| /* |
| * Copyright (C) 2009 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* |
| * This program constructs binary patches for images -- such as boot.img |
| * and recovery.img -- that consist primarily of large chunks of gzipped |
| * data interspersed with uncompressed data. Doing a naive bsdiff of |
| * these files is not useful because small changes in the data lead to |
| * large changes in the compressed bitstream; bsdiff patches of gzipped |
| * data are typically as large as the data itself. |
| * |
| * To patch these usefully, we break the source and target images up into |
| * chunks of two types: "normal" and "gzip". Normal chunks are simply |
| * patched using a plain bsdiff. Gzip chunks are first expanded, then a |
| * bsdiff is applied to the uncompressed data, then the patched data is |
| * gzipped using the same encoder parameters. Patched chunks are |
| * concatenated together to create the output file; the output image |
| * should be *exactly* the same series of bytes as the target image used |
| * originally to generate the patch. |
| * |
| * To work well with this tool, the gzipped sections of the target |
| * image must have been generated using the same deflate encoder that |
| * is available in applypatch, namely, the one in the zlib library. |
| * In practice this means that images should be compressed using the |
| * "minigzip" tool included in the zlib distribution, not the GNU gzip |
| * program. |
| * |
| * An "imgdiff" patch consists of a header describing the chunk structure |
| * of the file and any encoding parameters needed for the gzipped |
| * chunks, followed by N bsdiff patches, one per chunk. |
| * |
| * For a diff to be generated, the source and target images must have the |
| * same "chunk" structure: that is, the same number of gzipped and normal |
| * chunks in the same order. Android boot and recovery images currently |
| * consist of five chunks: a small normal header, a gzipped kernel, a |
| * small normal section, a gzipped ramdisk, and finally a small normal |
| * footer. |
| * |
| * Caveats: we locate gzipped sections within the source and target |
| * images by searching for the byte sequence 1f8b0800: 1f8b is the gzip |
| * magic number; 08 specifies the "deflate" encoding [the only encoding |
| * supported by the gzip standard]; and 00 is the flags byte. We do not |
| * currently support any extra header fields (which would be indicated by |
| * a nonzero flags byte). We also don't handle the case when that byte |
| * sequence appears spuriously in the file. (Note that it would have to |
| * occur spuriously within a normal chunk to be a problem.) |
| * |
| * |
| * The imgdiff patch header looks like this: |
| * |
| * "IMGDIFF1" (8) [magic number and version] |
| * chunk count (4) |
| * for each chunk: |
| * chunk type (4) [CHUNK_{NORMAL, GZIP, DEFLATE, RAW}] |
| * if chunk type == CHUNK_NORMAL: |
| * source start (8) |
| * source len (8) |
| * bsdiff patch offset (8) [from start of patch file] |
| * if chunk type == CHUNK_GZIP: (version 1 only) |
| * source start (8) |
| * source len (8) |
| * bsdiff patch offset (8) [from start of patch file] |
| * source expanded len (8) [size of uncompressed source] |
| * target expected len (8) [size of uncompressed target] |
| * gzip level (4) |
| * method (4) |
| * windowBits (4) |
| * memLevel (4) |
| * strategy (4) |
| * gzip header len (4) |
| * gzip header (gzip header len) |
| * gzip footer (8) |
| * if chunk type == CHUNK_DEFLATE: (version 2 only) |
| * source start (8) |
| * source len (8) |
| * bsdiff patch offset (8) [from start of patch file] |
| * source expanded len (8) [size of uncompressed source] |
| * target expected len (8) [size of uncompressed target] |
| * gzip level (4) |
| * method (4) |
| * windowBits (4) |
| * memLevel (4) |
| * strategy (4) |
| * if chunk type == RAW: (version 2 only) |
| * target len (4) |
| * data (target len) |
| * |
| * All integers are little-endian. "source start" and "source len" |
| * specify the section of the input image that comprises this chunk, |
| * including the gzip header and footer for gzip chunks. "source |
| * expanded len" is the size of the uncompressed source data. "target |
| * expected len" is the size of the uncompressed data after applying |
| * the bsdiff patch. The next five parameters specify the zlib |
| * parameters to be used when compressing the patched data, and the |
| * next three specify the header and footer to be wrapped around the |
| * compressed data to create the output chunk (so that header contents |
| * like the timestamp are recreated exactly). |
| * |
| * After the header there are 'chunk count' bsdiff patches; the offset |
| * of each from the beginning of the file is specified in the header. |
| * |
| * This tool can take an optional file of "bonus data". This is an |
| * extra file of data that is appended to chunk #1 after it is |
| * compressed (it must be a CHUNK_DEFLATE chunk). The same file must |
| * be available (and passed to applypatch with -b) when applying the |
| * patch. This is used to reduce the size of recovery-from-boot |
| * patches by combining the boot image with recovery ramdisk |
| * information that is stored on the system partition. |
| */ |
| |
| #include "applypatch/imgdiff.h" |
| |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include <algorithm> |
| #include <string> |
| #include <vector> |
| |
| #include <android-base/file.h> |
| #include <android-base/logging.h> |
| #include <android-base/memory.h> |
| #include <android-base/unique_fd.h> |
| #include <ziparchive/zip_archive.h> |
| |
| #include <bsdiff.h> |
| #include <zlib.h> |
| |
| using android::base::get_unaligned; |
| |
| static constexpr auto BUFFER_SIZE = 0x8000; |
| |
| // If we use this function to write the offset and length (type size_t), their values should not |
| // exceed 2^63; because the signed bit will be casted away. |
| static inline bool Write8(int fd, int64_t value) { |
| return android::base::WriteFully(fd, &value, sizeof(int64_t)); |
| } |
| |
| // Similarly, the value should not exceed 2^31 if we are casting from size_t (e.g. target chunk |
| // size). |
| static inline bool Write4(int fd, int32_t value) { |
| return android::base::WriteFully(fd, &value, sizeof(int32_t)); |
| } |
| |
| class ImageChunk { |
| public: |
| static constexpr auto WINDOWBITS = -15; // 32kb window; negative to indicate a raw stream. |
| static constexpr auto MEMLEVEL = 8; // the default value. |
| static constexpr auto METHOD = Z_DEFLATED; |
| static constexpr auto STRATEGY = Z_DEFAULT_STRATEGY; |
| |
| ImageChunk(int type, size_t start, const std::vector<uint8_t>* file_content, size_t raw_data_len) |
| : type_(type), |
| start_(start), |
| input_file_ptr_(file_content), |
| raw_data_len_(raw_data_len), |
| compress_level_(6), |
| source_start_(0), |
| source_len_(0), |
| source_uncompressed_len_(0) { |
| CHECK(file_content != nullptr) << "input file container can't be nullptr"; |
| } |
| |
| int GetType() const { |
| return type_; |
| } |
| size_t GetRawDataLength() const { |
| return raw_data_len_; |
| } |
| const std::string& GetEntryName() const { |
| return entry_name_; |
| } |
| |
| // CHUNK_DEFLATE will return the uncompressed data for diff, while other types will simply return |
| // the raw data. |
| const uint8_t * DataForPatch() const; |
| size_t DataLengthForPatch() const; |
| |
| void Dump() const { |
| printf("type: %d, start: %zu, len: %zu, name: %s\n", type_, start_, DataLengthForPatch(), |
| entry_name_.c_str()); |
| } |
| |
| void SetSourceInfo(const ImageChunk& other); |
| void SetEntryName(std::string entryname); |
| void SetUncompressedData(std::vector<uint8_t> data); |
| bool SetBonusData(const std::vector<uint8_t>& bonus_data); |
| |
| bool operator==(const ImageChunk& other) const; |
| bool operator!=(const ImageChunk& other) const { |
| return !(*this == other); |
| } |
| |
| size_t GetHeaderSize(size_t patch_size) const; |
| // Return the offset of the next patch into the patch data. |
| size_t WriteHeaderToFd(int fd, const std::vector<uint8_t>& patch, size_t offset) const; |
| |
| /* |
| * Cause a gzip chunk to be treated as a normal chunk (ie, as a blob |
| * of uninterpreted data). The resulting patch will likely be about |
| * as big as the target file, but it lets us handle the case of images |
| * where some gzip chunks are reconstructible but others aren't (by |
| * treating the ones that aren't as normal chunks). |
| */ |
| void ChangeDeflateChunkToNormal(); |
| bool ChangeChunkToRaw(size_t patch_size); |
| |
| /* |
| * Verify that we can reproduce exactly the same compressed data that |
| * we started with. Sets the level, method, windowBits, memLevel, and |
| * strategy fields in the chunk to the encoding parameters needed to |
| * produce the right output. |
| */ |
| bool ReconstructDeflateChunk(); |
| bool IsAdjacentNormal(const ImageChunk& other) const; |
| void MergeAdjacentNormal(const ImageChunk& other); |
| |
| /* |
| * Compute a bsdiff patch between |this| and the input source chunks. |
| * Store the result in the patch_data. |
| * |bsdiff_cache| can be used to cache the suffix array if the same |src| chunk is used |
| * repeatedly, pass nullptr if not needed. |
| */ |
| bool MakePatch(const ImageChunk& src, std::vector<uint8_t>* patch_data, saidx_t** bsdiff_cache); |
| |
| private: |
| int type_; // CHUNK_NORMAL, CHUNK_DEFLATE, CHUNK_RAW |
| size_t start_; // offset of chunk in the original input file |
| const std::vector<uint8_t>* input_file_ptr_; // ptr to the full content of original input file |
| size_t raw_data_len_; |
| |
| // --- for CHUNK_DEFLATE chunks only: --- |
| std::vector<uint8_t> uncompressed_data_; |
| std::string entry_name_; // used for zip entries |
| |
| // deflate encoder parameters |
| int compress_level_; |
| |
| size_t source_start_; |
| size_t source_len_; |
| size_t source_uncompressed_len_; |
| |
| const uint8_t* GetRawData() const; |
| bool TryReconstruction(int level); |
| }; |
| |
| const uint8_t* ImageChunk::GetRawData() const { |
| CHECK_LE(start_ + raw_data_len_, input_file_ptr_->size()); |
| return input_file_ptr_->data() + start_; |
| } |
| |
| const uint8_t * ImageChunk::DataForPatch() const { |
| if (type_ == CHUNK_DEFLATE) { |
| return uncompressed_data_.data(); |
| } |
| return GetRawData(); |
| } |
| |
| size_t ImageChunk::DataLengthForPatch() const { |
| if (type_ == CHUNK_DEFLATE) { |
| return uncompressed_data_.size(); |
| } |
| return raw_data_len_; |
| } |
| |
| bool ImageChunk::operator==(const ImageChunk& other) const { |
| if (type_ != other.type_) { |
| return false; |
| } |
| return (raw_data_len_ == other.raw_data_len_ && |
| memcmp(GetRawData(), other.GetRawData(), raw_data_len_) == 0); |
| } |
| |
| void ImageChunk::SetSourceInfo(const ImageChunk& src) { |
| source_start_ = src.start_; |
| if (type_ == CHUNK_NORMAL) { |
| source_len_ = src.raw_data_len_; |
| } else if (type_ == CHUNK_DEFLATE) { |
| source_len_ = src.raw_data_len_; |
| source_uncompressed_len_ = src.uncompressed_data_.size(); |
| } |
| } |
| |
| void ImageChunk::SetEntryName(std::string entryname) { |
| entry_name_ = std::move(entryname); |
| } |
| |
| void ImageChunk::SetUncompressedData(std::vector<uint8_t> data) { |
| uncompressed_data_ = std::move(data); |
| } |
| |
| bool ImageChunk::SetBonusData(const std::vector<uint8_t>& bonus_data) { |
| if (type_ != CHUNK_DEFLATE) { |
| return false; |
| } |
| uncompressed_data_.insert(uncompressed_data_.end(), bonus_data.begin(), bonus_data.end()); |
| return true; |
| } |
| |
| // Convert CHUNK_NORMAL & CHUNK_DEFLATE to CHUNK_RAW if the target size is |
| // smaller. Also take the header size into account during size comparison. |
| bool ImageChunk::ChangeChunkToRaw(size_t patch_size) { |
| if (type_ == CHUNK_RAW) { |
| return true; |
| } else if (type_ == CHUNK_NORMAL && (raw_data_len_ <= 160 || raw_data_len_ < patch_size)) { |
| type_ = CHUNK_RAW; |
| return true; |
| } |
| return false; |
| } |
| |
| void ImageChunk::ChangeDeflateChunkToNormal() { |
| if (type_ != CHUNK_DEFLATE) return; |
| type_ = CHUNK_NORMAL; |
| // No need to clear the entry name. |
| uncompressed_data_.clear(); |
| } |
| |
| // Header size: |
| // header_type 4 bytes |
| // CHUNK_NORMAL 8*3 = 24 bytes |
| // CHUNK_DEFLATE 8*5 + 4*5 = 60 bytes |
| // CHUNK_RAW 4 bytes + patch_size |
| size_t ImageChunk::GetHeaderSize(size_t patch_size) const { |
| switch (type_) { |
| case CHUNK_NORMAL: |
| return 4 + 8 * 3; |
| case CHUNK_DEFLATE: |
| return 4 + 8 * 5 + 4 * 5; |
| case CHUNK_RAW: |
| return 4 + 4 + patch_size; |
| default: |
| CHECK(false) << "unexpected chunk type: " << type_; // Should not reach here. |
| return 0; |
| } |
| } |
| |
| size_t ImageChunk::WriteHeaderToFd(int fd, const std::vector<uint8_t>& patch, size_t offset) const { |
| Write4(fd, type_); |
| switch (type_) { |
| case CHUNK_NORMAL: |
| printf("normal (%10zu, %10zu) %10zu\n", start_, raw_data_len_, patch.size()); |
| Write8(fd, static_cast<int64_t>(source_start_)); |
| Write8(fd, static_cast<int64_t>(source_len_)); |
| Write8(fd, static_cast<int64_t>(offset)); |
| return offset + patch.size(); |
| case CHUNK_DEFLATE: |
| printf("deflate (%10zu, %10zu) %10zu %s\n", start_, raw_data_len_, patch.size(), |
| entry_name_.c_str()); |
| Write8(fd, static_cast<int64_t>(source_start_)); |
| Write8(fd, static_cast<int64_t>(source_len_)); |
| Write8(fd, static_cast<int64_t>(offset)); |
| Write8(fd, static_cast<int64_t>(source_uncompressed_len_)); |
| Write8(fd, static_cast<int64_t>(uncompressed_data_.size())); |
| Write4(fd, compress_level_); |
| Write4(fd, METHOD); |
| Write4(fd, WINDOWBITS); |
| Write4(fd, MEMLEVEL); |
| Write4(fd, STRATEGY); |
| return offset + patch.size(); |
| case CHUNK_RAW: |
| printf("raw (%10zu, %10zu)\n", start_, raw_data_len_); |
| Write4(fd, static_cast<int32_t>(patch.size())); |
| if (!android::base::WriteFully(fd, patch.data(), patch.size())) { |
| CHECK(false) << "failed to write " << patch.size() <<" bytes patch"; |
| } |
| return offset; |
| default: |
| CHECK(false) << "unexpected chunk type: " << type_; |
| return offset; |
| } |
| } |
| |
| bool ImageChunk::IsAdjacentNormal(const ImageChunk& other) const { |
| if (type_ != CHUNK_NORMAL || other.type_ != CHUNK_NORMAL) { |
| return false; |
| } |
| return (other.start_ == start_ + raw_data_len_); |
| } |
| |
| void ImageChunk::MergeAdjacentNormal(const ImageChunk& other) { |
| CHECK(IsAdjacentNormal(other)); |
| raw_data_len_ = raw_data_len_ + other.raw_data_len_; |
| } |
| |
| bool ImageChunk::MakePatch(const ImageChunk& src, std::vector<uint8_t>* patch_data, |
| saidx_t** bsdiff_cache) { |
| if (ChangeChunkToRaw(0)) { |
| size_t patch_size = DataLengthForPatch(); |
| patch_data->resize(patch_size); |
| std::copy(DataForPatch(), DataForPatch() + patch_size, patch_data->begin()); |
| return true; |
| } |
| |
| #if defined(__ANDROID__) |
| char ptemp[] = "/data/local/tmp/imgdiff-patch-XXXXXX"; |
| #else |
| char ptemp[] = "/tmp/imgdiff-patch-XXXXXX"; |
| #endif |
| |
| int fd = mkstemp(ptemp); |
| if (fd == -1) { |
| printf("MakePatch failed to create a temporary file: %s\n", strerror(errno)); |
| return false; |
| } |
| close(fd); |
| |
| int r = bsdiff::bsdiff(src.DataForPatch(), src.DataLengthForPatch(), DataForPatch(), |
| DataLengthForPatch(), ptemp, bsdiff_cache); |
| if (r != 0) { |
| printf("bsdiff() failed: %d\n", r); |
| return false; |
| } |
| |
| android::base::unique_fd patch_fd(open(ptemp, O_RDONLY)); |
| if (patch_fd == -1) { |
| printf("failed to open %s: %s\n", ptemp, strerror(errno)); |
| return false; |
| } |
| struct stat st; |
| if (fstat(patch_fd, &st) != 0) { |
| printf("failed to stat patch file %s: %s\n", ptemp, strerror(errno)); |
| return false; |
| } |
| |
| size_t sz = static_cast<size_t>(st.st_size); |
| // Change the chunk type to raw if the patch takes less space that way. |
| if (ChangeChunkToRaw(sz)) { |
| unlink(ptemp); |
| size_t patch_size = DataLengthForPatch(); |
| patch_data->resize(patch_size); |
| std::copy(DataForPatch(), DataForPatch() + patch_size, patch_data->begin()); |
| return true; |
| } |
| patch_data->resize(sz); |
| if (!android::base::ReadFully(patch_fd, patch_data->data(), sz)) { |
| printf("failed to read \"%s\" %s\n", ptemp, strerror(errno)); |
| unlink(ptemp); |
| return false; |
| } |
| |
| unlink(ptemp); |
| SetSourceInfo(src); |
| |
| return true; |
| } |
| |
| bool ImageChunk::ReconstructDeflateChunk() { |
| if (type_ != CHUNK_DEFLATE) { |
| printf("attempt to reconstruct non-deflate chunk\n"); |
| return false; |
| } |
| |
| // We only check two combinations of encoder parameters: level 6 |
| // (the default) and level 9 (the maximum). |
| for (int level = 6; level <= 9; level += 3) { |
| if (TryReconstruction(level)) { |
| compress_level_ = level; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Takes the uncompressed data stored in the chunk, compresses it |
| * using the zlib parameters stored in the chunk, and checks that it |
| * matches exactly the compressed data we started with (also stored in |
| * the chunk). |
| */ |
| bool ImageChunk::TryReconstruction(int level) { |
| z_stream strm; |
| strm.zalloc = Z_NULL; |
| strm.zfree = Z_NULL; |
| strm.opaque = Z_NULL; |
| strm.avail_in = uncompressed_data_.size(); |
| strm.next_in = uncompressed_data_.data(); |
| int ret = deflateInit2(&strm, level, METHOD, WINDOWBITS, MEMLEVEL, STRATEGY); |
| if (ret < 0) { |
| printf("failed to initialize deflate: %d\n", ret); |
| return false; |
| } |
| |
| std::vector<uint8_t> buffer(BUFFER_SIZE); |
| size_t offset = 0; |
| do { |
| strm.avail_out = buffer.size(); |
| strm.next_out = buffer.data(); |
| ret = deflate(&strm, Z_FINISH); |
| if (ret < 0) { |
| printf("failed to deflate: %d\n", ret); |
| return false; |
| } |
| |
| size_t compressed_size = buffer.size() - strm.avail_out; |
| if (memcmp(buffer.data(), input_file_ptr_->data() + start_ + offset, compressed_size) != 0) { |
| // mismatch; data isn't the same. |
| deflateEnd(&strm); |
| return false; |
| } |
| offset += compressed_size; |
| } while (ret != Z_STREAM_END); |
| deflateEnd(&strm); |
| |
| if (offset != raw_data_len_) { |
| // mismatch; ran out of data before we should have. |
| return false; |
| } |
| return true; |
| } |
| |
| // Interface for zip_mode and image_mode images. We initialize the image from an input file and |
| // split the file content into a list of image chunks. |
| class Image { |
| public: |
| explicit Image(bool is_source) : is_source_(is_source) {} |
| |
| virtual ~Image() {} |
| |
| // Create a list of image chunks from input file. |
| virtual bool Initialize(const std::string& filename) = 0; |
| |
| // Look for runs of adjacent normal chunks and compress them down into a single chunk. (Such |
| // runs can be produced when deflate chunks are changed to normal chunks.) |
| void MergeAdjacentNormalChunks(); |
| |
| // In zip mode, find the matching deflate source chunk by entry name. Search for normal chunks |
| // also if |find_normal| is true. |
| ImageChunk* FindChunkByName(const std::string& name, bool find_normal = false); |
| |
| // Write the contents of |patch_data| to |patch_fd|. |
| bool WritePatchDataToFd(const std::vector<std::vector<uint8_t>>& patch_data, int patch_fd) const; |
| |
| void DumpChunks() const; |
| |
| // Non const iterators to access the stored ImageChunks. |
| std::vector<ImageChunk>::iterator begin() { |
| return chunks_.begin(); |
| } |
| |
| std::vector<ImageChunk>::iterator end() { |
| return chunks_.end(); |
| } |
| // Return a pointer to the ith ImageChunk. |
| ImageChunk* Get(size_t i) { |
| CHECK_LT(i, chunks_.size()); |
| return &chunks_[i]; |
| } |
| |
| size_t NumOfChunks() const { |
| return chunks_.size(); |
| } |
| |
| protected: |
| bool ReadFile(const std::string& filename, std::vector<uint8_t>* file_content); |
| |
| bool is_source_; // True if it's for source chunks. |
| std::vector<ImageChunk> chunks_; // Internal storage of ImageChunk. |
| std::vector<uint8_t> file_content_; // Store the whole input file in memory. |
| }; |
| |
| void Image::MergeAdjacentNormalChunks() { |
| size_t merged_last = 0, cur = 0; |
| while (cur < chunks_.size()) { |
| // Look for normal chunks adjacent to the current one. If such chunk exists, extend the |
| // length of the current normal chunk. |
| size_t to_check = cur + 1; |
| while (to_check < chunks_.size() && chunks_[cur].IsAdjacentNormal(chunks_[to_check])) { |
| chunks_[cur].MergeAdjacentNormal(chunks_[to_check]); |
| to_check++; |
| } |
| |
| if (merged_last != cur) { |
| chunks_[merged_last] = std::move(chunks_[cur]); |
| } |
| merged_last++; |
| cur = to_check; |
| } |
| if (merged_last < chunks_.size()) { |
| chunks_.erase(chunks_.begin() + merged_last, chunks_.end()); |
| } |
| } |
| |
| ImageChunk* Image::FindChunkByName(const std::string& name, bool find_normal) { |
| if (name.empty()) { |
| return nullptr; |
| } |
| for (auto& chunk : chunks_) { |
| if ((chunk.GetType() == CHUNK_DEFLATE || find_normal) && chunk.GetEntryName() == name) { |
| return &chunk; |
| } |
| } |
| return nullptr; |
| } |
| |
| bool Image::WritePatchDataToFd(const std::vector<std::vector<uint8_t>>& patch_data, |
| int patch_fd) const { |
| // Figure out how big the imgdiff file header is going to be, so that we can correctly compute |
| // the offset of each bsdiff patch within the file. |
| CHECK_EQ(chunks_.size(), patch_data.size()); |
| size_t total_header_size = 12; |
| for (size_t i = 0; i < chunks_.size(); ++i) { |
| total_header_size += chunks_[i].GetHeaderSize(patch_data[i].size()); |
| } |
| |
| size_t offset = total_header_size; |
| |
| // Write out the headers. |
| if (!android::base::WriteStringToFd("IMGDIFF2", patch_fd)) { |
| printf("failed to write \"IMGDIFF2\": %s\n", strerror(errno)); |
| return false; |
| } |
| Write4(patch_fd, static_cast<int32_t>(chunks_.size())); |
| for (size_t i = 0; i < chunks_.size(); ++i) { |
| printf("chunk %zu: ", i); |
| offset = chunks_[i].WriteHeaderToFd(patch_fd, patch_data[i], offset); |
| } |
| |
| // Append each chunk's bsdiff patch, in order. |
| for (size_t i = 0; i < chunks_.size(); ++i) { |
| if (chunks_[i].GetType() != CHUNK_RAW) { |
| if (!android::base::WriteFully(patch_fd, patch_data[i].data(), patch_data[i].size())) { |
| printf("failed to write %zu bytes patch for chunk %zu\n", patch_data[i].size(), i); |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| void Image::DumpChunks() const { |
| std::string type = is_source_ ? "source" : "target"; |
| printf("Dumping chunks for %s\n", type.c_str()); |
| for (size_t i = 0; i < chunks_.size(); ++i) { |
| printf("chunk %zu: ", i); |
| chunks_[i].Dump(); |
| } |
| } |
| |
| bool Image::ReadFile(const std::string& filename, std::vector<uint8_t>* file_content) { |
| CHECK(file_content != nullptr); |
| |
| android::base::unique_fd fd(open(filename.c_str(), O_RDONLY)); |
| if (fd == -1) { |
| printf("failed to open \"%s\" %s\n", filename.c_str(), strerror(errno)); |
| return false; |
| } |
| struct stat st; |
| if (fstat(fd, &st) != 0) { |
| printf("failed to stat \"%s\": %s\n", filename.c_str(), strerror(errno)); |
| return false; |
| } |
| |
| size_t sz = static_cast<size_t>(st.st_size); |
| file_content->resize(sz); |
| if (!android::base::ReadFully(fd, file_content->data(), sz)) { |
| printf("failed to read \"%s\" %s\n", filename.c_str(), strerror(errno)); |
| return false; |
| } |
| fd.reset(); |
| |
| return true; |
| } |
| |
| class ZipModeImage : public Image { |
| public: |
| explicit ZipModeImage(bool is_source) : Image(is_source) {} |
| |
| bool Initialize(const std::string& filename) override; |
| |
| const ImageChunk& PseudoSource() const { |
| CHECK(is_source_); |
| CHECK(pseudo_source_ != nullptr); |
| return *pseudo_source_; |
| } |
| |
| // Verify that we can reconstruct the deflate chunks; also change the type to CHUNK_NORMAL if |
| // src and tgt are identical. |
| static bool CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage* src_image); |
| |
| // Compute the patches against the input image, and write the data into |patch_name|. |
| static bool GeneratePatches(ZipModeImage* tgt_image, ZipModeImage* src_image, |
| const std::string& patch_name); |
| |
| private: |
| // Initialize image chunks based on the zip entries. |
| bool InitializeChunks(const std::string& filename, ZipArchiveHandle handle); |
| // Add the a zip entry to the list. |
| bool AddZipEntryToChunks(ZipArchiveHandle handle, const std::string& entry_name, ZipEntry* entry); |
| // Return the real size of the zip file. (omit the trailing zeros that used for alignment) |
| bool GetZipFileSize(size_t* input_file_size); |
| |
| // The pesudo source chunk for bsdiff if there's no match for the given target chunk. It's in |
| // fact the whole source file. |
| std::unique_ptr<ImageChunk> pseudo_source_; |
| }; |
| |
| bool ZipModeImage::Initialize(const std::string& filename) { |
| if (!ReadFile(filename, &file_content_)) { |
| return false; |
| } |
| |
| // Omit the trailing zeros before we pass the file to ziparchive handler. |
| size_t zipfile_size; |
| if (!GetZipFileSize(&zipfile_size)) { |
| printf("failed to parse the actual size of %s\n", filename.c_str()); |
| return false; |
| } |
| ZipArchiveHandle handle; |
| int err = OpenArchiveFromMemory(const_cast<uint8_t*>(file_content_.data()), zipfile_size, |
| filename.c_str(), &handle); |
| if (err != 0) { |
| printf("failed to open zip file %s: %s\n", filename.c_str(), ErrorCodeString(err)); |
| CloseArchive(handle); |
| return false; |
| } |
| |
| if (is_source_) { |
| pseudo_source_ = std::make_unique<ImageChunk>(CHUNK_NORMAL, 0, &file_content_, zipfile_size); |
| } |
| if (!InitializeChunks(filename, handle)) { |
| CloseArchive(handle); |
| return false; |
| } |
| |
| CloseArchive(handle); |
| return true; |
| } |
| |
| // Iterate the zip entries and compose the image chunks accordingly. |
| bool ZipModeImage::InitializeChunks(const std::string& filename, ZipArchiveHandle handle) { |
| void* cookie; |
| int ret = StartIteration(handle, &cookie, nullptr, nullptr); |
| if (ret != 0) { |
| printf("failed to iterate over entries in %s: %s\n", filename.c_str(), ErrorCodeString(ret)); |
| return false; |
| } |
| |
| // Create a list of deflated zip entries, sorted by offset. |
| std::vector<std::pair<std::string, ZipEntry>> temp_entries; |
| ZipString name; |
| ZipEntry entry; |
| while ((ret = Next(cookie, &entry, &name)) == 0) { |
| if (entry.method == kCompressDeflated) { |
| std::string entry_name(name.name, name.name + name.name_length); |
| temp_entries.emplace_back(entry_name, entry); |
| } |
| } |
| |
| if (ret != -1) { |
| printf("Error while iterating over zip entries: %s\n", ErrorCodeString(ret)); |
| return false; |
| } |
| std::sort(temp_entries.begin(), temp_entries.end(), |
| [](auto& entry1, auto& entry2) { return entry1.second.offset < entry2.second.offset; }); |
| |
| EndIteration(cookie); |
| |
| // For source chunks, we don't need to compose chunks for the metadata. |
| if (is_source_) { |
| for (auto& entry : temp_entries) { |
| if (!AddZipEntryToChunks(handle, entry.first, &entry.second)) { |
| printf("Failed to add %s to source chunks\n", entry.first.c_str()); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // For target chunks, add the deflate entries as CHUNK_DEFLATE and the contents between two |
| // deflate entries as CHUNK_NORMAL. |
| size_t pos = 0; |
| size_t nextentry = 0; |
| while (pos < file_content_.size()) { |
| if (nextentry < temp_entries.size() && |
| static_cast<off64_t>(pos) == temp_entries[nextentry].second.offset) { |
| // Add the next zip entry. |
| std::string entry_name = temp_entries[nextentry].first; |
| if (!AddZipEntryToChunks(handle, entry_name, &temp_entries[nextentry].second)) { |
| printf("Failed to add %s to target chunks\n", entry_name.c_str()); |
| return false; |
| } |
| |
| pos += temp_entries[nextentry].second.compressed_length; |
| ++nextentry; |
| continue; |
| } |
| |
| // Use a normal chunk to take all the data up to the start of the next entry. |
| size_t raw_data_len; |
| if (nextentry < temp_entries.size()) { |
| raw_data_len = temp_entries[nextentry].second.offset - pos; |
| } else { |
| raw_data_len = file_content_.size() - pos; |
| } |
| chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, raw_data_len); |
| |
| pos += raw_data_len; |
| } |
| |
| return true; |
| } |
| |
| bool ZipModeImage::AddZipEntryToChunks(ZipArchiveHandle handle, const std::string& entry_name, |
| ZipEntry* entry) { |
| size_t compressed_len = entry->compressed_length; |
| if (entry->method == kCompressDeflated) { |
| size_t uncompressed_len = entry->uncompressed_length; |
| std::vector<uint8_t> uncompressed_data(uncompressed_len); |
| int ret = ExtractToMemory(handle, entry, uncompressed_data.data(), uncompressed_len); |
| if (ret != 0) { |
| printf("failed to extract %s with size %zu: %s\n", entry_name.c_str(), uncompressed_len, |
| ErrorCodeString(ret)); |
| return false; |
| } |
| ImageChunk curr(CHUNK_DEFLATE, entry->offset, &file_content_, compressed_len); |
| curr.SetEntryName(entry_name); |
| curr.SetUncompressedData(std::move(uncompressed_data)); |
| chunks_.push_back(curr); |
| } else { |
| ImageChunk curr(CHUNK_NORMAL, entry->offset, &file_content_, compressed_len); |
| curr.SetEntryName(entry_name); |
| chunks_.push_back(curr); |
| } |
| |
| return true; |
| } |
| |
| // EOCD record |
| // offset 0: signature 0x06054b50, 4 bytes |
| // offset 4: number of this disk, 2 bytes |
| // ... |
| // offset 20: comment length, 2 bytes |
| // offset 22: comment, n bytes |
| bool ZipModeImage::GetZipFileSize(size_t* input_file_size) { |
| if (file_content_.size() < 22) { |
| printf("file is too small to be a zip file\n"); |
| return false; |
| } |
| |
| // Look for End of central directory record of the zip file, and calculate the actual |
| // zip_file size. |
| for (int i = file_content_.size() - 22; i >= 0; i--) { |
| if (file_content_[i] == 0x50) { |
| if (get_unaligned<uint32_t>(&file_content_[i]) == 0x06054b50) { |
| // double-check: this archive consists of a single "disk". |
| CHECK_EQ(get_unaligned<uint16_t>(&file_content_[i + 4]), 0); |
| |
| uint16_t comment_length = get_unaligned<uint16_t>(&file_content_[i + 20]); |
| size_t file_size = i + 22 + comment_length; |
| CHECK_LE(file_size, file_content_.size()); |
| *input_file_size = file_size; |
| return true; |
| } |
| } |
| } |
| |
| // EOCD not found, this file is likely not a valid zip file. |
| return false; |
| } |
| |
| bool ZipModeImage::CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage* src_image) { |
| for (auto& tgt_chunk : *tgt_image) { |
| if (tgt_chunk.GetType() != CHUNK_DEFLATE) { |
| continue; |
| } |
| |
| ImageChunk* src_chunk = src_image->FindChunkByName(tgt_chunk.GetEntryName()); |
| if (src_chunk == nullptr) { |
| tgt_chunk.ChangeDeflateChunkToNormal(); |
| } else if (tgt_chunk == *src_chunk) { |
| // If two deflate chunks are identical (eg, the kernel has not changed between two builds), |
| // treat them as normal chunks. This makes applypatch much faster -- it can apply a trivial |
| // patch to the compressed data, rather than uncompressing and recompressing to apply the |
| // trivial patch to the uncompressed data. |
| tgt_chunk.ChangeDeflateChunkToNormal(); |
| src_chunk->ChangeDeflateChunkToNormal(); |
| } else if (!tgt_chunk.ReconstructDeflateChunk()) { |
| // We cannot recompress the data and get exactly the same bits as are in the input target |
| // image. Treat the chunk as a normal non-deflated chunk. |
| printf("failed to reconstruct target deflate chunk [%s]; treating as normal\n", |
| tgt_chunk.GetEntryName().c_str()); |
| |
| tgt_chunk.ChangeDeflateChunkToNormal(); |
| src_chunk->ChangeDeflateChunkToNormal(); |
| } |
| } |
| |
| return true; |
| } |
| |
| bool ZipModeImage::GeneratePatches(ZipModeImage* tgt_image, ZipModeImage* src_image, |
| const std::string& patch_name) { |
| // For zips, we only need merge normal chunks for the target: deflated chunks are matched via |
| // filename, and normal chunks are patched using the entire source file as the source. |
| tgt_image->MergeAdjacentNormalChunks(); |
| tgt_image->DumpChunks(); |
| |
| printf("Construct patches for %zu chunks...\n", tgt_image->NumOfChunks()); |
| std::vector<std::vector<uint8_t>> patch_data(tgt_image->NumOfChunks()); |
| |
| saidx_t* bsdiff_cache = nullptr; |
| size_t i = 0; |
| for (auto& tgt_chunk : *tgt_image) { |
| ImageChunk* src_chunk = (tgt_chunk.GetType() != CHUNK_DEFLATE) |
| ? nullptr |
| : src_image->FindChunkByName(tgt_chunk.GetEntryName()); |
| |
| const auto& src_ref = (src_chunk == nullptr) ? src_image->PseudoSource() : *src_chunk; |
| saidx_t** bsdiff_cache_ptr = (src_chunk == nullptr) ? &bsdiff_cache : nullptr; |
| |
| if (!tgt_chunk.MakePatch(src_ref, &patch_data[i], bsdiff_cache_ptr)) { |
| printf("Failed to generate patch, name: %s\n", tgt_chunk.GetEntryName().c_str()); |
| return false; |
| } |
| |
| printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data[i].size(), |
| tgt_chunk.GetRawDataLength()); |
| i++; |
| } |
| free(bsdiff_cache); |
| |
| android::base::unique_fd patch_fd( |
| open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR)); |
| if (patch_fd == -1) { |
| printf("failed to open \"%s\": %s\n", patch_name.c_str(), strerror(errno)); |
| return false; |
| } |
| |
| return tgt_image->WritePatchDataToFd(patch_data, patch_fd); |
| } |
| |
| class ImageModeImage : public Image { |
| public: |
| explicit ImageModeImage(bool is_source) : Image(is_source) {} |
| |
| // Initialize the image chunks list by searching the magic numbers in an image file. |
| bool Initialize(const std::string& filename) override; |
| |
| // In Image Mode, verify that the source and target images have the same chunk structure (ie, the |
| // same sequence of deflate and normal chunks). |
| static bool CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeImage* src_image); |
| |
| // In image mode, generate patches against the given source chunks and bonus_data; write the |
| // result to |patch_name|. |
| static bool GeneratePatches(ImageModeImage* tgt_image, ImageModeImage* src_image, |
| const std::vector<uint8_t>& bonus_data, const std::string& patch_name); |
| }; |
| |
| bool ImageModeImage::Initialize(const std::string& filename) { |
| if (!ReadFile(filename, &file_content_)) { |
| return false; |
| } |
| |
| size_t sz = file_content_.size(); |
| size_t pos = 0; |
| while (pos < sz) { |
| // 0x00 no header flags, 0x08 deflate compression, 0x1f8b gzip magic number |
| if (sz - pos >= 4 && get_unaligned<uint32_t>(file_content_.data() + pos) == 0x00088b1f) { |
| // 'pos' is the offset of the start of a gzip chunk. |
| size_t chunk_offset = pos; |
| |
| // The remaining data is too small to be a gzip chunk; treat them as a normal chunk. |
| if (sz - pos < GZIP_HEADER_LEN + GZIP_FOOTER_LEN) { |
| chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, sz - pos); |
| break; |
| } |
| |
| // We need three chunks for the deflated image in total, one normal chunk for the header, |
| // one deflated chunk for the body, and another normal chunk for the footer. |
| chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_HEADER_LEN); |
| pos += GZIP_HEADER_LEN; |
| |
| // We must decompress this chunk in order to discover where it ends, and so we can update |
| // the uncompressed_data of the image body and its length. |
| |
| z_stream strm; |
| strm.zalloc = Z_NULL; |
| strm.zfree = Z_NULL; |
| strm.opaque = Z_NULL; |
| strm.avail_in = sz - pos; |
| strm.next_in = file_content_.data() + pos; |
| |
| // -15 means we are decoding a 'raw' deflate stream; zlib will |
| // not expect zlib headers. |
| int ret = inflateInit2(&strm, -15); |
| if (ret < 0) { |
| printf("failed to initialize inflate: %d\n", ret); |
| return false; |
| } |
| |
| size_t allocated = BUFFER_SIZE; |
| std::vector<uint8_t> uncompressed_data(allocated); |
| size_t uncompressed_len = 0, raw_data_len = 0; |
| do { |
| strm.avail_out = allocated - uncompressed_len; |
| strm.next_out = uncompressed_data.data() + uncompressed_len; |
| ret = inflate(&strm, Z_NO_FLUSH); |
| if (ret < 0) { |
| printf("Warning: inflate failed [%s] at offset [%zu], treating as a normal chunk\n", |
| strm.msg, chunk_offset); |
| break; |
| } |
| uncompressed_len = allocated - strm.avail_out; |
| if (strm.avail_out == 0) { |
| allocated *= 2; |
| uncompressed_data.resize(allocated); |
| } |
| } while (ret != Z_STREAM_END); |
| |
| raw_data_len = sz - strm.avail_in - pos; |
| inflateEnd(&strm); |
| |
| if (ret < 0) { |
| continue; |
| } |
| |
| // The footer contains the size of the uncompressed data. Double-check to make sure that it |
| // matches the size of the data we got when we actually did the decompression. |
| size_t footer_index = pos + raw_data_len + GZIP_FOOTER_LEN - 4; |
| if (sz - footer_index < 4) { |
| printf("Warning: invalid footer position; treating as a nomal chunk\n"); |
| continue; |
| } |
| size_t footer_size = get_unaligned<uint32_t>(file_content_.data() + footer_index); |
| if (footer_size != uncompressed_len) { |
| printf("Warning: footer size %zu != decompressed size %zu; treating as a nomal chunk\n", |
| footer_size, uncompressed_len); |
| continue; |
| } |
| |
| ImageChunk body(CHUNK_DEFLATE, pos, &file_content_, raw_data_len); |
| uncompressed_data.resize(uncompressed_len); |
| body.SetUncompressedData(std::move(uncompressed_data)); |
| chunks_.push_back(body); |
| |
| pos += raw_data_len; |
| |
| // create a normal chunk for the footer |
| chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_FOOTER_LEN); |
| |
| pos += GZIP_FOOTER_LEN; |
| } else { |
| // Use a normal chunk to take all the contents until the next gzip chunk (or EOF); we expect |
| // the number of chunks to be small (5 for typical boot and recovery images). |
| |
| // Scan forward until we find a gzip header. |
| size_t data_len = 0; |
| while (data_len + pos < sz) { |
| if (data_len + pos + 4 <= sz && |
| get_unaligned<uint32_t>(file_content_.data() + pos + data_len) == 0x00088b1f) { |
| break; |
| } |
| data_len++; |
| } |
| chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, data_len); |
| |
| pos += data_len; |
| } |
| } |
| |
| return true; |
| } |
| |
| // In Image Mode, verify that the source and target images have the same chunk structure (ie, the |
| // same sequence of deflate and normal chunks). |
| bool ImageModeImage::CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeImage* src_image) { |
| // In image mode, merge the gzip header and footer in with any adjacent normal chunks. |
| tgt_image->MergeAdjacentNormalChunks(); |
| src_image->MergeAdjacentNormalChunks(); |
| |
| if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) { |
| printf("source and target don't have same number of chunks!\n"); |
| tgt_image->DumpChunks(); |
| src_image->DumpChunks(); |
| return false; |
| } |
| for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) { |
| if (tgt_image->Get(i)->GetType() != src_image->Get(i)->GetType()) { |
| printf("source and target don't have same chunk structure! (chunk %zu)\n", i); |
| tgt_image->DumpChunks(); |
| src_image->DumpChunks(); |
| return false; |
| } |
| } |
| |
| for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) { |
| auto& tgt_chunk = *tgt_image->Get(i); |
| auto& src_chunk = *src_image->Get(i); |
| if (tgt_chunk.GetType() != CHUNK_DEFLATE) { |
| continue; |
| } |
| |
| // Confirm that we can recompress the data and get exactly the same bits as are in the |
| // input target image. |
| if (!tgt_chunk.ReconstructDeflateChunk()) { |
| printf("failed to reconstruct target deflate chunk %zu [%s]; treating as normal\n", i, |
| tgt_chunk.GetEntryName().c_str()); |
| tgt_chunk.ChangeDeflateChunkToNormal(); |
| src_chunk.ChangeDeflateChunkToNormal(); |
| continue; |
| } |
| |
| // If two deflate chunks are identical treat them as normal chunks. |
| if (tgt_chunk == src_chunk) { |
| tgt_chunk.ChangeDeflateChunkToNormal(); |
| src_chunk.ChangeDeflateChunkToNormal(); |
| } |
| } |
| |
| // For images, we need to maintain the parallel structure of the chunk lists, so do the merging |
| // in both the source and target lists. |
| tgt_image->MergeAdjacentNormalChunks(); |
| src_image->MergeAdjacentNormalChunks(); |
| if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) { |
| // This shouldn't happen. |
| printf("merging normal chunks went awry\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // In image mode, generate patches against the given source chunks and bonus_data; write the |
| // result to |patch_name|. |
| bool ImageModeImage::GeneratePatches(ImageModeImage* tgt_image, ImageModeImage* src_image, |
| const std::vector<uint8_t>& bonus_data, |
| const std::string& patch_name) { |
| printf("Construct patches for %zu chunks...\n", tgt_image->NumOfChunks()); |
| std::vector<std::vector<uint8_t>> patch_data(tgt_image->NumOfChunks()); |
| |
| for (size_t i = 0; i < tgt_image->NumOfChunks(); i++) { |
| auto& tgt_chunk = *tgt_image->Get(i); |
| auto& src_chunk = *src_image->Get(i); |
| |
| if (i == 1 && !bonus_data.empty()) { |
| printf(" using %zu bytes of bonus data for chunk %zu\n", bonus_data.size(), i); |
| src_chunk.SetBonusData(bonus_data); |
| } |
| |
| if (!tgt_chunk.MakePatch(src_chunk, &patch_data[i], nullptr)) { |
| printf("Failed to generate patch for target chunk %zu: ", i); |
| return false; |
| } |
| printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data[i].size(), |
| tgt_chunk.GetRawDataLength()); |
| } |
| |
| android::base::unique_fd patch_fd( |
| open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR)); |
| if (patch_fd == -1) { |
| printf("failed to open \"%s\": %s\n", patch_name.c_str(), strerror(errno)); |
| return false; |
| } |
| |
| return tgt_image->WritePatchDataToFd(patch_data, patch_fd); |
| } |
| |
| int imgdiff(int argc, const char** argv) { |
| bool zip_mode = false; |
| std::vector<uint8_t> bonus_data; |
| |
| int opt; |
| optind = 1; // Reset the getopt state so that we can call it multiple times for test. |
| |
| while ((opt = getopt(argc, const_cast<char**>(argv), "zb:")) != -1) { |
| switch (opt) { |
| case 'z': |
| zip_mode = true; |
| break; |
| case 'b': { |
| android::base::unique_fd fd(open(optarg, O_RDONLY)); |
| if (fd == -1) { |
| printf("failed to open bonus file %s: %s\n", optarg, strerror(errno)); |
| return 1; |
| } |
| struct stat st; |
| if (fstat(fd, &st) != 0) { |
| printf("failed to stat bonus file %s: %s\n", optarg, strerror(errno)); |
| return 1; |
| } |
| |
| size_t bonus_size = st.st_size; |
| bonus_data.resize(bonus_size); |
| if (!android::base::ReadFully(fd, bonus_data.data(), bonus_size)) { |
| printf("failed to read bonus file %s: %s\n", optarg, strerror(errno)); |
| return 1; |
| } |
| break; |
| } |
| default: |
| printf("unexpected opt: %s\n", optarg); |
| return 2; |
| } |
| } |
| |
| if (argc - optind != 3) { |
| printf("usage: %s [-z] [-b <bonus-file>] <src-img> <tgt-img> <patch-file>\n", argv[0]); |
| return 2; |
| } |
| |
| if (zip_mode) { |
| ZipModeImage src_image(true); |
| ZipModeImage tgt_image(false); |
| |
| if (!src_image.Initialize(argv[optind])) { |
| return 1; |
| } |
| if (!tgt_image.Initialize(argv[optind + 1])) { |
| return 1; |
| } |
| |
| if (!ZipModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) { |
| return 1; |
| } |
| // Compute bsdiff patches for each chunk's data (the uncompressed data, in the case of |
| // deflate chunks). |
| if (!ZipModeImage::GeneratePatches(&tgt_image, &src_image, argv[optind + 2])) { |
| return 1; |
| } |
| } else { |
| ImageModeImage src_image(true); |
| ImageModeImage tgt_image(false); |
| |
| if (!src_image.Initialize(argv[optind])) { |
| return 1; |
| } |
| if (!tgt_image.Initialize(argv[optind + 1])) { |
| return 1; |
| } |
| |
| if (!ImageModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) { |
| return 1; |
| } |
| if (!ImageModeImage::GeneratePatches(&tgt_image, &src_image, bonus_data, argv[optind + 2])) { |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |