blob: 01210f51c46404e5bf39ff71ea79e68064f9089e [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "updater/install.h"
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <ftw.h>
#include <inttypes.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/capability.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/xattr.h>
#include <time.h>
#include <unistd.h>
#include <utime.h>
#include <memory>
#include <string>
#include <vector>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/parsedouble.h>
#include <android-base/parseint.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <applypatch/applypatch.h>
#include <bootloader_message/bootloader_message.h>
#include <cutils/android_reboot.h>
#include <ext4_utils/make_ext4fs.h>
#include <ext4_utils/wipe.h>
#include <openssl/sha.h>
#include <selinux/label.h>
#include <selinux/selinux.h>
#include <ziparchive/zip_archive.h>
#include "edify/expr.h"
#include "mounts.h"
#include "otafault/ota_io.h"
#include "otautil/DirUtil.h"
#include "otautil/error_code.h"
#include "print_sha1.h"
#include "tune2fs.h"
#include "updater/updater.h"
// Send over the buffer to recovery though the command pipe.
static void uiPrint(State* state, const std::string& buffer) {
UpdaterInfo* ui = static_cast<UpdaterInfo*>(state->cookie);
// "line1\nline2\n" will be split into 3 tokens: "line1", "line2" and "".
// So skip sending empty strings to UI.
std::vector<std::string> lines = android::base::Split(buffer, "\n");
for (auto& line : lines) {
if (!line.empty()) {
fprintf(ui->cmd_pipe, "ui_print %s\n", line.c_str());
}
}
// On the updater side, we need to dump the contents to stderr (which has
// been redirected to the log file). Because the recovery will only print
// the contents to screen when processing pipe command ui_print.
LOG(INFO) << buffer;
}
void uiPrintf(State* _Nonnull state, const char* _Nonnull format, ...) {
std::string error_msg;
va_list ap;
va_start(ap, format);
android::base::StringAppendV(&error_msg, format, ap);
va_end(ap);
uiPrint(state, error_msg);
}
// mount(fs_type, partition_type, location, mount_point)
// mount(fs_type, partition_type, location, mount_point, mount_options)
// fs_type="ext4" partition_type="EMMC" location=device
Value* MountFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 4 && argv.size() != 5) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 4-5 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& fs_type = args[0];
const std::string& partition_type = args[1];
const std::string& location = args[2];
const std::string& mount_point = args[3];
std::string mount_options;
if (argv.size() == 5) {
mount_options = args[4];
}
if (fs_type.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "fs_type argument to %s() can't be empty", name);
}
if (partition_type.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "partition_type argument to %s() can't be empty",
name);
}
if (location.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "location argument to %s() can't be empty", name);
}
if (mount_point.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "mount_point argument to %s() can't be empty",
name);
}
{
char* secontext = nullptr;
if (sehandle) {
selabel_lookup(sehandle, &secontext, mount_point.c_str(), 0755);
setfscreatecon(secontext);
}
mkdir(mount_point.c_str(), 0755);
if (secontext) {
freecon(secontext);
setfscreatecon(nullptr);
}
}
if (mount(location.c_str(), mount_point.c_str(), fs_type.c_str(),
MS_NOATIME | MS_NODEV | MS_NODIRATIME, mount_options.c_str()) < 0) {
uiPrintf(state, "%s: Failed to mount %s at %s: %s", name, location.c_str(), mount_point.c_str(),
strerror(errno));
return StringValue("");
}
return StringValue(mount_point);
}
// is_mounted(mount_point)
Value* IsMountedFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& mount_point = args[0];
if (mount_point.empty()) {
return ErrorAbort(state, kArgsParsingFailure,
"mount_point argument to unmount() can't be empty");
}
scan_mounted_volumes();
MountedVolume* vol = find_mounted_volume_by_mount_point(mount_point.c_str());
if (vol == nullptr) {
return StringValue("");
}
return StringValue(mount_point);
}
Value* UnmountFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& mount_point = args[0];
if (mount_point.empty()) {
return ErrorAbort(state, kArgsParsingFailure,
"mount_point argument to unmount() can't be empty");
}
scan_mounted_volumes();
MountedVolume* vol = find_mounted_volume_by_mount_point(mount_point.c_str());
if (vol == nullptr) {
uiPrintf(state, "Failed to unmount %s: No such volume", mount_point.c_str());
return nullptr;
} else {
int ret = unmount_mounted_volume(vol);
if (ret != 0) {
uiPrintf(state, "Failed to unmount %s: %s", mount_point.c_str(), strerror(errno));
}
}
return StringValue(mount_point);
}
static int exec_cmd(const char* path, char* const argv[]) {
pid_t child;
if ((child = vfork()) == 0) {
execv(path, argv);
_exit(EXIT_FAILURE);
}
int status;
waitpid(child, &status, 0);
if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
LOG(ERROR) << path << " failed with status " << WEXITSTATUS(status);
}
return WEXITSTATUS(status);
}
// format(fs_type, partition_type, location, fs_size, mount_point)
//
// fs_type="ext4" partition_type="EMMC" location=device fs_size=<bytes> mount_point=<location>
// fs_type="f2fs" partition_type="EMMC" location=device fs_size=<bytes> mount_point=<location>
// if fs_size == 0, then make fs uses the entire partition.
// if fs_size > 0, that is the size to use
// if fs_size < 0, then reserve that many bytes at the end of the partition (not for "f2fs")
Value* FormatFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 5) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 5 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& fs_type = args[0];
const std::string& partition_type = args[1];
const std::string& location = args[2];
const std::string& fs_size = args[3];
const std::string& mount_point = args[4];
if (fs_type.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "fs_type argument to %s() can't be empty", name);
}
if (partition_type.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "partition_type argument to %s() can't be empty",
name);
}
if (location.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "location argument to %s() can't be empty", name);
}
if (mount_point.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "mount_point argument to %s() can't be empty",
name);
}
int64_t size;
if (!android::base::ParseInt(fs_size, &size)) {
return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse int in %s\n", name,
fs_size.c_str());
}
if (fs_type == "ext4") {
const char* mke2fs_argv[] = { "/sbin/mke2fs_static", "-t", "ext4", "-b", "4096",
location.c_str(), nullptr, nullptr };
std::string size_str;
if (size != 0) {
size_str = std::to_string(size / 4096LL);
mke2fs_argv[6] = size_str.c_str();
}
int status = exec_cmd(mke2fs_argv[0], const_cast<char**>(mke2fs_argv));
if (status != 0) {
LOG(WARNING) << name << ": mke2fs failed (" << status << ") on " << location
<< ", falling back to make_ext4fs";
status = make_ext4fs(location.c_str(), size, mount_point.c_str(), sehandle);
if (status != 0) {
LOG(ERROR) << name << ": make_ext4fs failed (" << status << ") on " << location;
return StringValue("");
}
return StringValue(location);
}
const char* e2fsdroid_argv[] = { "/sbin/e2fsdroid_static", "-e", "-a", mount_point.c_str(),
location.c_str(), nullptr };
status = exec_cmd(e2fsdroid_argv[0], const_cast<char**>(e2fsdroid_argv));
if (status != 0) {
LOG(ERROR) << name << ": e2fsdroid failed (" << status << ") on " << location;
return StringValue("");
}
return StringValue(location);
} else if (fs_type == "f2fs") {
if (size < 0) {
LOG(ERROR) << name << ": fs_size can't be negative for f2fs: " << fs_size;
return StringValue("");
}
std::string num_sectors = std::to_string(size / 512);
const char* f2fs_path = "/sbin/mkfs.f2fs";
const char* f2fs_argv[] = {
"mkfs.f2fs", "-t", "-d1", location.c_str(), (size < 512) ? nullptr : num_sectors.c_str(),
nullptr
};
int status = exec_cmd(f2fs_path, const_cast<char**>(f2fs_argv));
if (status != 0) {
LOG(ERROR) << name << ": mkfs.f2fs failed (" << status << ") on " << location;
return StringValue("");
}
return StringValue(location);
} else {
LOG(ERROR) << name << ": unsupported fs_type \"" << fs_type << "\" partition_type \""
<< partition_type << "\"";
}
return nullptr;
}
Value* ShowProgressFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& frac_str = args[0];
const std::string& sec_str = args[1];
double frac;
if (!android::base::ParseDouble(frac_str.c_str(), &frac)) {
return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse double in %s\n", name,
frac_str.c_str());
}
int sec;
if (!android::base::ParseInt(sec_str.c_str(), &sec)) {
return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse int in %s\n", name,
sec_str.c_str());
}
UpdaterInfo* ui = static_cast<UpdaterInfo*>(state->cookie);
fprintf(ui->cmd_pipe, "progress %f %d\n", frac, sec);
return StringValue(frac_str);
}
Value* SetProgressFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& frac_str = args[0];
double frac;
if (!android::base::ParseDouble(frac_str.c_str(), &frac)) {
return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse double in %s\n", name,
frac_str.c_str());
}
UpdaterInfo* ui = static_cast<UpdaterInfo*>(state->cookie);
fprintf(ui->cmd_pipe, "set_progress %f\n", frac);
return StringValue(frac_str);
}
// package_extract_file(package_file[, dest_file])
// Extracts a single package_file from the update package and writes it to dest_file,
// overwriting existing files if necessary. Without the dest_file argument, returns the
// contents of the package file as a binary blob.
Value* PackageExtractFileFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() < 1 || argv.size() > 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 or 2 args, got %zu", name,
argv.size());
}
if (argv.size() == 2) {
// The two-argument version extracts to a file.
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse %zu args", name,
argv.size());
}
const std::string& zip_path = args[0];
const std::string& dest_path = args[1];
ZipArchiveHandle za = static_cast<UpdaterInfo*>(state->cookie)->package_zip;
ZipString zip_string_path(zip_path.c_str());
ZipEntry entry;
if (FindEntry(za, zip_string_path, &entry) != 0) {
LOG(ERROR) << name << ": no " << zip_path << " in package";
return StringValue("");
}
unique_fd fd(TEMP_FAILURE_RETRY(
ota_open(dest_path.c_str(), O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR)));
if (fd == -1) {
PLOG(ERROR) << name << ": can't open " << dest_path << " for write";
return StringValue("");
}
bool success = true;
int32_t ret = ExtractEntryToFile(za, &entry, fd);
if (ret != 0) {
LOG(ERROR) << name << ": Failed to extract entry \"" << zip_path << "\" ("
<< entry.uncompressed_length << " bytes) to \"" << dest_path
<< "\": " << ErrorCodeString(ret);
success = false;
}
if (ota_fsync(fd) == -1) {
PLOG(ERROR) << "fsync of \"" << dest_path << "\" failed";
success = false;
}
if (ota_close(fd) == -1) {
PLOG(ERROR) << "close of \"" << dest_path << "\" failed";
success = false;
}
return StringValue(success ? "t" : "");
} else {
// The one-argument version returns the contents of the file as the result.
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse %zu args", name,
argv.size());
}
const std::string& zip_path = args[0];
ZipArchiveHandle za = static_cast<UpdaterInfo*>(state->cookie)->package_zip;
ZipString zip_string_path(zip_path.c_str());
ZipEntry entry;
if (FindEntry(za, zip_string_path, &entry) != 0) {
return ErrorAbort(state, kPackageExtractFileFailure, "%s(): no %s in package", name,
zip_path.c_str());
}
std::string buffer;
buffer.resize(entry.uncompressed_length);
int32_t ret = ExtractToMemory(za, &entry, reinterpret_cast<uint8_t*>(&buffer[0]), buffer.size());
if (ret != 0) {
return ErrorAbort(state, kPackageExtractFileFailure,
"%s: Failed to extract entry \"%s\" (%zu bytes) to memory: %s", name,
zip_path.c_str(), buffer.size(), ErrorCodeString(ret));
}
return new Value(VAL_BLOB, buffer);
}
}
Value* GetPropFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size());
}
std::string key;
if (!Evaluate(state, argv[0], &key)) {
return nullptr;
}
std::string value = android::base::GetProperty(key, "");
return StringValue(value);
}
// file_getprop(file, key)
//
// interprets 'file' as a getprop-style file (key=value pairs, one
// per line. # comment lines, blank lines, lines without '=' ignored),
// and returns the value for 'key' (or "" if it isn't defined).
Value* FileGetPropFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
const std::string& key = args[1];
struct stat st;
if (stat(filename.c_str(), &st) < 0) {
return ErrorAbort(state, kFileGetPropFailure, "%s: failed to stat \"%s\": %s", name,
filename.c_str(), strerror(errno));
}
constexpr off_t MAX_FILE_GETPROP_SIZE = 65536;
if (st.st_size > MAX_FILE_GETPROP_SIZE) {
return ErrorAbort(state, kFileGetPropFailure, "%s too large for %s (max %lld)",
filename.c_str(), name, static_cast<long long>(MAX_FILE_GETPROP_SIZE));
}
std::string buffer(st.st_size, '\0');
unique_file f(ota_fopen(filename.c_str(), "rb"));
if (f == nullptr) {
return ErrorAbort(state, kFileOpenFailure, "%s: failed to open %s: %s", name, filename.c_str(),
strerror(errno));
}
if (ota_fread(&buffer[0], 1, st.st_size, f.get()) != static_cast<size_t>(st.st_size)) {
ErrorAbort(state, kFreadFailure, "%s: failed to read %zu bytes from %s", name,
static_cast<size_t>(st.st_size), filename.c_str());
return nullptr;
}
ota_fclose(f);
std::vector<std::string> lines = android::base::Split(buffer, "\n");
for (size_t i = 0; i < lines.size(); i++) {
std::string line = android::base::Trim(lines[i]);
// comment or blank line: skip to next line
if (line.empty() || line[0] == '#') {
continue;
}
size_t equal_pos = line.find('=');
if (equal_pos == std::string::npos) {
continue;
}
// trim whitespace between key and '='
std::string str = android::base::Trim(line.substr(0, equal_pos));
// not the key we're looking for
if (key != str) continue;
return StringValue(android::base::Trim(line.substr(equal_pos + 1)));
}
return StringValue("");
}
// apply_patch_space(bytes)
Value* ApplyPatchSpaceFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& bytes_str = args[0];
size_t bytes;
if (!android::base::ParseUint(bytes_str.c_str(), &bytes)) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): can't parse \"%s\" as byte count\n\n",
name, bytes_str.c_str());
}
return StringValue(CacheSizeCheck(bytes) ? "" : "t");
}
// apply_patch(src_file, tgt_file, tgt_sha1, tgt_size, patch1_sha1, patch1_blob, [...])
// Applies a binary patch to the src_file to produce the tgt_file. If the desired target is the
// same as the source, pass "-" for tgt_file. tgt_sha1 and tgt_size are the expected final SHA1
// hash and size of the target file. The remaining arguments must come in pairs: a SHA1 hash (a
// 40-character hex string) and a blob. The blob is the patch to be applied when the source
// file's current contents have the given SHA1.
//
// The patching is done in a safe manner that guarantees the target file either has the desired
// SHA1 hash and size, or it is untouched -- it will not be left in an unrecoverable intermediate
// state. If the process is interrupted during patching, the target file may be in an intermediate
// state; a copy exists in the cache partition so restarting the update can successfully update
// the file.
Value* ApplyPatchFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() < 6 || (argv.size() % 2) == 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): expected at least 6 args and an "
"even number, got %zu", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args, 0, 4)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& source_filename = args[0];
const std::string& target_filename = args[1];
const std::string& target_sha1 = args[2];
const std::string& target_size_str = args[3];
size_t target_size;
if (!android::base::ParseUint(target_size_str.c_str(), &target_size)) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): can't parse \"%s\" as byte count",
name, target_size_str.c_str());
}
int patchcount = (argv.size()-4) / 2;
std::vector<std::unique_ptr<Value>> arg_values;
if (!ReadValueArgs(state, argv, &arg_values, 4, argv.size() - 4)) {
return nullptr;
}
for (int i = 0; i < patchcount; ++i) {
if (arg_values[i * 2]->type != VAL_STRING) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): sha-1 #%d is not string", name,
i * 2);
}
if (arg_values[i * 2 + 1]->type != VAL_BLOB) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): patch #%d is not blob", name,
i * 2 + 1);
}
}
std::vector<std::string> patch_sha_str;
std::vector<std::unique_ptr<Value>> patches;
for (int i = 0; i < patchcount; ++i) {
patch_sha_str.push_back(arg_values[i * 2]->data);
patches.push_back(std::move(arg_values[i * 2 + 1]));
}
int result = applypatch(source_filename.c_str(), target_filename.c_str(),
target_sha1.c_str(), target_size,
patch_sha_str, patches, nullptr);
return StringValue(result == 0 ? "t" : "");
}
// apply_patch_check(filename, [sha1, ...])
// Returns true if the contents of filename or the temporary copy in the cache partition (if
// present) have a SHA-1 checksum equal to one of the given sha1 values. sha1 values are
// specified as 40 hex digits. This function differs from sha1_check(read_file(filename),
// sha1 [, ...]) in that it knows to check the cache partition copy, so apply_patch_check() will
// succeed even if the file was corrupted by an interrupted apply_patch() update.
Value* ApplyPatchCheckFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() < 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): expected at least 1 arg, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args, 0, 1)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
std::vector<std::string> sha1s;
if (argv.size() > 1 && !ReadArgs(state, argv, &sha1s, 1, argv.size() - 1)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
int result = applypatch_check(filename.c_str(), sha1s);
return StringValue(result == 0 ? "t" : "");
}
// This is the updater side handler for ui_print() in edify script. Contents will be sent over to
// the recovery side for on-screen display.
Value* UIPrintFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name);
}
std::string buffer = android::base::Join(args, "");
uiPrint(state, buffer);
return StringValue(buffer);
}
Value* WipeCacheFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (!argv.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects no args, got %zu", name,
argv.size());
}
fprintf(static_cast<UpdaterInfo*>(state->cookie)->cmd_pipe, "wipe_cache\n");
return StringValue("t");
}
Value* RunProgramFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() < 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects at least 1 arg", name);
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
char* args2[argv.size() + 1];
for (size_t i = 0; i < argv.size(); i++) {
args2[i] = &args[i][0];
}
args2[argv.size()] = nullptr;
LOG(INFO) << "about to run program [" << args2[0] << "] with " << argv.size() << " args";
pid_t child = fork();
if (child == 0) {
execv(args2[0], args2);
PLOG(ERROR) << "run_program: execv failed";
_exit(EXIT_FAILURE);
}
int status;
waitpid(child, &status, 0);
if (WIFEXITED(status)) {
if (WEXITSTATUS(status) != 0) {
LOG(ERROR) << "run_program: child exited with status " << WEXITSTATUS(status);
}
} else if (WIFSIGNALED(status)) {
LOG(ERROR) << "run_program: child terminated by signal " << WTERMSIG(status);
}
return StringValue(std::to_string(status));
}
// sha1_check(data)
// to return the sha1 of the data (given in the format returned by
// read_file).
//
// sha1_check(data, sha1_hex, [sha1_hex, ...])
// returns the sha1 of the file if it matches any of the hex
// strings passed, or "" if it does not equal any of them.
//
Value* Sha1CheckFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() < 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects at least 1 arg", name);
}
std::vector<std::unique_ptr<Value>> args;
if (!ReadValueArgs(state, argv, &args)) {
return nullptr;
}
if (args[0]->type == VAL_INVALID) {
return StringValue("");
}
uint8_t digest[SHA_DIGEST_LENGTH];
SHA1(reinterpret_cast<const uint8_t*>(args[0]->data.c_str()), args[0]->data.size(), digest);
if (argv.size() == 1) {
return StringValue(print_sha1(digest));
}
for (size_t i = 1; i < argv.size(); ++i) {
uint8_t arg_digest[SHA_DIGEST_LENGTH];
if (args[i]->type != VAL_STRING) {
LOG(ERROR) << name << "(): arg " << i << " is not a string; skipping";
} else if (ParseSha1(args[i]->data.c_str(), arg_digest) != 0) {
// Warn about bad args and skip them.
LOG(ERROR) << name << "(): error parsing \"" << args[i]->data << "\" as sha-1; skipping";
} else if (memcmp(digest, arg_digest, SHA_DIGEST_LENGTH) == 0) {
// Found a match.
return args[i].release();
}
}
// Didn't match any of the hex strings; return false.
return StringValue("");
}
// Read a local file and return its contents (the Value* returned
// is actually a FileContents*).
Value* ReadFileFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
Value* v = new Value(VAL_INVALID, "");
FileContents fc;
if (LoadFileContents(filename.c_str(), &fc) == 0) {
v->type = VAL_BLOB;
v->data = std::string(fc.data.begin(), fc.data.end());
}
return v;
}
// write_value(value, filename)
// Writes 'value' to 'filename'.
// Example: write_value("960000", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq")
Value* WriteValueFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name);
}
const std::string& filename = args[1];
if (filename.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Filename cannot be empty", name);
}
const std::string& value = args[0];
if (!android::base::WriteStringToFile(value, filename)) {
PLOG(ERROR) << name << ": Failed to write to \"" << filename << "\"";
return StringValue("");
} else {
return StringValue("t");
}
}
// Immediately reboot the device. Recovery is not finished normally,
// so if you reboot into recovery it will re-start applying the
// current package (because nothing has cleared the copy of the
// arguments stored in the BCB).
//
// The argument is the partition name passed to the android reboot
// property. It can be "recovery" to boot from the recovery
// partition, or "" (empty string) to boot from the regular boot
// partition.
Value* RebootNowFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
const std::string& property = args[1];
// Zero out the 'command' field of the bootloader message. Leave the rest intact.
bootloader_message boot;
std::string err;
if (!read_bootloader_message_from(&boot, filename, &err)) {
LOG(ERROR) << name << "(): Failed to read from \"" << filename << "\": " << err;
return StringValue("");
}
memset(boot.command, 0, sizeof(boot.command));
if (!write_bootloader_message_to(boot, filename, &err)) {
LOG(ERROR) << name << "(): Failed to write to \"" << filename << "\": " << err;
return StringValue("");
}
std::string reboot_cmd = "reboot," + property;
if (android::base::GetBoolProperty("ro.boot.quiescent", false)) {
reboot_cmd += ",quiescent";
}
android::base::SetProperty(ANDROID_RB_PROPERTY, reboot_cmd);
sleep(5);
return ErrorAbort(state, kRebootFailure, "%s() failed to reboot", name);
}
// Store a string value somewhere that future invocations of recovery
// can access it. This value is called the "stage" and can be used to
// drive packages that need to do reboots in the middle of
// installation and keep track of where they are in the multi-stage
// install.
//
// The first argument is the block device for the misc partition
// ("/misc" in the fstab), which is where this value is stored. The
// second argument is the string to store; it should not exceed 31
// bytes.
Value* SetStageFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
const std::string& stagestr = args[1];
// Store this value in the misc partition, immediately after the
// bootloader message that the main recovery uses to save its
// arguments in case of the device restarting midway through
// package installation.
bootloader_message boot;
std::string err;
if (!read_bootloader_message_from(&boot, filename, &err)) {
LOG(ERROR) << name << "(): Failed to read from \"" << filename << "\": " << err;
return StringValue("");
}
strlcpy(boot.stage, stagestr.c_str(), sizeof(boot.stage));
if (!write_bootloader_message_to(boot, filename, &err)) {
LOG(ERROR) << name << "(): Failed to write to \"" << filename << "\": " << err;
return StringValue("");
}
return StringValue(filename);
}
// Return the value most recently saved with SetStageFn. The argument
// is the block device for the misc partition.
Value* GetStageFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
bootloader_message boot;
std::string err;
if (!read_bootloader_message_from(&boot, filename, &err)) {
LOG(ERROR) << name << "(): Failed to read from \"" << filename << "\": " << err;
return StringValue("");
}
return StringValue(boot.stage);
}
Value* WipeBlockDeviceFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
const std::string& len_str = args[1];
size_t len;
if (!android::base::ParseUint(len_str.c_str(), &len)) {
return nullptr;
}
unique_fd fd(ota_open(filename.c_str(), O_WRONLY, 0644));
// The wipe_block_device function in ext4_utils returns 0 on success and 1
// for failure.
int status = wipe_block_device(fd, len);
return StringValue((status == 0) ? "t" : "");
}
Value* EnableRebootFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (!argv.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects no args, got %zu", name,
argv.size());
}
UpdaterInfo* ui = static_cast<UpdaterInfo*>(state->cookie);
fprintf(ui->cmd_pipe, "enable_reboot\n");
return StringValue("t");
}
Value* Tune2FsFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects args, got %zu", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() could not read args", name);
}
char* args2[argv.size() + 1];
// Tune2fs expects the program name as its args[0]
args2[0] = const_cast<char*>(name);
if (args2[0] == nullptr) {
return nullptr;
}
for (size_t i = 0; i < argv.size(); ++i) {
args2[i + 1] = &args[i][0];
}
// tune2fs changes the file system parameters on an ext2 file system; it
// returns 0 on success.
int result = tune2fs_main(argv.size() + 1, args2);
if (result != 0) {
return ErrorAbort(state, kTune2FsFailure, "%s() returned error code %d", name, result);
}
return StringValue("t");
}
void RegisterInstallFunctions() {
RegisterFunction("mount", MountFn);
RegisterFunction("is_mounted", IsMountedFn);
RegisterFunction("unmount", UnmountFn);
RegisterFunction("format", FormatFn);
RegisterFunction("show_progress", ShowProgressFn);
RegisterFunction("set_progress", SetProgressFn);
RegisterFunction("package_extract_file", PackageExtractFileFn);
RegisterFunction("getprop", GetPropFn);
RegisterFunction("file_getprop", FileGetPropFn);
RegisterFunction("apply_patch", ApplyPatchFn);
RegisterFunction("apply_patch_check", ApplyPatchCheckFn);
RegisterFunction("apply_patch_space", ApplyPatchSpaceFn);
RegisterFunction("wipe_block_device", WipeBlockDeviceFn);
RegisterFunction("read_file", ReadFileFn);
RegisterFunction("sha1_check", Sha1CheckFn);
RegisterFunction("write_value", WriteValueFn);
RegisterFunction("wipe_cache", WipeCacheFn);
RegisterFunction("ui_print", UIPrintFn);
RegisterFunction("run_program", RunProgramFn);
RegisterFunction("reboot_now", RebootNowFn);
RegisterFunction("get_stage", GetStageFn);
RegisterFunction("set_stage", SetStageFn);
RegisterFunction("enable_reboot", EnableRebootFn);
RegisterFunction("tune2fs", Tune2FsFn);
}