_dev)) {
#else
keymaster_device_t *keymaster0_dev = 0;
if (keymaster_init(&keymaster0_dev)) {
#endif
printf("Failed to init keymaster 0/1\n");
goto initfail;
}
if (keymaster0_dev) {
keymaster_rsa_sign_params_t params;
params.digest_type = DIGEST_NONE;
params.padding_type = PADDING_NONE;
rc = keymaster0_dev->sign_data(keymaster0_dev,
&params,
ftr->keymaster_blob,
ftr->keymaster_blob_size,
to_sign,
to_sign_size,
signature,
signature_size);
goto out;
}
#if TW_KEYMASTER_MAX_API >= 1
else if (keymaster1_dev) {
keymaster_key_blob_t key = { ftr->keymaster_blob, ftr->keymaster_blob_size };
keymaster_key_param_t params[] = {
keymaster_param_enum(KM_TAG_PADDING, KM_PAD_NONE),
keymaster_param_enum(KM_TAG_DIGEST, KM_DIGEST_NONE),
};
keymaster_key_param_set_t param_set = { params, sizeof(params)/sizeof(*params) };
keymaster_operation_handle_t op_handle;
keymaster_error_t error = keymaster1_dev->begin(keymaster1_dev, KM_PURPOSE_SIGN, &key,
&param_set, NULL /* out_params */,
&op_handle);
if (error == KM_ERROR_KEY_RATE_LIMIT_EXCEEDED) {
// Key usage has been rate-limited. Wait a bit and try again.
sleep(KEYMASTER_CRYPTFS_RATE_LIMIT);
error = keymaster1_dev->begin(keymaster1_dev, KM_PURPOSE_SIGN, &key,
&param_set, NULL /* out_params */,
&op_handle);
}
if (error != KM_ERROR_OK) {
printf("Error starting keymaster signature transaction: %d\n", error);
rc = -1;
goto out;
}
keymaster_blob_t input = { to_sign, to_sign_size };
size_t input_consumed;
error = keymaster1_dev->update(keymaster1_dev, op_handle, NULL /* in_params */,
&input, &input_consumed, NULL /* out_params */,
NULL /* output */);
if (error != KM_ERROR_OK) {
printf("Error sending data to keymaster signature transaction: %d\n", error);
rc = -1;
goto out;
}
if (input_consumed != to_sign_size) {
// This should never happen. If it does, it's a bug in the keymaster implementation.
printf("Keymaster update() did not consume all data.\n");
keymaster1_dev->abort(keymaster1_dev, op_handle);
rc = -1;
goto out;
}
keymaster_blob_t tmp_sig;
error = keymaster1_dev->finish(keymaster1_dev, op_handle, NULL /* in_params */,
NULL /* verify signature */, NULL /* out_params */,
&tmp_sig);
if (error != KM_ERROR_OK) {
printf("Error finishing keymaster signature transaction: %d\n", error);
rc = -1;
goto out;
}
*signature = (uint8_t*)tmp_sig.data;
*signature_size = tmp_sig.data_length;
rc = 0;
}
#endif // TW_KEYMASTER_API >= 1
out:
#if TW_KEYMASTER_MAX_API >= 1
if (keymaster1_dev)
keymaster1_close(keymaster1_dev);
#endif
if (keymaster0_dev)
#if TW_KEYMASTER_MAX_API >= 1
keymaster0_close(keymaster0_dev);
#else
keymaster_close(keymaster0_dev);
#endif
if (rc == 0)
return 0; // otherwise we'll try for a newer keymaster API
initfail:
#if TW_KEYMASTER_MAX_API == 3
return keymaster_sign_object_for_cryptfs_scrypt(ftr->keymaster_blob, ftr->keymaster_blob_size,
KEYMASTER_CRYPTFS_RATE_LIMIT, to_sign, to_sign_size, signature, signature_size,
ftr->keymaster_blob, KEYMASTER_BLOB_SIZE, &ftr->keymaster_blob_size);
#endif //TW_KEYMASTER_MAX_API == 3
#if TW_KEYMASTER_MAX_API >= 4
//for (;;) {
auto result = keymaster_sign_object_for_cryptfs_scrypt(
ftr->keymaster_blob, ftr->keymaster_blob_size, KEYMASTER_CRYPTFS_RATE_LIMIT, to_sign,
to_sign_size, signature, signature_size);
switch (result) {
case KeymasterSignResult::ok:
return 0;
case KeymasterSignResult::upgrade:
break;
default:
return -1;
}
SLOGD("Upgrading key\n");
if (keymaster_upgrade_key_for_cryptfs_scrypt(
RSA_KEY_SIZE, RSA_EXPONENT, KEYMASTER_CRYPTFS_RATE_LIMIT, ftr->keymaster_blob,
ftr->keymaster_blob_size, ftr->keymaster_blob, KEYMASTER_BLOB_SIZE,
&ftr->keymaster_blob_size) != 0) {
SLOGE("Failed to upgrade key\n");
return -1;
}
/*if (put_crypt_ftr_and_key(ftr) != 0) {
SLOGE("Failed to write upgraded key to disk");
}*/
SLOGD("Key upgraded successfully\n");
return 0;
//}
#endif
return -1;
}
static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags)
{
memset(io, 0, dataSize);
io->data_size = dataSize;
io->data_start = sizeof(struct dm_ioctl);
io->version[0] = 4;
io->version[1] = 0;
io->version[2] = 0;
io->flags = flags;
if (name) {
strlcpy(io->name, name, sizeof(io->name));
}
}
namespace {
struct CryptoType;
// Use to get the CryptoType in use on this device.
const CryptoType &get_crypto_type();
struct CryptoType {
// We should only be constructing CryptoTypes as part of
// supported_crypto_types[]. We do it via this pseudo-builder pattern,
// which isn't pure or fully protected as a concession to being able to
// do it all at compile time. Add new CryptoTypes in
// supported_crypto_types[] below.
constexpr CryptoType() : CryptoType(nullptr, nullptr, 0xFFFFFFFF) {}
constexpr CryptoType set_keysize(uint32_t size) const {
return CryptoType(this->property_name, this->crypto_name, size);
}
constexpr CryptoType set_property_name(const char *property) const {
return CryptoType(property, this->crypto_name, this->keysize);
}
constexpr CryptoType set_crypto_name(const char *crypto) const {
return CryptoType(this->property_name, crypto, this->keysize);
}
constexpr const char *get_property_name() const { return property_name; }
constexpr const char *get_crypto_name() const { return crypto_name; }
constexpr uint32_t get_keysize() const { return keysize; }
private:
const char *property_name;
const char *crypto_name;
uint32_t keysize;
constexpr CryptoType(const char *property, const char *crypto,
uint32_t ksize)
: property_name(property), crypto_name(crypto), keysize(ksize) {}
friend const CryptoType &get_crypto_type();
static const CryptoType &get_device_crypto_algorithm();
};
// We only want to parse this read-only property once. But we need to wait
// until the system is initialized before we can read it. So we use a static
// scoped within this function to get it only once.
const CryptoType &get_crypto_type() {
static CryptoType crypto_type = CryptoType::get_device_crypto_algorithm();
return crypto_type;
}
constexpr CryptoType default_crypto_type = CryptoType()
.set_property_name("AES-128-CBC")
.set_crypto_name("aes-cbc-essiv:sha256")
.set_keysize(16);
constexpr CryptoType supported_crypto_types[] = {
default_crypto_type,
CryptoType()
.set_property_name("Speck128/128-XTS")
.set_crypto_name("speck128-xts-plain64")
.set_keysize(32),
// Add new CryptoTypes here. Order is not important.
};
// ---------- START COMPILE-TIME SANITY CHECK BLOCK -------------------------
// We confirm all supported_crypto_types have a small enough keysize and
// had both set_property_name() and set_crypto_name() called.
template <typename T, size_t N>
constexpr size_t array_length(T (&)[N]) { return N; }
constexpr bool indexOutOfBoundsForCryptoTypes(size_t index) {
return (index >= array_length(supported_crypto_types));
}
constexpr bool isValidCryptoType(const CryptoType &crypto_type) {
return ((crypto_type.get_property_name() != nullptr) &&
(crypto_type.get_crypto_name() != nullptr) &&
(crypto_type.get_keysize() <= MAX_KEY_LEN));
}
// Note in C++11 that constexpr functions can only have a single line.
// So our code is a bit convoluted (using recursion instead of a loop),
// but it's asserting at compile time that all of our key lengths are valid.
constexpr bool validateSupportedCryptoTypes(size_t index) {
return indexOutOfBoundsForCryptoTypes(index) ||
(isValidCryptoType(supported_crypto_types[index]) &&
validateSupportedCryptoTypes(index + 1));
}
static_assert(validateSupportedCryptoTypes(0),
"We have a CryptoType with keysize > MAX_KEY_LEN or which was "
"incompletely constructed.");
// ---------- END COMPILE-TIME SANITY CHECK BLOCK -------------------------
// Don't call this directly, use get_crypto_type(), which caches this result.
const CryptoType &CryptoType::get_device_crypto_algorithm() {
constexpr char CRYPT_ALGO_PROP[] = "ro.crypto.fde_algorithm";
char paramstr[PROPERTY_VALUE_MAX];
property_get(CRYPT_ALGO_PROP, paramstr,
default_crypto_type.get_property_name());
for (auto const &ctype : supported_crypto_types) {
if (strcmp(paramstr, ctype.get_property_name()) == 0) {
return ctype;
}
}
ALOGE("Invalid name (%s) for %s. Defaulting to %s\n", paramstr,
CRYPT_ALGO_PROP, default_crypto_type.get_property_name());
return default_crypto_type;
}
} // namespace
#define SCRYPT_PROP "ro.crypto.scrypt_params"
#define SCRYPT_DEFAULTS "15:3:1"
bool parse_scrypt_parameters(const char* paramstr, int *Nf, int *rf, int *pf) {
int params[3] = {};
char *token;
char *saveptr;
int i;
/*
* The token we're looking for should be three integers separated by
* colons (e.g., "12:8:1"). Scan the property to make sure it matches.
*/
for (i = 0, token = strtok_r(const_cast<char *>(paramstr), ":", &saveptr);
token != nullptr && i < 3;
i++, token = strtok_r(nullptr, ":", &saveptr)) {
char *endptr;
params[i] = strtol(token, &endptr, 10);
/*
* Check that there was a valid number and it's 8-bit.
*/
if ((*token == '\0') || (*endptr != '\0') || params[i] < 0 || params[i] > 255) {
return false;
}
}
if (token != nullptr) {
return false;
}
*Nf = params[0]; *rf = params[1]; *pf = params[2];
return true;
}
uint32_t cryptfs_get_keysize() {
return get_crypto_type().get_keysize();
}
const char *cryptfs_get_crypto_name() {
return get_crypto_type().get_crypto_name();
}
static int get_crypt_ftr_info(char **metadata_fname, off64_t *off)
{
static int cached_data = 0;
static off64_t cached_off = 0;
static char cached_metadata_fname[PROPERTY_VALUE_MAX] = "";
int fd;
//char key_loc[PROPERTY_VALUE_MAX];
//char real_blkdev[PROPERTY_VALUE_MAX];
int rc = -1;
if (!cached_data) {
//fs_mgr_get_crypt_info(fstab_default, key_loc, real_blkdev, sizeof(key_loc));
if (!strcmp(key_fname, KEY_IN_FOOTER)) {
if ( (fd = open(real_blkdev, O_RDWR|O_CLOEXEC)) < 0) {
SLOGE("Cannot open real block device %s\n", real_blkdev);
return -1;
}
unsigned long nr_sec = 0;
get_blkdev_size(fd, &nr_sec);
if (nr_sec != 0) {
/* If it's an encrypted Android partition, the last 16 Kbytes contain the
* encryption info footer and key, and plenty of bytes to spare for future
* growth.
*/
strlcpy(cached_metadata_fname, real_blkdev, sizeof(cached_metadata_fname));
cached_off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET;
cached_data = 1;
} else {
SLOGE("Cannot get size of block device %s\n", real_blkdev);
}
close(fd);
} else {
strlcpy(cached_metadata_fname, key_fname, sizeof(cached_metadata_fname));
cached_off = 0;
cached_data = 1;
}
}
if (cached_data) {
if (metadata_fname) {
*metadata_fname = cached_metadata_fname;
}
if (off) {
*off = cached_off;
}
rc = 0;
}
return rc;
}
static int get_crypt_ftr_and_key(struct crypt_mnt_ftr *crypt_ftr)
{
int fd;
unsigned int cnt;
off64_t starting_off;
int rc = -1;
char *fname = NULL;
struct stat statbuf;
if (get_crypt_ftr_info(&fname, &starting_off)) {
SLOGE("Unable to get crypt_ftr_info\n");
return -1;
}
if (fname[0] != '/') {
SLOGE("Unexpected value for crypto key location\n");
return -1;
}
if ( (fd = open(fname, O_RDWR|O_CLOEXEC)) < 0) {
SLOGE("Cannot open footer file %s for get\n", fname);
return -1;
}
/* Make sure it's 16 Kbytes in length */
fstat(fd, &statbuf);
if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) {
SLOGE("footer file %s is not the expected size!\n", fname);
goto errout;
}
/* Seek to the start of the crypt footer */
if (lseek64(fd, starting_off, SEEK_SET) == -1) {
SLOGE("Cannot seek to real block device footer\n");
goto errout;
}
if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
SLOGE("Cannot read real block device footer\n");
goto errout;
}
if (crypt_ftr->magic != CRYPT_MNT_MAGIC) {
SLOGE("Bad magic for real block device %s\n", fname);
goto errout;
}
if (crypt_ftr->major_version != CURRENT_MAJOR_VERSION) {
SLOGE("Cannot understand major version %d real block device footer; expected %d\n",
crypt_ftr->major_version, CURRENT_MAJOR_VERSION);
goto errout;
}
// We risk buffer overflows with oversized keys, so we just reject them.
// 0-sized keys are problematic (essentially by-passing encryption), and
// AES-CBC key wrapping only works for multiples of 16 bytes.
if ((crypt_ftr->keysize == 0) || ((crypt_ftr->keysize % 16) != 0) ||
(crypt_ftr->keysize > MAX_KEY_LEN)) {
SLOGE("Invalid keysize (%u) for block device %s; Must be non-zero, "
"divisible by 16, and <= %d\n", crypt_ftr->keysize, fname,
MAX_KEY_LEN);
goto errout;
}
if (crypt_ftr->minor_version > CURRENT_MINOR_VERSION) {
SLOGW("Warning: crypto footer minor version %d, expected <= %d, continuing...\n",
crypt_ftr->minor_version, CURRENT_MINOR_VERSION);
}
/* Success! */
rc = 0;
errout:
close(fd);
return rc;
}
int cryptfs_check_footer()
{
int rc = -1;
struct crypt_mnt_ftr crypt_ftr;
rc = get_crypt_ftr_and_key(&crypt_ftr);
return rc;
}
/* Convert a binary key of specified length into an ascii hex string equivalent,
* without the leading 0x and with null termination
*/
static void convert_key_to_hex_ascii(const unsigned char *master_key,
unsigned int keysize, char *master_key_ascii) {
unsigned int i, a;
unsigned char nibble;
for (i=0, a=0; i<keysize; i++, a+=2) {
/* For each byte, write out two ascii hex digits */
nibble = (master_key[i] >> 4) & 0xf;
master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30);
nibble = master_key[i] & 0xf;
master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30);
}
/* Add the null termination */
master_key_ascii[a] = '\0';
}
static int load_crypto_mapping_table(struct crypt_mnt_ftr *crypt_ftr,
const unsigned char *master_key, const char *real_blk_name,
const char *name, int fd, const char *extra_params) {
alignas(struct dm_ioctl) char buffer[DM_CRYPT_BUF_SIZE];
struct dm_ioctl *io;
struct dm_target_spec *tgt;
char *crypt_params;
// We need two ASCII characters to represent each byte, and need space for
// the '\0' terminator.
char master_key_ascii[MAX_KEY_LEN * 2 + 1];
size_t buff_offset;
int i;
io = (struct dm_ioctl *) buffer;
/* Load the mapping table for this device */
tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)];
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
io->target_count = 1;
tgt->status = 0;
tgt->sector_start = 0;
tgt->length = crypt_ftr->fs_size;
crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec);
buff_offset = crypt_params - buffer;
SLOGI("Extra parameters for dm_crypt: %s\n", extra_params);
#ifdef CONFIG_HW_DISK_ENCRYPTION
if(is_hw_disk_encryption((char*)crypt_ftr->crypto_type_name)) {
strlcpy(tgt->target_type, "req-crypt",DM_MAX_TYPE_NAME);
if (is_ice_enabled())
convert_key_to_hex_ascii(master_key, sizeof(int), master_key_ascii);
else
convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii);
}
else {
convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii);
strlcpy(tgt->target_type, "crypt", DM_MAX_TYPE_NAME);
}
snprintf(crypt_params, sizeof(buffer) - buff_offset, "%s %s 0 %s 0 %s 0",
crypt_ftr->crypto_type_name, master_key_ascii,
real_blk_name, extra_params);
SLOGI("target_type = %s", tgt->target_type);
SLOGI("real_blk_name = %s, extra_params = %s", real_blk_name, extra_params);
#else
convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii);
strlcpy(tgt->target_type, "crypt", DM_MAX_TYPE_NAME);
snprintf(crypt_params, sizeof(buffer) - buff_offset, "%s %s 0 %s 0 %s",
crypt_ftr->crypto_type_name, master_key_ascii, real_blk_name,
extra_params);
#endif
crypt_params += strlen(crypt_params) + 1;
crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */
tgt->next = crypt_params - buffer;
for (i = 0; i < TABLE_LOAD_RETRIES; i++) {
if (! ioctl(fd, DM_TABLE_LOAD, io)) {
break;
}
usleep(500000);
}
if (i == TABLE_LOAD_RETRIES) {
/* We failed to load the table, return an error */
return -1;
} else {
return i + 1;
}
}
static int get_dm_crypt_version(int fd, const char *name, int *version)
{
char buffer[DM_CRYPT_BUF_SIZE];
struct dm_ioctl *io;
struct dm_target_versions *v;
io = (struct dm_ioctl *) buffer;
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
if (ioctl(fd, DM_LIST_VERSIONS, io)) {
return -1;
}
/* Iterate over the returned versions, looking for name of "crypt".
* When found, get and return the version.
*/
v = (struct dm_target_versions *) &buffer[sizeof(struct dm_ioctl)];
while (v->next) {
#ifdef CONFIG_HW_DISK_ENCRYPTION
if (! strcmp(v->name, "crypt") || ! strcmp(v->name, "req-crypt")) {
#else
if (! strcmp(v->name, "crypt")) {
#endif
/* We found the crypt driver, return the version, and get out */
version[0] = v->version[0];
version[1] = v->version[1];
version[2] = v->version[2];
return 0;
}
v = (struct dm_target_versions *)(((char *)v) + v->next);
}
return -1;
}
#ifndef CONFIG_HW_DISK_ENCRYPTION
static std::string extra_params_as_string(const std::vector<std::string>& extra_params_vec) {
if (extra_params_vec.empty()) return "";
char temp[10];
snprintf(temp, sizeof(temp), "%zd", extra_params_vec.size());
std::string extra_params = temp; //std::to_string(extra_params_vec.size());
for (const auto& p : extra_params_vec) {
extra_params.append(" ");
extra_params.append(p);
}
return extra_params;
}
#endif
static int create_crypto_blk_dev(struct crypt_mnt_ftr* crypt_ftr, const unsigned char* master_key,
const char* real_blk_name, char* crypto_blk_name, const char* name,
uint32_t flags) {
char buffer[DM_CRYPT_BUF_SIZE];
struct dm_ioctl* io;
unsigned int minor;
int fd = 0;
int err;
int retval = -1;
int version[3];
int load_count;
#ifdef CONFIG_HW_DISK_ENCRYPTION
char encrypted_state[PROPERTY_VALUE_MAX] = {0};
char progress[PROPERTY_VALUE_MAX] = {0};
const char *extra_params;
#else
std::vector<std::string> extra_params_vec;
#endif
if ((fd = open("/dev/device-mapper", O_RDWR | O_CLOEXEC)) < 0) {
SLOGE("Cannot open device-mapper\n");
goto errout;
}
io = (struct dm_ioctl*)buffer;
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
err = ioctl(fd, DM_DEV_CREATE, io);
if (err) {
SLOGE("Cannot create dm-crypt device %s: %s\n", name, strerror(errno));
goto errout;
}
/* Get the device status, in particular, the name of it's device file */
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
if (ioctl(fd, DM_DEV_STATUS, io)) {
SLOGE("Cannot retrieve dm-crypt device status\n");
goto errout;
}
minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00);
snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor);
#ifdef CONFIG_HW_DISK_ENCRYPTION
if(is_hw_disk_encryption((char*)crypt_ftr->crypto_type_name)) {
/* Set fde_enabled if either FDE completed or in-progress */
property_get("ro.crypto.state", encrypted_state, ""); /* FDE completed */
property_get("vold.encrypt_progress", progress, ""); /* FDE in progress */
if (!strcmp(encrypted_state, "encrypted") || strcmp(progress, "")) {
if (is_ice_enabled()) {
if (flags & CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE)
extra_params = "fde_enabled ice allow_encrypt_override";
else
extra_params = "fde_enabled ice";
} else {
if (flags & CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE)
extra_params = "fde_enabled allow_encrypt_override";
else
extra_params = "fde_enabled";
}
} else {
if (flags & CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE)
extra_params = "fde_enabled allow_encrypt_override";
else
extra_params = "fde_enabled";
}
} else {
extra_params = "";
if (! get_dm_crypt_version(fd, name, version)) {
/* Support for allow_discards was added in version 1.11.0 */
if ((version[0] >= 2) || ((version[0] == 1) && (version[1] >= 11))) {
if (flags & CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE)
extra_params = "2 allow_discards allow_encrypt_override";
else
extra_params = "1 allow_discards";
SLOGI("Enabling support for allow_discards in dmcrypt.\n");
}
}
}
load_count = load_crypto_mapping_table(crypt_ftr, master_key, real_blk_name, name, fd,
extra_params);
#else
if (!get_dm_crypt_version(fd, name, version)) {
/* Support for allow_discards was added in version 1.11.0 */
if ((version[0] >= 2) || ((version[0] == 1) && (version[1] >= 11))) {
extra_params_vec.push_back(std::string("allow_discards")); // Used to be extra_params_vec.emplace_back("allow_discards"); but this won't compile in 5.1 trees
}
}
if (flags & CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE) {
extra_params_vec.push_back(std::string("allow_encrypt_override")); // Used to be extra_params_vec.emplace_back("allow_encrypt_override"); but this won't compile in 5.1 trees
}
load_count = load_crypto_mapping_table(crypt_ftr, master_key, real_blk_name, name, fd,
extra_params_as_string(extra_params_vec).c_str());
#endif
if (load_count < 0) {
SLOGE("Cannot load dm-crypt mapping table.\n");
goto errout;
} else if (load_count > 1) {
SLOGI("Took %d tries to load dmcrypt table.\n", load_count);
}
/* Resume this device to activate it */
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
if (ioctl(fd, DM_DEV_SUSPEND, io)) {
SLOGE("Cannot resume the dm-crypt device\n");
goto errout;
}
/* We made it here with no errors. Woot! */
retval = 0;
errout:
close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
return retval;
}
int delete_crypto_blk_dev(const char *name)
{
int fd;
char buffer[DM_CRYPT_BUF_SIZE];
struct dm_ioctl *io;
int retval = -1;
if ((fd = open("/dev/device-mapper", O_RDWR|O_CLOEXEC)) < 0 ) {
SLOGE("Cannot open device-mapper\n");
goto errout;
}
io = (struct dm_ioctl *) buffer;
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
if (ioctl(fd, DM_DEV_REMOVE, io)) {
SLOGE("Cannot remove dm-crypt device\n");
goto errout;
}
/* We made it here with no errors. Woot! */
retval = 0;
errout:
close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
return retval;
}
static int pbkdf2(const char *passwd, const unsigned char *salt,
unsigned char *ikey, void *params UNUSED)
{
SLOGI("Using pbkdf2 for cryptfs KDF\n");
/* Turn the password into a key and IV that can decrypt the master key */
return PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, SALT_LEN,
HASH_COUNT, INTERMEDIATE_BUF_SIZE,
ikey) != 1;
}
static int scrypt(const char *passwd, const unsigned char *salt,
unsigned char *ikey, void *params)
{
SLOGI("Using scrypt for cryptfs KDF\n");
struct crypt_mnt_ftr *ftr = (struct crypt_mnt_ftr *) params;
int N = 1 << ftr->N_factor;
int r = 1 << ftr->r_factor;
int p = 1 << ftr->p_factor;
/* Turn the password into a key and IV that can decrypt the master key */
crypto_scrypt((const uint8_t*)passwd, strlen(passwd),
salt, SALT_LEN, N, r, p, ikey,
INTERMEDIATE_BUF_SIZE);
return 0;
}
static int scrypt_keymaster(const char *passwd, const unsigned char *salt,
unsigned char *ikey, void *params)
{
SLOGI("Using scrypt with keymaster for cryptfs KDF\n");
int rc;
size_t signature_size;
unsigned char* signature;
struct crypt_mnt_ftr *ftr = (struct crypt_mnt_ftr *) params;
int N = 1 << ftr->N_factor;
int r = 1 << ftr->r_factor;
int p = 1 << ftr->p_factor;
rc = crypto_scrypt((const uint8_t*)passwd, strlen(passwd),
salt, SALT_LEN, N, r, p, ikey,
INTERMEDIATE_BUF_SIZE);
if (rc) {
SLOGE("scrypt failed");
return -1;
}
if (keymaster_sign_object(ftr, ikey, INTERMEDIATE_BUF_SIZE,
&signature, &signature_size)) {
SLOGE("Keymaster signing failed");
return -1;
}
rc = crypto_scrypt(signature, signature_size, salt, SALT_LEN,
N, r, p, ikey, INTERMEDIATE_BUF_SIZE);
free(signature);
if (rc) {
SLOGE("scrypt failed");
return -1;
}
return 0;
}
static int decrypt_master_key_aux(const char *passwd, unsigned char *salt,
const unsigned char *encrypted_master_key,
size_t keysize,
unsigned char *decrypted_master_key,
kdf_func kdf, void *kdf_params,
unsigned char** intermediate_key,
size_t* intermediate_key_size)
{
unsigned char ikey[INTERMEDIATE_BUF_SIZE] = { 0 };
EVP_CIPHER_CTX d_ctx;
int decrypted_len, final_len;
/* Turn the password into an intermediate key and IV that can decrypt the
master key */
if (kdf(passwd, salt, ikey, kdf_params)) {
SLOGE("kdf failed");
return -1;
}
/* Initialize the decryption engine */
EVP_CIPHER_CTX_init(&d_ctx);
if (! EVP_DecryptInit_ex(&d_ctx, EVP_aes_128_cbc(), NULL, ikey, ikey+INTERMEDIATE_KEY_LEN_BYTES)) {
return -1;
}
EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */
/* Decrypt the master key */
if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len,
encrypted_master_key, keysize)) {
return -1;
}
if (! EVP_DecryptFinal_ex(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) {
return -1;
}
if (decrypted_len + final_len != static_cast<int>(keysize)) {
return -1;
}
/* Copy intermediate key if needed by params */
if (intermediate_key && intermediate_key_size) {
*intermediate_key = (unsigned char*) malloc(INTERMEDIATE_KEY_LEN_BYTES);
if (*intermediate_key) {
memcpy(*intermediate_key, ikey, INTERMEDIATE_KEY_LEN_BYTES);
*intermediate_key_size = INTERMEDIATE_KEY_LEN_BYTES;
}
}
EVP_CIPHER_CTX_cleanup(&d_ctx);
return 0;
}
static void get_kdf_func(struct crypt_mnt_ftr *ftr, kdf_func *kdf, void** kdf_params)
{
if (ftr->kdf_type == KDF_SCRYPT_KEYMASTER) {
*kdf = scrypt_keymaster;
*kdf_params = ftr;
} else if (ftr->kdf_type == KDF_SCRYPT) {
*kdf = scrypt;
*kdf_params = ftr;
} else {
*kdf = pbkdf2;
*kdf_params = NULL;
}
}
static int decrypt_master_key(const char *passwd, unsigned char *decrypted_master_key,
struct crypt_mnt_ftr *crypt_ftr,
unsigned char** intermediate_key,
size_t* intermediate_key_size)
{
kdf_func kdf;
void *kdf_params;
int ret;
get_kdf_func(crypt_ftr, &kdf, &kdf_params);
ret = decrypt_master_key_aux(passwd, crypt_ftr->salt, crypt_ftr->master_key,
crypt_ftr->keysize,
decrypted_master_key, kdf, kdf_params,
intermediate_key, intermediate_key_size);
if (ret != 0) {
SLOGW("failure decrypting master key");
}
return ret;
}
#ifdef CONFIG_HW_DISK_ENCRYPTION
static int test_mount_hw_encrypted_fs(struct crypt_mnt_ftr* crypt_ftr,
const char *passwd, const char *mount_point, const char *label)
{
/* Allocate enough space for a 256 bit key, but we may use less */
unsigned char decrypted_master_key[32];
char crypto_blkdev[MAXPATHLEN];
//char real_blkdev[MAXPATHLEN];
unsigned int orig_failed_decrypt_count;
int rc = 0;
SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr->fs_size);
orig_failed_decrypt_count = crypt_ftr->failed_decrypt_count;
//fs_mgr_get_crypt_info(fstab_default, 0, real_blkdev, sizeof(real_blkdev));
int key_index = 0;
if(is_hw_disk_encryption((char*)crypt_ftr->crypto_type_name)) {
key_index = verify_and_update_hw_fde_passwd(passwd, crypt_ftr);
if (key_index < 0) {
rc = -1;
goto errout;
}
else {
if (is_ice_enabled()) {
#ifndef CONFIG_HW_DISK_ENCRYPT_PERF
if (create_crypto_blk_dev(crypt_ftr, (unsigned char*)&key_index,
real_blkdev, crypto_blkdev, label, 0)) {
SLOGE("Error creating decrypted block device");
rc = -1;
goto errout;
}
#endif
} else {
if (create_crypto_blk_dev(crypt_ftr, decrypted_master_key,
real_blkdev, crypto_blkdev, label, 0)) {
SLOGE("Error creating decrypted block device");
rc = -1;
goto errout;
}
}
}
}
if (rc == 0) {
/* Save the name of the crypto block device
* so we can mount it when restarting the framework. */
#ifdef CONFIG_HW_DISK_ENCRYPT_PERF
if (!is_ice_enabled())
#endif
property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev);
master_key_saved = 1;
}
errout:
return rc;
}
#endif
static int try_mount_multiple_fs(const char *crypto_blkdev,
const char *mount_point,
const char *file_system)
{
if (!mount(crypto_blkdev, mount_point, file_system, 0, NULL))
return 0;
if (strcmp(file_system, "ext4") &&
!mount(crypto_blkdev, mount_point, "ext4", 0, NULL))
return 0;
if (strcmp(file_system, "f2fs") &&
!mount(crypto_blkdev, mount_point, "f2fs", 0, NULL))
return 0;
return 1;
}
static int test_mount_encrypted_fs(struct crypt_mnt_ftr* crypt_ftr,
const char *passwd, const char *mount_point, const char *label)
{
unsigned char decrypted_master_key[MAX_KEY_LEN];
char crypto_blkdev[MAXPATHLEN];
//char real_blkdev[MAXPATHLEN];
char tmp_mount_point[64];
unsigned int orig_failed_decrypt_count;
int rc;
int use_keymaster = 0;
unsigned char* intermediate_key = 0;
size_t intermediate_key_size = 0;
int N = 1 << crypt_ftr->N_factor;
int r = 1 << crypt_ftr->r_factor;
int p = 1 << crypt_ftr->p_factor;
SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr->fs_size);
orig_failed_decrypt_count = crypt_ftr->failed_decrypt_count;
if (! (crypt_ftr->flags & CRYPT_MNT_KEY_UNENCRYPTED) ) {
if (decrypt_master_key(passwd, decrypted_master_key, crypt_ftr,
&intermediate_key, &intermediate_key_size)) {
SLOGE("Failed to decrypt master key\n");
rc = -1;
goto errout;
}
}
//fs_mgr_get_crypt_info(fstab_default, 0, real_blkdev, sizeof(real_blkdev));
// Create crypto block device - all (non fatal) code paths
// need it
if (create_crypto_blk_dev(crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev, label, 0)) {
SLOGE("Error creating decrypted block device\n");
rc = -1;
goto errout;
}
/* Work out if the problem is the password or the data */
unsigned char scrypted_intermediate_key[sizeof(crypt_ftr->
scrypted_intermediate_key)];
rc = crypto_scrypt(intermediate_key, intermediate_key_size,
crypt_ftr->salt, sizeof(crypt_ftr->salt),
N, r, p, scrypted_intermediate_key,
sizeof(scrypted_intermediate_key));
// Does the key match the crypto footer?
if (rc == 0 && memcmp(scrypted_intermediate_key,
crypt_ftr->scrypted_intermediate_key,
sizeof(scrypted_intermediate_key)) == 0) {
SLOGI("Password matches");
rc = 0;
} else {
/* Try mounting the file system anyway, just in case the problem's with
* the footer, not the key. */
snprintf(tmp_mount_point, sizeof(tmp_mount_point), "%s/tmp_mnt",
mount_point);
mkdir(tmp_mount_point, 0755);
if (try_mount_multiple_fs(crypto_blkdev, tmp_mount_point, file_system)) {
SLOGE("Error temp mounting decrypted block device\n");
delete_crypto_blk_dev(label);
rc = -1;
} else {
/* Success! */
SLOGI("Password did not match but decrypted drive mounted - continue");
umount(tmp_mount_point);
rc = 0;
}
}
if (rc == 0) {
/* Save the name of the crypto block device
* so we can mount it when restarting the framework. */
property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev);
/* Also save a the master key so we can reencrypted the key
* the key when we want to change the password on it. */
memcpy(saved_master_key, decrypted_master_key, crypt_ftr->keysize);
saved_mount_point = strdup(mount_point);
master_key_saved = 1;
SLOGD("%s(): Master key saved\n", __FUNCTION__);
rc = 0;
}
errout:
if (intermediate_key) {
memset(intermediate_key, 0, intermediate_key_size);
free(intermediate_key);
}
return rc;
}
/*
* Called by vold when it's asked to mount an encrypted external
* storage volume. The incoming partition has no crypto header/footer,
* as any metadata is been stored in a separate, small partition. We
* assume it must be using our same crypt type and keysize.
*
* out_crypto_blkdev must be MAXPATHLEN.
*/
int cryptfs_setup_ext_volume(const char* label, const char* real_blkdev,
const unsigned char* key, int keysize, char* out_crypto_blkdev) {
int fd = open(real_blkdev, O_RDONLY|O_CLOEXEC);
if (fd == -1) {
SLOGE("Failed to open %s: %s", real_blkdev, strerror(errno));
return -1;
}
unsigned long nr_sec = 0;
get_blkdev_size(fd, &nr_sec);
close(fd);
if (nr_sec == 0) {
SLOGE("Failed to get size of %s: %s", real_blkdev, strerror(errno));
return -1;
}
struct crypt_mnt_ftr ext_crypt_ftr;
memset(&ext_crypt_ftr, 0, sizeof(ext_crypt_ftr));
ext_crypt_ftr.fs_size = nr_sec;
ext_crypt_ftr.keysize = cryptfs_get_keysize();
strlcpy((char*) ext_crypt_ftr.crypto_type_name, cryptfs_get_crypto_name(),
MAX_CRYPTO_TYPE_NAME_LEN);
uint32_t flags = 0;
/*if (e4crypt_is_native() &&
android::base::GetBoolProperty("ro.crypto.allow_encrypt_override", false))
flags |= CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE;*/
return create_crypto_blk_dev(&ext_crypt_ftr, key, real_blkdev, out_crypto_blkdev, label, flags);
}
/*
* Called by vold when it's asked to unmount an encrypted external
* storage volume.
*/
int cryptfs_revert_ext_volume(const char* label) {
return delete_crypto_blk_dev(label);
}
int check_unmounted_and_get_ftr(struct crypt_mnt_ftr* crypt_ftr)
{
char encrypted_state[PROPERTY_VALUE_MAX];
property_get("ro.crypto.state", encrypted_state, "");
if ( master_key_saved || strcmp(encrypted_state, "encrypted") ) {
SLOGE("encrypted fs already validated or not running with encryption,"
" aborting");
return -1;
}
if (get_crypt_ftr_and_key(crypt_ftr)) {
SLOGE("Error getting crypt footer and key");
return -1;
}
return 0;
}
#ifdef CONFIG_HW_DISK_ENCRYPTION
int cryptfs_check_passwd_hw(const char* passwd)
{
struct crypt_mnt_ftr crypt_ftr;
int rc;
unsigned char master_key[KEY_LEN_BYTES];
/* get key */
if (get_crypt_ftr_and_key(&crypt_ftr)) {
SLOGE("Error getting crypt footer and key");
return -1;
}
/*
* in case of manual encryption (from GUI), the encryption is done with
* default password
*/
if (crypt_ftr.flags & CRYPT_FORCE_COMPLETE) {
/* compare scrypted_intermediate_key with stored scrypted_intermediate_key
* which was created with actual password before reboot.
*/
rc = cryptfs_get_master_key(&crypt_ftr, passwd, master_key);
if (rc) {
SLOGE("password doesn't match");
return rc;
}
rc = test_mount_hw_encrypted_fs(&crypt_ftr, DEFAULT_PASSWORD,
DATA_MNT_POINT, CRYPTO_BLOCK_DEVICE);
if (rc) {
SLOGE("Default password did not match on reboot encryption");
return rc;
}
} else {
rc = test_mount_hw_encrypted_fs(&crypt_ftr, passwd,
DATA_MNT_POINT, CRYPTO_BLOCK_DEVICE);
SLOGE("test mount returned %i\n", rc);
}
return rc;
}
#endif
int cryptfs_check_passwd(const char *passwd)
{
/*if (e4crypt_is_native()) {
SLOGE("cryptfs_check_passwd not valid for file encryption");
return -1;
}*/
struct crypt_mnt_ftr crypt_ftr;
int rc;
rc = check_unmounted_and_get_ftr(&crypt_ftr);
if (rc) {
SLOGE("Could not get footer");
return rc;
}
#ifdef CONFIG_HW_DISK_ENCRYPTION
if (is_hw_disk_encryption((char*)crypt_ftr.crypto_type_name))
return cryptfs_check_passwd_hw(passwd);
#endif
rc = test_mount_encrypted_fs(&crypt_ftr, passwd,
DATA_MNT_POINT, CRYPTO_BLOCK_DEVICE);
if (rc) {
SLOGE("Password did not match");
return rc;
}
if (crypt_ftr.flags & CRYPT_FORCE_COMPLETE) {
// Here we have a default actual password but a real password
// we must test against the scrypted value
// First, we must delete the crypto block device that
// test_mount_encrypted_fs leaves behind as a side effect
delete_crypto_blk_dev(CRYPTO_BLOCK_DEVICE);
rc = test_mount_encrypted_fs(&crypt_ftr, DEFAULT_PASSWORD,
DATA_MNT_POINT, CRYPTO_BLOCK_DEVICE);
if (rc) {
SLOGE("Default password did not match on reboot encryption");
return rc;
}
}
return rc;
}
int cryptfs_verify_passwd(const char *passwd)
{
struct crypt_mnt_ftr crypt_ftr;
unsigned char decrypted_master_key[MAX_KEY_LEN];
char encrypted_state[PROPERTY_VALUE_MAX];
int rc;
property_get("ro.crypto.state", encrypted_state, "");
if (strcmp(encrypted_state, "encrypted") ) {
SLOGE("device not encrypted, aborting");
return -2;
}
if (!master_key_saved) {
SLOGE("encrypted fs not yet mounted, aborting");
return -1;
}
if (!saved_mount_point) {
SLOGE("encrypted fs failed to save mount point, aborting");
return -1;
}
if (get_crypt_ftr_and_key(&crypt_ftr)) {
SLOGE("Error getting crypt footer and key\n");
return -1;
}
if (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) {
/* If the device has no password, then just say the password is valid */
rc = 0;
} else {
#ifdef CONFIG_HW_DISK_ENCRYPTION
if(is_hw_disk_encryption((char*)crypt_ftr.crypto_type_name)) {
if (verify_hw_fde_passwd(passwd, &crypt_ftr) >= 0)
rc = 0;
else
rc = -1;
} else {
decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0);
if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) {
/* They match, the password is correct */
rc = 0;
} else {
/* If incorrect, sleep for a bit to prevent dictionary attacks */
sleep(1);
rc = 1;
}
}
#else
decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0);
if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) {
/* They match, the password is correct */
rc = 0;
} else {
/* If incorrect, sleep for a bit to prevent dictionary attacks */
sleep(1);
rc = 1;
}
#endif
}
return rc;
}
/* Returns type of the password, default, pattern, pin or password.
*/
int cryptfs_get_password_type(void)
{
struct crypt_mnt_ftr crypt_ftr;
if (get_crypt_ftr_and_key(&crypt_ftr)) {
SLOGE("Error getting crypt footer and key\n");
return -1;
}
if (crypt_ftr.flags & CRYPT_INCONSISTENT_STATE) {
return -1;
}
return crypt_ftr.crypt_type;
}
int cryptfs_get_master_key(struct crypt_mnt_ftr* ftr, const char* password,
unsigned char* master_key)
{
int rc;
unsigned char* intermediate_key = 0;
size_t intermediate_key_size = 0;
if (password == 0 || *password == 0) {
password = DEFAULT_PASSWORD;
}
rc = decrypt_master_key(password, master_key, ftr, &intermediate_key,
&intermediate_key_size);
if (rc) {
SLOGE("Can't calculate intermediate key");
return rc;
}
int N = 1 << ftr->N_factor;
int r = 1 << ftr->r_factor;
int p = 1 << ftr->p_factor;
unsigned char scrypted_intermediate_key[sizeof(ftr->scrypted_intermediate_key)];
rc = crypto_scrypt(intermediate_key, intermediate_key_size,
ftr->salt, sizeof(ftr->salt), N, r, p,
scrypted_intermediate_key,
sizeof(scrypted_intermediate_key));
free(intermediate_key);
if (rc) {
SLOGE("Can't scrypt intermediate key");
return rc;
}
return memcmp(scrypted_intermediate_key, ftr->scrypted_intermediate_key,
intermediate_key_size);
}