| diff --git a/lib/crypto/crypto_scrypt-neon-salsa208.h b/lib/crypto/crypto_scrypt-neon-salsa208.h |
| new file mode 100644 |
| index 0000000..a3b1019 |
| --- /dev/null |
| +++ b/lib/crypto/crypto_scrypt-neon-salsa208.h |
| @@ -0,0 +1,120 @@ |
| +/* |
| + * version 20110505 |
| + * D. J. Bernstein |
| + * Public domain. |
| + * |
| + * Based on crypto_core/salsa208/armneon/core.c from SUPERCOP 20130419 |
| + */ |
| + |
| +#define ROUNDS 8 |
| +static void |
| +salsa20_8_intrinsic(void * input) |
| +{ |
| + int i; |
| + |
| + const uint32x4_t abab = {-1,0,-1,0}; |
| + |
| + /* |
| + * This is modified since we only have one argument. Usually you'd rearrange |
| + * the constant, key, and input bytes, but we just have one linear array to |
| + * rearrange which is a bit easier. |
| + */ |
| + |
| + /* |
| + * Change the input to be diagonals as if it's a 4x4 matrix of 32-bit values. |
| + */ |
| + uint32x4_t x0x5x10x15; |
| + uint32x4_t x12x1x6x11; |
| + uint32x4_t x8x13x2x7; |
| + uint32x4_t x4x9x14x3; |
| + |
| + uint32x4_t x0x1x10x11; |
| + uint32x4_t x12x13x6x7; |
| + uint32x4_t x8x9x2x3; |
| + uint32x4_t x4x5x14x15; |
| + |
| + uint32x4_t x0x1x2x3; |
| + uint32x4_t x4x5x6x7; |
| + uint32x4_t x8x9x10x11; |
| + uint32x4_t x12x13x14x15; |
| + |
| + x0x1x2x3 = vld1q_u8((uint8_t *) input); |
| + x4x5x6x7 = vld1q_u8(16 + (uint8_t *) input); |
| + x8x9x10x11 = vld1q_u8(32 + (uint8_t *) input); |
| + x12x13x14x15 = vld1q_u8(48 + (uint8_t *) input); |
| + |
| + x0x1x10x11 = vcombine_u32(vget_low_u32(x0x1x2x3), vget_high_u32(x8x9x10x11)); |
| + x4x5x14x15 = vcombine_u32(vget_low_u32(x4x5x6x7), vget_high_u32(x12x13x14x15)); |
| + x8x9x2x3 = vcombine_u32(vget_low_u32(x8x9x10x11), vget_high_u32(x0x1x2x3)); |
| + x12x13x6x7 = vcombine_u32(vget_low_u32(x12x13x14x15), vget_high_u32(x4x5x6x7)); |
| + |
| + x0x5x10x15 = vbslq_u32(abab,x0x1x10x11,x4x5x14x15); |
| + x8x13x2x7 = vbslq_u32(abab,x8x9x2x3,x12x13x6x7); |
| + x4x9x14x3 = vbslq_u32(abab,x4x5x14x15,x8x9x2x3); |
| + x12x1x6x11 = vbslq_u32(abab,x12x13x6x7,x0x1x10x11); |
| + |
| + uint32x4_t start0 = x0x5x10x15; |
| + uint32x4_t start1 = x12x1x6x11; |
| + uint32x4_t start3 = x4x9x14x3; |
| + uint32x4_t start2 = x8x13x2x7; |
| + |
| + /* From here on this should be the same as the SUPERCOP version. */ |
| + |
| + uint32x4_t diag0 = start0; |
| + uint32x4_t diag1 = start1; |
| + uint32x4_t diag2 = start2; |
| + uint32x4_t diag3 = start3; |
| + |
| + uint32x4_t a0; |
| + uint32x4_t a1; |
| + uint32x4_t a2; |
| + uint32x4_t a3; |
| + |
| + for (i = ROUNDS;i > 0;i -= 2) { |
| + a0 = diag1 + diag0; |
| + diag3 ^= vsriq_n_u32(vshlq_n_u32(a0,7),a0,25); |
| + a1 = diag0 + diag3; |
| + diag2 ^= vsriq_n_u32(vshlq_n_u32(a1,9),a1,23); |
| + a2 = diag3 + diag2; |
| + diag1 ^= vsriq_n_u32(vshlq_n_u32(a2,13),a2,19); |
| + a3 = diag2 + diag1; |
| + diag0 ^= vsriq_n_u32(vshlq_n_u32(a3,18),a3,14); |
| + |
| + diag3 = vextq_u32(diag3,diag3,3); |
| + diag2 = vextq_u32(diag2,diag2,2); |
| + diag1 = vextq_u32(diag1,diag1,1); |
| + |
| + a0 = diag3 + diag0; |
| + diag1 ^= vsriq_n_u32(vshlq_n_u32(a0,7),a0,25); |
| + a1 = diag0 + diag1; |
| + diag2 ^= vsriq_n_u32(vshlq_n_u32(a1,9),a1,23); |
| + a2 = diag1 + diag2; |
| + diag3 ^= vsriq_n_u32(vshlq_n_u32(a2,13),a2,19); |
| + a3 = diag2 + diag3; |
| + diag0 ^= vsriq_n_u32(vshlq_n_u32(a3,18),a3,14); |
| + |
| + diag1 = vextq_u32(diag1,diag1,3); |
| + diag2 = vextq_u32(diag2,diag2,2); |
| + diag3 = vextq_u32(diag3,diag3,1); |
| + } |
| + |
| + x0x5x10x15 = diag0 + start0; |
| + x12x1x6x11 = diag1 + start1; |
| + x8x13x2x7 = diag2 + start2; |
| + x4x9x14x3 = diag3 + start3; |
| + |
| + x0x1x10x11 = vbslq_u32(abab,x0x5x10x15,x12x1x6x11); |
| + x12x13x6x7 = vbslq_u32(abab,x12x1x6x11,x8x13x2x7); |
| + x8x9x2x3 = vbslq_u32(abab,x8x13x2x7,x4x9x14x3); |
| + x4x5x14x15 = vbslq_u32(abab,x4x9x14x3,x0x5x10x15); |
| + |
| + x0x1x2x3 = vcombine_u32(vget_low_u32(x0x1x10x11),vget_high_u32(x8x9x2x3)); |
| + x4x5x6x7 = vcombine_u32(vget_low_u32(x4x5x14x15),vget_high_u32(x12x13x6x7)); |
| + x8x9x10x11 = vcombine_u32(vget_low_u32(x8x9x2x3),vget_high_u32(x0x1x10x11)); |
| + x12x13x14x15 = vcombine_u32(vget_low_u32(x12x13x6x7),vget_high_u32(x4x5x14x15)); |
| + |
| + vst1q_u8((uint8_t *) input,(uint8x16_t) x0x1x2x3); |
| + vst1q_u8(16 + (uint8_t *) input,(uint8x16_t) x4x5x6x7); |
| + vst1q_u8(32 + (uint8_t *) input,(uint8x16_t) x8x9x10x11); |
| + vst1q_u8(48 + (uint8_t *) input,(uint8x16_t) x12x13x14x15); |
| +} |
| diff --git a/lib/crypto/crypto_scrypt-neon.c b/lib/crypto/crypto_scrypt-neon.c |
| new file mode 100644 |
| index 0000000..a3bf052 |
| --- /dev/null |
| +++ b/lib/crypto/crypto_scrypt-neon.c |
| @@ -0,0 +1,305 @@ |
| +/*- |
| + * Copyright 2009 Colin Percival |
| + * All rights reserved. |
| + * |
| + * Redistribution and use in source and binary forms, with or without |
| + * modification, are permitted provided that the following conditions |
| + * are met: |
| + * 1. Redistributions of source code must retain the above copyright |
| + * notice, this list of conditions and the following disclaimer. |
| + * 2. Redistributions in binary form must reproduce the above copyright |
| + * notice, this list of conditions and the following disclaimer in the |
| + * documentation and/or other materials provided with the distribution. |
| + * |
| + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| + * SUCH DAMAGE. |
| + * |
| + * This file was originally written by Colin Percival as part of the Tarsnap |
| + * online backup system. |
| + */ |
| +#include "scrypt_platform.h" |
| + |
| +#include <machine/cpu-features.h> |
| +#include <arm_neon.h> |
| + |
| +#include <errno.h> |
| +#include <stdint.h> |
| +#include <limits.h> |
| +#include <stdlib.h> |
| +#include <string.h> |
| + |
| +#ifdef USE_OPENSSL_PBKDF2 |
| +#include <openssl/evp.h> |
| +#else |
| +#include "sha256.h" |
| +#endif |
| +#include "sysendian.h" |
| + |
| +#include "crypto_scrypt.h" |
| + |
| +#include "crypto_scrypt-neon-salsa208.h" |
| + |
| +static void blkcpy(void *, void *, size_t); |
| +static void blkxor(void *, void *, size_t); |
| +void crypto_core_salsa208_armneon2(void *); |
| +static void blockmix_salsa8(uint8x16_t *, uint8x16_t *, uint8x16_t *, size_t); |
| +static uint64_t integerify(void *, size_t); |
| +static void smix(uint8_t *, size_t, uint64_t, void *, void *); |
| + |
| +static void |
| +blkcpy(void * dest, void * src, size_t len) |
| +{ |
| + uint8x16_t * D = dest; |
| + uint8x16_t * S = src; |
| + size_t L = len / 16; |
| + size_t i; |
| + |
| + for (i = 0; i < L; i++) |
| + D[i] = S[i]; |
| +} |
| + |
| +static void |
| +blkxor(void * dest, void * src, size_t len) |
| +{ |
| + uint8x16_t * D = dest; |
| + uint8x16_t * S = src; |
| + size_t L = len / 16; |
| + size_t i; |
| + |
| + for (i = 0; i < L; i++) |
| + D[i] = veorq_u8(D[i], S[i]); |
| +} |
| + |
| +/** |
| + * blockmix_salsa8(B, Y, r): |
| + * Compute B = BlockMix_{salsa20/8, r}(B). The input B must be 128r bytes in |
| + * length; the temporary space Y must also be the same size. |
| + */ |
| +static void |
| +blockmix_salsa8(uint8x16_t * Bin, uint8x16_t * Bout, uint8x16_t * X, size_t r) |
| +{ |
| + size_t i; |
| + |
| + /* 1: X <-- B_{2r - 1} */ |
| + blkcpy(X, &Bin[8 * r - 4], 64); |
| + |
| + /* 2: for i = 0 to 2r - 1 do */ |
| + for (i = 0; i < r; i++) { |
| + /* 3: X <-- H(X \xor B_i) */ |
| + blkxor(X, &Bin[i * 8], 64); |
| + salsa20_8_intrinsic((void *) X); |
| + |
| + /* 4: Y_i <-- X */ |
| + /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
| + blkcpy(&Bout[i * 4], X, 64); |
| + |
| + /* 3: X <-- H(X \xor B_i) */ |
| + blkxor(X, &Bin[i * 8 + 4], 64); |
| + salsa20_8_intrinsic((void *) X); |
| + |
| + /* 4: Y_i <-- X */ |
| + /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
| + blkcpy(&Bout[(r + i) * 4], X, 64); |
| + } |
| +} |
| + |
| +/** |
| + * integerify(B, r): |
| + * Return the result of parsing B_{2r-1} as a little-endian integer. |
| + */ |
| +static uint64_t |
| +integerify(void * B, size_t r) |
| +{ |
| + uint8_t * X = (void*)((uintptr_t)(B) + (2 * r - 1) * 64); |
| + |
| + return (le64dec(X)); |
| +} |
| + |
| +/** |
| + * smix(B, r, N, V, XY): |
| + * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; the |
| + * temporary storage V must be 128rN bytes in length; the temporary storage |
| + * XY must be 256r bytes in length. The value N must be a power of 2. |
| + */ |
| +static void |
| +smix(uint8_t * B, size_t r, uint64_t N, void * V, void * XY) |
| +{ |
| + uint8x16_t * X = XY; |
| + uint8x16_t * Y = (void *)((uintptr_t)(XY) + 128 * r); |
| + uint8x16_t * Z = (void *)((uintptr_t)(XY) + 256 * r); |
| + uint32_t * X32 = (void *)X; |
| + uint64_t i, j; |
| + size_t k; |
| + |
| + /* 1: X <-- B */ |
| + blkcpy(X, B, 128 * r); |
| + |
| + /* 2: for i = 0 to N - 1 do */ |
| + for (i = 0; i < N; i += 2) { |
| + /* 3: V_i <-- X */ |
| + blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r); |
| + |
| + /* 4: X <-- H(X) */ |
| + blockmix_salsa8(X, Y, Z, r); |
| + |
| + /* 3: V_i <-- X */ |
| + blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r), |
| + Y, 128 * r); |
| + |
| + /* 4: X <-- H(X) */ |
| + blockmix_salsa8(Y, X, Z, r); |
| + } |
| + |
| + /* 6: for i = 0 to N - 1 do */ |
| + for (i = 0; i < N; i += 2) { |
| + /* 7: j <-- Integerify(X) mod N */ |
| + j = integerify(X, r) & (N - 1); |
| + |
| + /* 8: X <-- H(X \xor V_j) */ |
| + blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r); |
| + blockmix_salsa8(X, Y, Z, r); |
| + |
| + /* 7: j <-- Integerify(X) mod N */ |
| + j = integerify(Y, r) & (N - 1); |
| + |
| + /* 8: X <-- H(X \xor V_j) */ |
| + blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r); |
| + blockmix_salsa8(Y, X, Z, r); |
| + } |
| + |
| + /* 10: B' <-- X */ |
| + blkcpy(B, X, 128 * r); |
| +} |
| + |
| +/** |
| + * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen): |
| + * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r, |
| + * p, buflen) and write the result into buf. The parameters r, p, and buflen |
| + * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N |
| + * must be a power of 2. |
| + * |
| + * Return 0 on success; or -1 on error. |
| + */ |
| +int |
| +crypto_scrypt(const uint8_t * passwd, size_t passwdlen, |
| + const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p, |
| + uint8_t * buf, size_t buflen) |
| +{ |
| + void * B0, * V0, * XY0; |
| + uint8_t * B; |
| + uint32_t * V; |
| + uint32_t * XY; |
| + uint32_t i; |
| + |
| + /* Sanity-check parameters. */ |
| +#if SIZE_MAX > UINT32_MAX |
| + if (buflen > (((uint64_t)(1) << 32) - 1) * 32) { |
| + errno = EFBIG; |
| + goto err0; |
| + } |
| +#endif |
| + if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) { |
| + errno = EFBIG; |
| + goto err0; |
| + } |
| + if (((N & (N - 1)) != 0) || (N == 0)) { |
| + errno = EINVAL; |
| + goto err0; |
| + } |
| + if ((r > SIZE_MAX / 128 / p) || |
| +#if SIZE_MAX / 256 <= UINT32_MAX |
| + (r > SIZE_MAX / 256) || |
| +#endif |
| + (N > SIZE_MAX / 128 / r)) { |
| + errno = ENOMEM; |
| + goto err0; |
| + } |
| + |
| + /* Allocate memory. */ |
| +#ifdef HAVE_POSIX_MEMALIGN |
| + if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0) |
| + goto err0; |
| + B = (uint8_t *)(B0); |
| + if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0) |
| + goto err1; |
| + XY = (uint32_t *)(XY0); |
| +#ifndef MAP_ANON |
| + if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0) |
| + goto err2; |
| + V = (uint32_t *)(V0); |
| +#endif |
| +#else |
| + if ((B0 = malloc(128 * r * p + 63)) == NULL) |
| + goto err0; |
| + B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63)); |
| + if ((XY0 = malloc(256 * r + 64 + 63)) == NULL) |
| + goto err1; |
| + XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63)); |
| +#ifndef MAP_ANON |
| + if ((V0 = malloc(128 * r * N + 63)) == NULL) |
| + goto err2; |
| + V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63)); |
| +#endif |
| +#endif |
| +#ifdef MAP_ANON |
| + if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE, |
| +#ifdef MAP_NOCORE |
| + MAP_ANON | MAP_PRIVATE | MAP_NOCORE, |
| +#else |
| + MAP_ANON | MAP_PRIVATE, |
| +#endif |
| + -1, 0)) == MAP_FAILED) |
| + goto err2; |
| + V = (uint32_t *)(V0); |
| +#endif |
| + |
| + /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ |
| +#ifdef USE_OPENSSL_PBKDF2 |
| + PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, salt, saltlen, 1, EVP_sha256(), p * 128 * r, B); |
| +#else |
| + PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r); |
| +#endif |
| + |
| + /* 2: for i = 0 to p - 1 do */ |
| + for (i = 0; i < p; i++) { |
| + /* 3: B_i <-- MF(B_i, N) */ |
| + smix(&B[i * 128 * r], r, N, V, XY); |
| + } |
| + |
| + /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ |
| +#ifdef USE_OPENSSL_PBKDF2 |
| + PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, B, p * 128 * r, 1, EVP_sha256(), buflen, buf); |
| +#else |
| + PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen); |
| +#endif |
| + |
| + /* Free memory. */ |
| +#ifdef MAP_ANON |
| + if (munmap(V0, 128 * r * N)) |
| + goto err2; |
| +#else |
| + free(V0); |
| +#endif |
| + free(XY0); |
| + free(B0); |
| + |
| + /* Success! */ |
| + return (0); |
| + |
| +err2: |
| + free(XY0); |
| +err1: |
| + free(B0); |
| +err0: |
| + /* Failure! */ |
| + return (-1); |
| +} |