Merge "Refactor the imgdiff" am: f411f3dcfb am: 6c1a6c389b
am: e500bc3e15
Change-Id: Ibee36f11ef600685881bb2f652216196f323ed8d
diff --git a/applypatch/Android.mk b/applypatch/Android.mk
index a7412d2..7aed0a9 100644
--- a/applypatch/Android.mk
+++ b/applypatch/Android.mk
@@ -127,7 +127,8 @@
# libbsdiff is compiled with -D_FILE_OFFSET_BITS=64.
libimgdiff_cflags := \
-Werror \
- -D_FILE_OFFSET_BITS=64
+ -D_FILE_OFFSET_BITS=64 \
+ -DZLIB_CONST
libimgdiff_static_libraries := \
libbsdiff \
diff --git a/applypatch/imgdiff.cpp b/applypatch/imgdiff.cpp
index fc24064..8802652 100644
--- a/applypatch/imgdiff.cpp
+++ b/applypatch/imgdiff.cpp
@@ -196,7 +196,8 @@
size_t DataLengthForPatch() const;
void Dump() const {
- printf("type %d start %zu len %zu\n", type_, start_, DataLengthForPatch());
+ printf("type: %d, start: %zu, len: %zu, name: %s\n", type_, start_, DataLengthForPatch(),
+ entry_name_.c_str());
}
void SetSourceInfo(const ImageChunk& other);
@@ -211,7 +212,7 @@
size_t GetHeaderSize(size_t patch_size) const;
// Return the offset of the next patch into the patch data.
- size_t WriteHeaderToFd(int fd, const std::vector<uint8_t>& patch, size_t offset);
+ size_t WriteHeaderToFd(int fd, const std::vector<uint8_t>& patch, size_t offset) const;
/*
* Cause a gzip chunk to be treated as a normal chunk (ie, as a blob
@@ -233,6 +234,14 @@
bool IsAdjacentNormal(const ImageChunk& other) const;
void MergeAdjacentNormal(const ImageChunk& other);
+ /*
+ * Compute a bsdiff patch between |this| and the input source chunks.
+ * Store the result in the patch_data.
+ * |bsdiff_cache| can be used to cache the suffix array if the same |src| chunk is used
+ * repeatedly, pass nullptr if not needed.
+ */
+ bool MakePatch(const ImageChunk& src, std::vector<uint8_t>* patch_data, saidx_t** bsdiff_cache);
+
private:
int type_; // CHUNK_NORMAL, CHUNK_DEFLATE, CHUNK_RAW
size_t start_; // offset of chunk in the original input file
@@ -322,7 +331,7 @@
void ImageChunk::ChangeDeflateChunkToNormal() {
if (type_ != CHUNK_DEFLATE) return;
type_ = CHUNK_NORMAL;
- entry_name_.clear();
+ // No need to clear the entry name.
uncompressed_data_.clear();
}
@@ -345,7 +354,7 @@
}
}
-size_t ImageChunk::WriteHeaderToFd(int fd, const std::vector<uint8_t>& patch, size_t offset) {
+size_t ImageChunk::WriteHeaderToFd(int fd, const std::vector<uint8_t>& patch, size_t offset) const {
Write4(fd, type_);
switch (type_) {
case CHUNK_NORMAL:
@@ -393,6 +402,68 @@
raw_data_len_ = raw_data_len_ + other.raw_data_len_;
}
+bool ImageChunk::MakePatch(const ImageChunk& src, std::vector<uint8_t>* patch_data,
+ saidx_t** bsdiff_cache) {
+ if (ChangeChunkToRaw(0)) {
+ size_t patch_size = DataLengthForPatch();
+ patch_data->resize(patch_size);
+ std::copy(DataForPatch(), DataForPatch() + patch_size, patch_data->begin());
+ return true;
+ }
+
+#if defined(__ANDROID__)
+ char ptemp[] = "/data/local/tmp/imgdiff-patch-XXXXXX";
+#else
+ char ptemp[] = "/tmp/imgdiff-patch-XXXXXX";
+#endif
+
+ int fd = mkstemp(ptemp);
+ if (fd == -1) {
+ printf("MakePatch failed to create a temporary file: %s\n", strerror(errno));
+ return false;
+ }
+ close(fd);
+
+ int r = bsdiff::bsdiff(src.DataForPatch(), src.DataLengthForPatch(), DataForPatch(),
+ DataLengthForPatch(), ptemp, bsdiff_cache);
+ if (r != 0) {
+ printf("bsdiff() failed: %d\n", r);
+ return false;
+ }
+
+ android::base::unique_fd patch_fd(open(ptemp, O_RDONLY));
+ if (patch_fd == -1) {
+ printf("failed to open %s: %s\n", ptemp, strerror(errno));
+ return false;
+ }
+ struct stat st;
+ if (fstat(patch_fd, &st) != 0) {
+ printf("failed to stat patch file %s: %s\n", ptemp, strerror(errno));
+ return false;
+ }
+
+ size_t sz = static_cast<size_t>(st.st_size);
+ // Change the chunk type to raw if the patch takes less space that way.
+ if (ChangeChunkToRaw(sz)) {
+ unlink(ptemp);
+ size_t patch_size = DataLengthForPatch();
+ patch_data->resize(patch_size);
+ std::copy(DataForPatch(), DataForPatch() + patch_size, patch_data->begin());
+ return true;
+ }
+ patch_data->resize(sz);
+ if (!android::base::ReadFully(patch_fd, patch_data->data(), sz)) {
+ printf("failed to read \"%s\" %s\n", ptemp, strerror(errno));
+ unlink(ptemp);
+ return false;
+ }
+
+ unlink(ptemp);
+ SetSourceInfo(src);
+
+ return true;
+}
+
bool ImageChunk::ReconstructDeflateChunk() {
if (type_ != CHUNK_DEFLATE) {
printf("attempt to reconstruct non-deflate chunk\n");
@@ -458,29 +529,347 @@
return true;
}
+// Interface for zip_mode and image_mode images. We initialize the image from an input file and
+// split the file content into a list of image chunks.
+class Image {
+ public:
+ explicit Image(bool is_source) : is_source_(is_source) {}
+
+ virtual ~Image() {}
+
+ // Create a list of image chunks from input file.
+ virtual bool Initialize(const std::string& filename) = 0;
+
+ // Look for runs of adjacent normal chunks and compress them down into a single chunk. (Such
+ // runs can be produced when deflate chunks are changed to normal chunks.)
+ void MergeAdjacentNormalChunks();
+
+ // In zip mode, find the matching deflate source chunk by entry name. Search for normal chunks
+ // also if |find_normal| is true.
+ ImageChunk* FindChunkByName(const std::string& name, bool find_normal = false);
+
+ // Write the contents of |patch_data| to |patch_fd|.
+ bool WritePatchDataToFd(const std::vector<std::vector<uint8_t>>& patch_data, int patch_fd) const;
+
+ void DumpChunks() const;
+
+ // Non const iterators to access the stored ImageChunks.
+ std::vector<ImageChunk>::iterator begin() {
+ return chunks_.begin();
+ }
+
+ std::vector<ImageChunk>::iterator end() {
+ return chunks_.end();
+ }
+ // Return a pointer to the ith ImageChunk.
+ ImageChunk* Get(size_t i) {
+ CHECK_LT(i, chunks_.size());
+ return &chunks_[i];
+ }
+
+ size_t NumOfChunks() const {
+ return chunks_.size();
+ }
+
+ protected:
+ bool ReadFile(const std::string& filename, std::vector<uint8_t>* file_content);
+
+ bool is_source_; // True if it's for source chunks.
+ std::vector<ImageChunk> chunks_; // Internal storage of ImageChunk.
+ std::vector<uint8_t> file_content_; // Store the whole input file in memory.
+};
+
+void Image::MergeAdjacentNormalChunks() {
+ size_t merged_last = 0, cur = 0;
+ while (cur < chunks_.size()) {
+ // Look for normal chunks adjacent to the current one. If such chunk exists, extend the
+ // length of the current normal chunk.
+ size_t to_check = cur + 1;
+ while (to_check < chunks_.size() && chunks_[cur].IsAdjacentNormal(chunks_[to_check])) {
+ chunks_[cur].MergeAdjacentNormal(chunks_[to_check]);
+ to_check++;
+ }
+
+ if (merged_last != cur) {
+ chunks_[merged_last] = std::move(chunks_[cur]);
+ }
+ merged_last++;
+ cur = to_check;
+ }
+ if (merged_last < chunks_.size()) {
+ chunks_.erase(chunks_.begin() + merged_last, chunks_.end());
+ }
+}
+
+ImageChunk* Image::FindChunkByName(const std::string& name, bool find_normal) {
+ if (name.empty()) {
+ return nullptr;
+ }
+ for (auto& chunk : chunks_) {
+ if ((chunk.GetType() == CHUNK_DEFLATE || find_normal) && chunk.GetEntryName() == name) {
+ return &chunk;
+ }
+ }
+ return nullptr;
+}
+
+bool Image::WritePatchDataToFd(const std::vector<std::vector<uint8_t>>& patch_data,
+ int patch_fd) const {
+ // Figure out how big the imgdiff file header is going to be, so that we can correctly compute
+ // the offset of each bsdiff patch within the file.
+ CHECK_EQ(chunks_.size(), patch_data.size());
+ size_t total_header_size = 12;
+ for (size_t i = 0; i < chunks_.size(); ++i) {
+ total_header_size += chunks_[i].GetHeaderSize(patch_data[i].size());
+ }
+
+ size_t offset = total_header_size;
+
+ // Write out the headers.
+ if (!android::base::WriteStringToFd("IMGDIFF2", patch_fd)) {
+ printf("failed to write \"IMGDIFF2\": %s\n", strerror(errno));
+ return false;
+ }
+ Write4(patch_fd, static_cast<int32_t>(chunks_.size()));
+ for (size_t i = 0; i < chunks_.size(); ++i) {
+ printf("chunk %zu: ", i);
+ offset = chunks_[i].WriteHeaderToFd(patch_fd, patch_data[i], offset);
+ }
+
+ // Append each chunk's bsdiff patch, in order.
+ for (size_t i = 0; i < chunks_.size(); ++i) {
+ if (chunks_[i].GetType() != CHUNK_RAW) {
+ if (!android::base::WriteFully(patch_fd, patch_data[i].data(), patch_data[i].size())) {
+ printf("failed to write %zu bytes patch for chunk %zu\n", patch_data[i].size(), i);
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+void Image::DumpChunks() const {
+ std::string type = is_source_ ? "source" : "target";
+ printf("Dumping chunks for %s\n", type.c_str());
+ for (size_t i = 0; i < chunks_.size(); ++i) {
+ printf("chunk %zu: ", i);
+ chunks_[i].Dump();
+ }
+}
+
+bool Image::ReadFile(const std::string& filename, std::vector<uint8_t>* file_content) {
+ CHECK(file_content != nullptr);
+
+ android::base::unique_fd fd(open(filename.c_str(), O_RDONLY));
+ if (fd == -1) {
+ printf("failed to open \"%s\" %s\n", filename.c_str(), strerror(errno));
+ return false;
+ }
+ struct stat st;
+ if (fstat(fd, &st) != 0) {
+ printf("failed to stat \"%s\": %s\n", filename.c_str(), strerror(errno));
+ return false;
+ }
+
+ size_t sz = static_cast<size_t>(st.st_size);
+ file_content->resize(sz);
+ if (!android::base::ReadFully(fd, file_content->data(), sz)) {
+ printf("failed to read \"%s\" %s\n", filename.c_str(), strerror(errno));
+ return false;
+ }
+ fd.reset();
+
+ return true;
+}
+
+class ZipModeImage : public Image {
+ public:
+ explicit ZipModeImage(bool is_source) : Image(is_source) {}
+
+ bool Initialize(const std::string& filename) override;
+
+ const ImageChunk& PseudoSource() const {
+ CHECK(is_source_);
+ CHECK(pseudo_source_ != nullptr);
+ return *pseudo_source_;
+ }
+
+ // Verify that we can reconstruct the deflate chunks; also change the type to CHUNK_NORMAL if
+ // src and tgt are identical.
+ static bool CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage* src_image);
+
+ // Compute the patches against the input image, and write the data into |patch_name|.
+ static bool GeneratePatches(ZipModeImage* tgt_image, ZipModeImage* src_image,
+ const std::string& patch_name);
+
+ private:
+ // Initialize image chunks based on the zip entries.
+ bool InitializeChunks(const std::string& filename, ZipArchiveHandle handle);
+ // Add the a zip entry to the list.
+ bool AddZipEntryToChunks(ZipArchiveHandle handle, const std::string& entry_name, ZipEntry* entry);
+ // Return the real size of the zip file. (omit the trailing zeros that used for alignment)
+ bool GetZipFileSize(size_t* input_file_size);
+
+ // The pesudo source chunk for bsdiff if there's no match for the given target chunk. It's in
+ // fact the whole source file.
+ std::unique_ptr<ImageChunk> pseudo_source_;
+};
+
+bool ZipModeImage::Initialize(const std::string& filename) {
+ if (!ReadFile(filename, &file_content_)) {
+ return false;
+ }
+
+ // Omit the trailing zeros before we pass the file to ziparchive handler.
+ size_t zipfile_size;
+ if (!GetZipFileSize(&zipfile_size)) {
+ printf("failed to parse the actual size of %s\n", filename.c_str());
+ return false;
+ }
+ ZipArchiveHandle handle;
+ int err = OpenArchiveFromMemory(const_cast<uint8_t*>(file_content_.data()), zipfile_size,
+ filename.c_str(), &handle);
+ if (err != 0) {
+ printf("failed to open zip file %s: %s\n", filename.c_str(), ErrorCodeString(err));
+ CloseArchive(handle);
+ return false;
+ }
+
+ if (is_source_) {
+ pseudo_source_ = std::make_unique<ImageChunk>(CHUNK_NORMAL, 0, &file_content_, zipfile_size);
+ }
+ if (!InitializeChunks(filename, handle)) {
+ CloseArchive(handle);
+ return false;
+ }
+
+ CloseArchive(handle);
+ return true;
+}
+
+// Iterate the zip entries and compose the image chunks accordingly.
+bool ZipModeImage::InitializeChunks(const std::string& filename, ZipArchiveHandle handle) {
+ void* cookie;
+ int ret = StartIteration(handle, &cookie, nullptr, nullptr);
+ if (ret != 0) {
+ printf("failed to iterate over entries in %s: %s\n", filename.c_str(), ErrorCodeString(ret));
+ return false;
+ }
+
+ // Create a list of deflated zip entries, sorted by offset.
+ std::vector<std::pair<std::string, ZipEntry>> temp_entries;
+ ZipString name;
+ ZipEntry entry;
+ while ((ret = Next(cookie, &entry, &name)) == 0) {
+ if (entry.method == kCompressDeflated) {
+ std::string entry_name(name.name, name.name + name.name_length);
+ temp_entries.emplace_back(entry_name, entry);
+ }
+ }
+
+ if (ret != -1) {
+ printf("Error while iterating over zip entries: %s\n", ErrorCodeString(ret));
+ return false;
+ }
+ std::sort(temp_entries.begin(), temp_entries.end(),
+ [](auto& entry1, auto& entry2) { return entry1.second.offset < entry2.second.offset; });
+
+ EndIteration(cookie);
+
+ // For source chunks, we don't need to compose chunks for the metadata.
+ if (is_source_) {
+ for (auto& entry : temp_entries) {
+ if (!AddZipEntryToChunks(handle, entry.first, &entry.second)) {
+ printf("Failed to add %s to source chunks\n", entry.first.c_str());
+ return false;
+ }
+ }
+ return true;
+ }
+
+ // For target chunks, add the deflate entries as CHUNK_DEFLATE and the contents between two
+ // deflate entries as CHUNK_NORMAL.
+ size_t pos = 0;
+ size_t nextentry = 0;
+ while (pos < file_content_.size()) {
+ if (nextentry < temp_entries.size() &&
+ static_cast<off64_t>(pos) == temp_entries[nextentry].second.offset) {
+ // Add the next zip entry.
+ std::string entry_name = temp_entries[nextentry].first;
+ if (!AddZipEntryToChunks(handle, entry_name, &temp_entries[nextentry].second)) {
+ printf("Failed to add %s to target chunks\n", entry_name.c_str());
+ return false;
+ }
+
+ pos += temp_entries[nextentry].second.compressed_length;
+ ++nextentry;
+ continue;
+ }
+
+ // Use a normal chunk to take all the data up to the start of the next entry.
+ size_t raw_data_len;
+ if (nextentry < temp_entries.size()) {
+ raw_data_len = temp_entries[nextentry].second.offset - pos;
+ } else {
+ raw_data_len = file_content_.size() - pos;
+ }
+ chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, raw_data_len);
+
+ pos += raw_data_len;
+ }
+
+ return true;
+}
+
+bool ZipModeImage::AddZipEntryToChunks(ZipArchiveHandle handle, const std::string& entry_name,
+ ZipEntry* entry) {
+ size_t compressed_len = entry->compressed_length;
+ if (entry->method == kCompressDeflated) {
+ size_t uncompressed_len = entry->uncompressed_length;
+ std::vector<uint8_t> uncompressed_data(uncompressed_len);
+ int ret = ExtractToMemory(handle, entry, uncompressed_data.data(), uncompressed_len);
+ if (ret != 0) {
+ printf("failed to extract %s with size %zu: %s\n", entry_name.c_str(), uncompressed_len,
+ ErrorCodeString(ret));
+ return false;
+ }
+ ImageChunk curr(CHUNK_DEFLATE, entry->offset, &file_content_, compressed_len);
+ curr.SetEntryName(entry_name);
+ curr.SetUncompressedData(std::move(uncompressed_data));
+ chunks_.push_back(curr);
+ } else {
+ ImageChunk curr(CHUNK_NORMAL, entry->offset, &file_content_, compressed_len);
+ curr.SetEntryName(entry_name);
+ chunks_.push_back(curr);
+ }
+
+ return true;
+}
+
// EOCD record
// offset 0: signature 0x06054b50, 4 bytes
// offset 4: number of this disk, 2 bytes
// ...
// offset 20: comment length, 2 bytes
// offset 22: comment, n bytes
-static bool GetZipFileSize(const std::vector<uint8_t>& zip_file, size_t* input_file_size) {
- if (zip_file.size() < 22) {
+bool ZipModeImage::GetZipFileSize(size_t* input_file_size) {
+ if (file_content_.size() < 22) {
printf("file is too small to be a zip file\n");
return false;
}
// Look for End of central directory record of the zip file, and calculate the actual
// zip_file size.
- for (int i = zip_file.size() - 22; i >= 0; i--) {
- if (zip_file[i] == 0x50) {
- if (get_unaligned<uint32_t>(&zip_file[i]) == 0x06054b50) {
+ for (int i = file_content_.size() - 22; i >= 0; i--) {
+ if (file_content_[i] == 0x50) {
+ if (get_unaligned<uint32_t>(&file_content_[i]) == 0x06054b50) {
// double-check: this archive consists of a single "disk".
- CHECK_EQ(get_unaligned<uint16_t>(&zip_file[i + 4]), 0);
+ CHECK_EQ(get_unaligned<uint16_t>(&file_content_[i + 4]), 0);
- uint16_t comment_length = get_unaligned<uint16_t>(&zip_file[i + 20]);
+ uint16_t comment_length = get_unaligned<uint16_t>(&file_content_[i + 20]);
size_t file_size = i + 22 + comment_length;
- CHECK_LE(file_size, zip_file.size());
+ CHECK_LE(file_size, file_content_.size());
*input_file_size = file_size;
return true;
}
@@ -491,162 +880,116 @@
return false;
}
-static bool ReadZip(const char* filename, std::vector<ImageChunk>* chunks,
- std::vector<uint8_t>* zip_file, bool include_pseudo_chunk) {
- CHECK(chunks != nullptr && zip_file != nullptr);
-
- android::base::unique_fd fd(open(filename, O_RDONLY));
- if (fd == -1) {
- printf("failed to open \"%s\" %s\n", filename, strerror(errno));
- return false;
- }
- struct stat st;
- if (fstat(fd, &st) != 0) {
- printf("failed to stat \"%s\": %s\n", filename, strerror(errno));
- return false;
- }
-
- size_t sz = static_cast<size_t>(st.st_size);
- zip_file->resize(sz);
- if (!android::base::ReadFully(fd, zip_file->data(), sz)) {
- printf("failed to read \"%s\" %s\n", filename, strerror(errno));
- return false;
- }
- fd.reset();
-
- // Trim the trailing zeros before we pass the file to ziparchive handler.
- size_t zipfile_size;
- if (!GetZipFileSize(*zip_file, &zipfile_size)) {
- printf("failed to parse the actual size of %s\n", filename);
- return false;
- }
- ZipArchiveHandle handle;
- int err = OpenArchiveFromMemory(zip_file->data(), zipfile_size, filename, &handle);
- if (err != 0) {
- printf("failed to open zip file %s: %s\n", filename, ErrorCodeString(err));
- CloseArchive(handle);
- return false;
- }
-
- // Create a list of deflated zip entries, sorted by offset.
- std::vector<std::pair<std::string, ZipEntry>> temp_entries;
- void* cookie;
- int ret = StartIteration(handle, &cookie, nullptr, nullptr);
- if (ret != 0) {
- printf("failed to iterate over entries in %s: %s\n", filename, ErrorCodeString(ret));
- CloseArchive(handle);
- return false;
- }
-
- ZipString name;
- ZipEntry entry;
- while ((ret = Next(cookie, &entry, &name)) == 0) {
- if (entry.method == kCompressDeflated) {
- std::string entryname(name.name, name.name + name.name_length);
- temp_entries.push_back(std::make_pair(entryname, entry));
- }
- }
-
- if (ret != -1) {
- printf("Error while iterating over zip entries: %s\n", ErrorCodeString(ret));
- CloseArchive(handle);
- return false;
- }
- std::sort(temp_entries.begin(), temp_entries.end(),
- [](auto& entry1, auto& entry2) {
- return entry1.second.offset < entry2.second.offset;
- });
-
- EndIteration(cookie);
-
- if (include_pseudo_chunk) {
- chunks->emplace_back(CHUNK_NORMAL, 0, zip_file, zip_file->size());
- }
-
- size_t pos = 0;
- size_t nextentry = 0;
- while (pos < zip_file->size()) {
- if (nextentry < temp_entries.size() &&
- static_cast<off64_t>(pos) == temp_entries[nextentry].second.offset) {
- // compose the next deflate chunk.
- std::string entryname = temp_entries[nextentry].first;
- size_t uncompressed_len = temp_entries[nextentry].second.uncompressed_length;
- std::vector<uint8_t> uncompressed_data(uncompressed_len);
- if ((ret = ExtractToMemory(handle, &temp_entries[nextentry].second, uncompressed_data.data(),
- uncompressed_len)) != 0) {
- printf("failed to extract %s with size %zu: %s\n", entryname.c_str(), uncompressed_len,
- ErrorCodeString(ret));
- CloseArchive(handle);
- return false;
- }
-
- size_t compressed_len = temp_entries[nextentry].second.compressed_length;
- ImageChunk curr(CHUNK_DEFLATE, pos, zip_file, compressed_len);
- curr.SetEntryName(std::move(entryname));
- curr.SetUncompressedData(std::move(uncompressed_data));
- chunks->push_back(curr);
-
- pos += compressed_len;
- ++nextentry;
+bool ZipModeImage::CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage* src_image) {
+ for (auto& tgt_chunk : *tgt_image) {
+ if (tgt_chunk.GetType() != CHUNK_DEFLATE) {
continue;
}
- // Use a normal chunk to take all the data up to the start of the next deflate section.
- size_t raw_data_len;
- if (nextentry < temp_entries.size()) {
- raw_data_len = temp_entries[nextentry].second.offset - pos;
- } else {
- raw_data_len = zip_file->size() - pos;
- }
- chunks->emplace_back(CHUNK_NORMAL, pos, zip_file, raw_data_len);
+ ImageChunk* src_chunk = src_image->FindChunkByName(tgt_chunk.GetEntryName());
+ if (src_chunk == nullptr) {
+ tgt_chunk.ChangeDeflateChunkToNormal();
+ } else if (tgt_chunk == *src_chunk) {
+ // If two deflate chunks are identical (eg, the kernel has not changed between two builds),
+ // treat them as normal chunks. This makes applypatch much faster -- it can apply a trivial
+ // patch to the compressed data, rather than uncompressing and recompressing to apply the
+ // trivial patch to the uncompressed data.
+ tgt_chunk.ChangeDeflateChunkToNormal();
+ src_chunk->ChangeDeflateChunkToNormal();
+ } else if (!tgt_chunk.ReconstructDeflateChunk()) {
+ // We cannot recompress the data and get exactly the same bits as are in the input target
+ // image. Treat the chunk as a normal non-deflated chunk.
+ printf("failed to reconstruct target deflate chunk [%s]; treating as normal\n",
+ tgt_chunk.GetEntryName().c_str());
- pos += raw_data_len;
+ tgt_chunk.ChangeDeflateChunkToNormal();
+ src_chunk->ChangeDeflateChunkToNormal();
+ }
}
- CloseArchive(handle);
return true;
}
-// Read the given file and break it up into chunks, and putting the data in to a vector.
-static bool ReadImage(const char* filename, std::vector<ImageChunk>* chunks,
- std::vector<uint8_t>* img) {
- CHECK(chunks != nullptr && img != nullptr);
+bool ZipModeImage::GeneratePatches(ZipModeImage* tgt_image, ZipModeImage* src_image,
+ const std::string& patch_name) {
+ // For zips, we only need merge normal chunks for the target: deflated chunks are matched via
+ // filename, and normal chunks are patched using the entire source file as the source.
+ tgt_image->MergeAdjacentNormalChunks();
+ tgt_image->DumpChunks();
- android::base::unique_fd fd(open(filename, O_RDONLY));
- if (fd == -1) {
- printf("failed to open \"%s\" %s\n", filename, strerror(errno));
- return false;
+ printf("Construct patches for %zu chunks...\n", tgt_image->NumOfChunks());
+ std::vector<std::vector<uint8_t>> patch_data(tgt_image->NumOfChunks());
+
+ saidx_t* bsdiff_cache = nullptr;
+ size_t i = 0;
+ for (auto& tgt_chunk : *tgt_image) {
+ ImageChunk* src_chunk = (tgt_chunk.GetType() != CHUNK_DEFLATE)
+ ? nullptr
+ : src_image->FindChunkByName(tgt_chunk.GetEntryName());
+
+ const auto& src_ref = (src_chunk == nullptr) ? src_image->PseudoSource() : *src_chunk;
+ saidx_t** bsdiff_cache_ptr = (src_chunk == nullptr) ? &bsdiff_cache : nullptr;
+
+ if (!tgt_chunk.MakePatch(src_ref, &patch_data[i], bsdiff_cache_ptr)) {
+ printf("Failed to generate patch, name: %s\n", tgt_chunk.GetEntryName().c_str());
+ return false;
+ }
+
+ printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data[i].size(),
+ tgt_chunk.GetRawDataLength());
+ i++;
}
- struct stat st;
- if (fstat(fd, &st) != 0) {
- printf("failed to stat \"%s\": %s\n", filename, strerror(errno));
+ free(bsdiff_cache);
+
+ android::base::unique_fd patch_fd(
+ open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
+ if (patch_fd == -1) {
+ printf("failed to open \"%s\": %s\n", patch_name.c_str(), strerror(errno));
return false;
}
- size_t sz = static_cast<size_t>(st.st_size);
- img->resize(sz);
- if (!android::base::ReadFully(fd, img->data(), sz)) {
- printf("failed to read \"%s\" %s\n", filename, strerror(errno));
+ return tgt_image->WritePatchDataToFd(patch_data, patch_fd);
+}
+
+class ImageModeImage : public Image {
+ public:
+ explicit ImageModeImage(bool is_source) : Image(is_source) {}
+
+ // Initialize the image chunks list by searching the magic numbers in an image file.
+ bool Initialize(const std::string& filename) override;
+
+ // In Image Mode, verify that the source and target images have the same chunk structure (ie, the
+ // same sequence of deflate and normal chunks).
+ static bool CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeImage* src_image);
+
+ // In image mode, generate patches against the given source chunks and bonus_data; write the
+ // result to |patch_name|.
+ static bool GeneratePatches(ImageModeImage* tgt_image, ImageModeImage* src_image,
+ const std::vector<uint8_t>& bonus_data, const std::string& patch_name);
+};
+
+bool ImageModeImage::Initialize(const std::string& filename) {
+ if (!ReadFile(filename, &file_content_)) {
return false;
}
+ size_t sz = file_content_.size();
size_t pos = 0;
-
while (pos < sz) {
// 0x00 no header flags, 0x08 deflate compression, 0x1f8b gzip magic number
- if (sz - pos >= 4 && get_unaligned<uint32_t>(img->data() + pos) == 0x00088b1f) {
+ if (sz - pos >= 4 && get_unaligned<uint32_t>(file_content_.data() + pos) == 0x00088b1f) {
// 'pos' is the offset of the start of a gzip chunk.
size_t chunk_offset = pos;
// The remaining data is too small to be a gzip chunk; treat them as a normal chunk.
if (sz - pos < GZIP_HEADER_LEN + GZIP_FOOTER_LEN) {
- chunks->emplace_back(CHUNK_NORMAL, pos, img, sz - pos);
+ chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, sz - pos);
break;
}
// We need three chunks for the deflated image in total, one normal chunk for the header,
// one deflated chunk for the body, and another normal chunk for the footer.
- chunks->emplace_back(CHUNK_NORMAL, pos, img, GZIP_HEADER_LEN);
+ chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_HEADER_LEN);
pos += GZIP_HEADER_LEN;
// We must decompress this chunk in order to discover where it ends, and so we can update
@@ -657,7 +1000,7 @@
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = sz - pos;
- strm.next_in = img->data() + pos;
+ strm.next_in = file_content_.data() + pos;
// -15 means we are decoding a 'raw' deflate stream; zlib will
// not expect zlib headers.
@@ -700,22 +1043,22 @@
printf("Warning: invalid footer position; treating as a nomal chunk\n");
continue;
}
- size_t footer_size = get_unaligned<uint32_t>(img->data() + footer_index);
+ size_t footer_size = get_unaligned<uint32_t>(file_content_.data() + footer_index);
if (footer_size != uncompressed_len) {
printf("Warning: footer size %zu != decompressed size %zu; treating as a nomal chunk\n",
footer_size, uncompressed_len);
continue;
}
- ImageChunk body(CHUNK_DEFLATE, pos, img, raw_data_len);
+ ImageChunk body(CHUNK_DEFLATE, pos, &file_content_, raw_data_len);
uncompressed_data.resize(uncompressed_len);
body.SetUncompressedData(std::move(uncompressed_data));
- chunks->push_back(body);
+ chunks_.push_back(body);
pos += raw_data_len;
// create a normal chunk for the footer
- chunks->emplace_back(CHUNK_NORMAL, pos, img, GZIP_FOOTER_LEN);
+ chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_FOOTER_LEN);
pos += GZIP_FOOTER_LEN;
} else {
@@ -726,12 +1069,12 @@
size_t data_len = 0;
while (data_len + pos < sz) {
if (data_len + pos + 4 <= sz &&
- get_unaligned<uint32_t>(img->data() + pos + data_len) == 0x00088b1f) {
+ get_unaligned<uint32_t>(file_content_.data() + pos + data_len) == 0x00088b1f) {
break;
}
data_len++;
}
- chunks->emplace_back(CHUNK_NORMAL, pos, img, data_len);
+ chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, data_len);
pos += data_len;
}
@@ -740,348 +1083,180 @@
return true;
}
-/*
- * Given source and target chunks, compute a bsdiff patch between them.
- * Store the result in the patch_data.
- * |bsdiff_cache| can be used to cache the suffix array if the same |src| chunk
- * is used repeatedly, pass nullptr if not needed.
- */
-static bool MakePatch(const ImageChunk* src, ImageChunk* tgt, std::vector<uint8_t>* patch_data,
- saidx_t** bsdiff_cache) {
- if (tgt->ChangeChunkToRaw(0)) {
- size_t patch_size = tgt->DataLengthForPatch();
- patch_data->resize(patch_size);
- std::copy(tgt->DataForPatch(), tgt->DataForPatch() + patch_size, patch_data->begin());
- return true;
- }
+// In Image Mode, verify that the source and target images have the same chunk structure (ie, the
+// same sequence of deflate and normal chunks).
+bool ImageModeImage::CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeImage* src_image) {
+ // In image mode, merge the gzip header and footer in with any adjacent normal chunks.
+ tgt_image->MergeAdjacentNormalChunks();
+ src_image->MergeAdjacentNormalChunks();
-#if defined(__ANDROID__)
- char ptemp[] = "/data/local/tmp/imgdiff-patch-XXXXXX";
-#else
- char ptemp[] = "/tmp/imgdiff-patch-XXXXXX";
-#endif
-
- int fd = mkstemp(ptemp);
- if (fd == -1) {
- printf("MakePatch failed to create a temporary file: %s\n", strerror(errno));
+ if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) {
+ printf("source and target don't have same number of chunks!\n");
+ tgt_image->DumpChunks();
+ src_image->DumpChunks();
return false;
}
- close(fd);
-
- int r = bsdiff::bsdiff(src->DataForPatch(), src->DataLengthForPatch(), tgt->DataForPatch(),
- tgt->DataLengthForPatch(), ptemp, bsdiff_cache);
- if (r != 0) {
- printf("bsdiff() failed: %d\n", r);
- return false;
+ for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) {
+ if (tgt_image->Get(i)->GetType() != src_image->Get(i)->GetType()) {
+ printf("source and target don't have same chunk structure! (chunk %zu)\n", i);
+ tgt_image->DumpChunks();
+ src_image->DumpChunks();
+ return false;
+ }
}
- android::base::unique_fd patch_fd(open(ptemp, O_RDONLY));
- if (patch_fd == -1) {
- printf("failed to open %s: %s\n", ptemp, strerror(errno));
- return false;
- }
- struct stat st;
- if (fstat(patch_fd, &st) != 0) {
- printf("failed to stat patch file %s: %s\n", ptemp, strerror(errno));
- return false;
+ for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) {
+ auto& tgt_chunk = *tgt_image->Get(i);
+ auto& src_chunk = *src_image->Get(i);
+ if (tgt_chunk.GetType() != CHUNK_DEFLATE) {
+ continue;
+ }
+
+ // Confirm that we can recompress the data and get exactly the same bits as are in the
+ // input target image.
+ if (!tgt_chunk.ReconstructDeflateChunk()) {
+ printf("failed to reconstruct target deflate chunk %zu [%s]; treating as normal\n", i,
+ tgt_chunk.GetEntryName().c_str());
+ tgt_chunk.ChangeDeflateChunkToNormal();
+ src_chunk.ChangeDeflateChunkToNormal();
+ continue;
+ }
+
+ // If two deflate chunks are identical treat them as normal chunks.
+ if (tgt_chunk == src_chunk) {
+ tgt_chunk.ChangeDeflateChunkToNormal();
+ src_chunk.ChangeDeflateChunkToNormal();
+ }
}
- size_t sz = static_cast<size_t>(st.st_size);
- // Change the chunk type to raw if the patch takes less space that way.
- if (tgt->ChangeChunkToRaw(sz)) {
- unlink(ptemp);
- size_t patch_size = tgt->DataLengthForPatch();
- patch_data->resize(patch_size);
- std::copy(tgt->DataForPatch(), tgt->DataForPatch() + patch_size, patch_data->begin());
- return true;
- }
- patch_data->resize(sz);
- if (!android::base::ReadFully(patch_fd, patch_data->data(), sz)) {
- printf("failed to read \"%s\" %s\n", ptemp, strerror(errno));
+ // For images, we need to maintain the parallel structure of the chunk lists, so do the merging
+ // in both the source and target lists.
+ tgt_image->MergeAdjacentNormalChunks();
+ src_image->MergeAdjacentNormalChunks();
+ if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) {
+ // This shouldn't happen.
+ printf("merging normal chunks went awry\n");
return false;
}
- unlink(ptemp);
- tgt->SetSourceInfo(*src);
-
return true;
}
-/*
- * Look for runs of adjacent normal chunks and compress them down into
- * a single chunk. (Such runs can be produced when deflate chunks are
- * changed to normal chunks.)
- */
-static void MergeAdjacentNormalChunks(std::vector<ImageChunk>* chunks) {
- size_t merged_last = 0, cur = 0;
- while (cur < chunks->size()) {
- // Look for normal chunks adjacent to the current one. If such chunk exists, extend the
- // length of the current normal chunk.
- size_t to_check = cur + 1;
- while (to_check < chunks->size() && chunks->at(cur).IsAdjacentNormal(chunks->at(to_check))) {
- chunks->at(cur).MergeAdjacentNormal(chunks->at(to_check));
- to_check++;
+// In image mode, generate patches against the given source chunks and bonus_data; write the
+// result to |patch_name|.
+bool ImageModeImage::GeneratePatches(ImageModeImage* tgt_image, ImageModeImage* src_image,
+ const std::vector<uint8_t>& bonus_data,
+ const std::string& patch_name) {
+ printf("Construct patches for %zu chunks...\n", tgt_image->NumOfChunks());
+ std::vector<std::vector<uint8_t>> patch_data(tgt_image->NumOfChunks());
+
+ for (size_t i = 0; i < tgt_image->NumOfChunks(); i++) {
+ auto& tgt_chunk = *tgt_image->Get(i);
+ auto& src_chunk = *src_image->Get(i);
+
+ if (i == 1 && !bonus_data.empty()) {
+ printf(" using %zu bytes of bonus data for chunk %zu\n", bonus_data.size(), i);
+ src_chunk.SetBonusData(bonus_data);
}
- if (merged_last != cur) {
- chunks->at(merged_last) = std::move(chunks->at(cur));
+ if (!tgt_chunk.MakePatch(src_chunk, &patch_data[i], nullptr)) {
+ printf("Failed to generate patch for target chunk %zu: ", i);
+ return false;
}
- merged_last++;
- cur = to_check;
+ printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data[i].size(),
+ tgt_chunk.GetRawDataLength());
}
- if (merged_last < chunks->size()) {
- chunks->erase(chunks->begin() + merged_last, chunks->end());
- }
-}
-static ImageChunk* FindChunkByName(const std::string& name, std::vector<ImageChunk>& chunks) {
- for (size_t i = 0; i < chunks.size(); ++i) {
- if (chunks[i].GetType() == CHUNK_DEFLATE && chunks[i].GetEntryName() == name) {
- return &chunks[i];
- }
+ android::base::unique_fd patch_fd(
+ open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
+ if (patch_fd == -1) {
+ printf("failed to open \"%s\": %s\n", patch_name.c_str(), strerror(errno));
+ return false;
}
- return nullptr;
-}
-static void DumpChunks(const std::vector<ImageChunk>& chunks) {
- for (size_t i = 0; i < chunks.size(); ++i) {
- printf("chunk %zu: ", i);
- chunks[i].Dump();
- }
+ return tgt_image->WritePatchDataToFd(patch_data, patch_fd);
}
int imgdiff(int argc, const char** argv) {
bool zip_mode = false;
-
- if (argc >= 2 && strcmp(argv[1], "-z") == 0) {
- zip_mode = true;
- --argc;
- ++argv;
- }
-
std::vector<uint8_t> bonus_data;
- if (argc >= 3 && strcmp(argv[1], "-b") == 0) {
- android::base::unique_fd fd(open(argv[2], O_RDONLY));
- if (fd == -1) {
- printf("failed to open bonus file %s: %s\n", argv[2], strerror(errno));
- return 1;
- }
- struct stat st;
- if (fstat(fd, &st) != 0) {
- printf("failed to stat bonus file %s: %s\n", argv[2], strerror(errno));
- return 1;
- }
- size_t bonus_size = st.st_size;
- bonus_data.resize(bonus_size);
- if (!android::base::ReadFully(fd, bonus_data.data(), bonus_size)) {
- printf("failed to read bonus file %s: %s\n", argv[2], strerror(errno));
- return 1;
- }
+ int opt;
+ optind = 1; // Reset the getopt state so that we can call it multiple times for test.
- argc -= 2;
- argv += 2;
+ while ((opt = getopt(argc, const_cast<char**>(argv), "zb:")) != -1) {
+ switch (opt) {
+ case 'z':
+ zip_mode = true;
+ break;
+ case 'b': {
+ android::base::unique_fd fd(open(optarg, O_RDONLY));
+ if (fd == -1) {
+ printf("failed to open bonus file %s: %s\n", optarg, strerror(errno));
+ return 1;
+ }
+ struct stat st;
+ if (fstat(fd, &st) != 0) {
+ printf("failed to stat bonus file %s: %s\n", optarg, strerror(errno));
+ return 1;
+ }
+
+ size_t bonus_size = st.st_size;
+ bonus_data.resize(bonus_size);
+ if (!android::base::ReadFully(fd, bonus_data.data(), bonus_size)) {
+ printf("failed to read bonus file %s: %s\n", optarg, strerror(errno));
+ return 1;
+ }
+ break;
+ }
+ default:
+ printf("unexpected opt: %s\n", optarg);
+ return 2;
+ }
}
- if (argc != 4) {
- printf("usage: %s [-z] [-b <bonus-file>] <src-img> <tgt-img> <patch-file>\n",
- argv[0]);
+ if (argc - optind != 3) {
+ printf("usage: %s [-z] [-b <bonus-file>] <src-img> <tgt-img> <patch-file>\n", argv[0]);
return 2;
}
- std::vector<ImageChunk> src_chunks;
- std::vector<ImageChunk> tgt_chunks;
- std::vector<uint8_t> src_file;
- std::vector<uint8_t> tgt_file;
-
if (zip_mode) {
- if (!ReadZip(argv[1], &src_chunks, &src_file, true)) {
- printf("failed to break apart source zip file\n");
+ ZipModeImage src_image(true);
+ ZipModeImage tgt_image(false);
+
+ if (!src_image.Initialize(argv[optind])) {
return 1;
}
- if (!ReadZip(argv[2], &tgt_chunks, &tgt_file, false)) {
- printf("failed to break apart target zip file\n");
+ if (!tgt_image.Initialize(argv[optind + 1])) {
+ return 1;
+ }
+
+ if (!ZipModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) {
+ return 1;
+ }
+ // Compute bsdiff patches for each chunk's data (the uncompressed data, in the case of
+ // deflate chunks).
+ if (!ZipModeImage::GeneratePatches(&tgt_image, &src_image, argv[optind + 2])) {
return 1;
}
} else {
- if (!ReadImage(argv[1], &src_chunks, &src_file)) {
- printf("failed to break apart source image\n");
+ ImageModeImage src_image(true);
+ ImageModeImage tgt_image(false);
+
+ if (!src_image.Initialize(argv[optind])) {
return 1;
}
- if (!ReadImage(argv[2], &tgt_chunks, &tgt_file)) {
- printf("failed to break apart target image\n");
+ if (!tgt_image.Initialize(argv[optind + 1])) {
return 1;
}
- // Verify that the source and target images have the same chunk
- // structure (ie, the same sequence of deflate and normal chunks).
-
- // Merge the gzip header and footer in with any adjacent normal chunks.
- MergeAdjacentNormalChunks(&tgt_chunks);
- MergeAdjacentNormalChunks(&src_chunks);
-
- if (src_chunks.size() != tgt_chunks.size()) {
- printf("source and target don't have same number of chunks!\n");
- printf("source chunks:\n");
- DumpChunks(src_chunks);
- printf("target chunks:\n");
- DumpChunks(tgt_chunks);
+ if (!ImageModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) {
return 1;
}
- for (size_t i = 0; i < src_chunks.size(); ++i) {
- if (src_chunks[i].GetType() != tgt_chunks[i].GetType()) {
- printf("source and target don't have same chunk structure! (chunk %zu)\n", i);
- printf("source chunks:\n");
- DumpChunks(src_chunks);
- printf("target chunks:\n");
- DumpChunks(tgt_chunks);
- return 1;
- }
- }
- }
-
- for (size_t i = 0; i < tgt_chunks.size(); ++i) {
- if (tgt_chunks[i].GetType() == CHUNK_DEFLATE) {
- // Confirm that given the uncompressed chunk data in the target, we
- // can recompress it and get exactly the same bits as are in the
- // input target image. If this fails, treat the chunk as a normal
- // non-deflated chunk.
- if (!tgt_chunks[i].ReconstructDeflateChunk()) {
- printf("failed to reconstruct target deflate chunk %zu [%s]; treating as normal\n", i,
- tgt_chunks[i].GetEntryName().c_str());
- tgt_chunks[i].ChangeDeflateChunkToNormal();
- if (zip_mode) {
- ImageChunk* src = FindChunkByName(tgt_chunks[i].GetEntryName(), src_chunks);
- if (src != nullptr) {
- src->ChangeDeflateChunkToNormal();
- }
- } else {
- src_chunks[i].ChangeDeflateChunkToNormal();
- }
- continue;
- }
-
- // If two deflate chunks are identical (eg, the kernel has not
- // changed between two builds), treat them as normal chunks.
- // This makes applypatch much faster -- it can apply a trivial
- // patch to the compressed data, rather than uncompressing and
- // recompressing to apply the trivial patch to the uncompressed
- // data.
- ImageChunk* src;
- if (zip_mode) {
- src = FindChunkByName(tgt_chunks[i].GetEntryName(), src_chunks);
- } else {
- src = &src_chunks[i];
- }
-
- if (src == nullptr) {
- tgt_chunks[i].ChangeDeflateChunkToNormal();
- } else if (tgt_chunks[i] == *src) {
- tgt_chunks[i].ChangeDeflateChunkToNormal();
- src->ChangeDeflateChunkToNormal();
- }
- }
- }
-
- // Merging neighboring normal chunks.
- if (zip_mode) {
- // For zips, we only need to do this to the target: deflated
- // chunks are matched via filename, and normal chunks are patched
- // using the entire source file as the source.
- MergeAdjacentNormalChunks(&tgt_chunks);
-
- } else {
- // For images, we need to maintain the parallel structure of the
- // chunk lists, so do the merging in both the source and target
- // lists.
- MergeAdjacentNormalChunks(&tgt_chunks);
- MergeAdjacentNormalChunks(&src_chunks);
- if (src_chunks.size() != tgt_chunks.size()) {
- // This shouldn't happen.
- printf("merging normal chunks went awry\n");
+ if (!ImageModeImage::GeneratePatches(&tgt_image, &src_image, bonus_data, argv[optind + 2])) {
return 1;
}
}
- // Compute bsdiff patches for each chunk's data (the uncompressed
- // data, in the case of deflate chunks).
-
- DumpChunks(src_chunks);
-
- printf("Construct patches for %zu chunks...\n", tgt_chunks.size());
- std::vector<std::vector<uint8_t>> patch_data(tgt_chunks.size());
- saidx_t* bsdiff_cache = nullptr;
- for (size_t i = 0; i < tgt_chunks.size(); ++i) {
- if (zip_mode) {
- ImageChunk* src;
- if (tgt_chunks[i].GetType() == CHUNK_DEFLATE &&
- (src = FindChunkByName(tgt_chunks[i].GetEntryName(), src_chunks))) {
- if (!MakePatch(src, &tgt_chunks[i], &patch_data[i], nullptr)) {
- printf("Failed to generate patch for target chunk %zu: ", i);
- return 1;
- }
- } else {
- if (!MakePatch(&src_chunks[0], &tgt_chunks[i], &patch_data[i], &bsdiff_cache)) {
- printf("Failed to generate patch for target chunk %zu: ", i);
- return 1;
- }
- }
- } else {
- if (i == 1 && !bonus_data.empty()) {
- printf(" using %zu bytes of bonus data for chunk %zu\n", bonus_data.size(), i);
- src_chunks[i].SetBonusData(bonus_data);
- }
-
- if (!MakePatch(&src_chunks[i], &tgt_chunks[i], &patch_data[i], nullptr)) {
- printf("Failed to generate patch for target chunk %zu: ", i);
- return 1;
- }
- }
- printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data[i].size(),
- src_chunks[i].GetRawDataLength());
- }
-
- if (bsdiff_cache != nullptr) {
- free(bsdiff_cache);
- }
-
- // Figure out how big the imgdiff file header is going to be, so
- // that we can correctly compute the offset of each bsdiff patch
- // within the file.
-
- size_t total_header_size = 12;
- for (size_t i = 0; i < tgt_chunks.size(); ++i) {
- total_header_size += tgt_chunks[i].GetHeaderSize(patch_data[i].size());
- }
-
- size_t offset = total_header_size;
-
- android::base::unique_fd patch_fd(open(argv[3], O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
- if (patch_fd == -1) {
- printf("failed to open \"%s\": %s\n", argv[3], strerror(errno));
- return 1;
- }
-
- // Write out the headers.
- if (!android::base::WriteStringToFd("IMGDIFF2", patch_fd)) {
- printf("failed to write \"IMGDIFF2\" to \"%s\": %s\n", argv[3], strerror(errno));
- return 1;
- }
- Write4(patch_fd, static_cast<int32_t>(tgt_chunks.size()));
- for (size_t i = 0; i < tgt_chunks.size(); ++i) {
- printf("chunk %zu: ", i);
- offset = tgt_chunks[i].WriteHeaderToFd(patch_fd, patch_data[i], offset);
- }
-
- // Append each chunk's bsdiff patch, in order.
- for (size_t i = 0; i < tgt_chunks.size(); ++i) {
- if (tgt_chunks[i].GetType() != CHUNK_RAW) {
- if (!android::base::WriteFully(patch_fd, patch_data[i].data(), patch_data[i].size())) {
- CHECK(false) << "failed to write " << patch_data[i].size() << " bytes patch for chunk "
- << i;
- }
- }
- }
-
return 0;
}