blob: bab2fe1661079e614a164acc94e971aad2cb6d0c [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ctype.h>
#include <errno.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <fcntl.h>
#include <time.h>
#include <ftw.h>
#include <sys/capability.h>
#include <sys/xattr.h>
#include <linux/xattr.h>
#include <inttypes.h>
#include <memory>
#include <vector>
#include <android-base/parseint.h>
#include <android-base/strings.h>
#include <android-base/stringprintf.h>
#include <selinux/label.h>
#include <selinux/selinux.h>
#include "bootloader.h"
#include "applypatch/applypatch.h"
#include "cutils/android_reboot.h"
#include "cutils/misc.h"
#include "cutils/properties.h"
#include "edify/expr.h"
#include "openssl/sha.h"
#include "minzip/DirUtil.h"
#include "mtdutils/mounts.h"
#include "mtdutils/mtdutils.h"
#include "ota_io.h"
#include "updater.h"
#include "install.h"
#include "tune2fs.h"
#ifdef USE_EXT4
#include "make_ext4fs.h"
#include "wipe.h"
#endif
// Send over the buffer to recovery though the command pipe.
static void uiPrint(State* state, const std::string& buffer) {
UpdaterInfo* ui = reinterpret_cast<UpdaterInfo*>(state->cookie);
// "line1\nline2\n" will be split into 3 tokens: "line1", "line2" and "".
// So skip sending empty strings to UI.
std::vector<std::string> lines = android::base::Split(buffer, "\n");
for (auto& line: lines) {
if (!line.empty()) {
fprintf(ui->cmd_pipe, "ui_print %s\n", line.c_str());
fprintf(ui->cmd_pipe, "ui_print\n");
}
}
// On the updater side, we need to dump the contents to stderr (which has
// been redirected to the log file). Because the recovery will only print
// the contents to screen when processing pipe command ui_print.
fprintf(stderr, "%s", buffer.c_str());
}
__attribute__((__format__(printf, 2, 3))) __nonnull((2))
void uiPrintf(State* state, const char* format, ...) {
std::string error_msg;
va_list ap;
va_start(ap, format);
android::base::StringAppendV(&error_msg, format, ap);
va_end(ap);
uiPrint(state, error_msg);
}
// Take a sha-1 digest and return it as a newly-allocated hex string.
char* PrintSha1(const uint8_t* digest) {
char* buffer = reinterpret_cast<char*>(malloc(SHA_DIGEST_LENGTH*2 + 1));
const char* alphabet = "0123456789abcdef";
size_t i;
for (i = 0; i < SHA_DIGEST_LENGTH; ++i) {
buffer[i*2] = alphabet[(digest[i] >> 4) & 0xf];
buffer[i*2+1] = alphabet[digest[i] & 0xf];
}
buffer[i*2] = '\0';
return buffer;
}
// mount(fs_type, partition_type, location, mount_point)
//
// fs_type="yaffs2" partition_type="MTD" location=partition
// fs_type="ext4" partition_type="EMMC" location=device
Value* MountFn(const char* name, State* state, int argc, Expr* argv[]) {
char* result = NULL;
if (argc != 4 && argc != 5) {
return ErrorAbort(state, "%s() expects 4-5 args, got %d", name, argc);
}
char* fs_type;
char* partition_type;
char* location;
char* mount_point;
char* mount_options;
bool has_mount_options;
if (argc == 5) {
has_mount_options = true;
if (ReadArgs(state, argv, 5, &fs_type, &partition_type,
&location, &mount_point, &mount_options) < 0) {
return NULL;
}
} else {
has_mount_options = false;
if (ReadArgs(state, argv, 4, &fs_type, &partition_type,
&location, &mount_point) < 0) {
return NULL;
}
}
if (strlen(fs_type) == 0) {
ErrorAbort(state, "fs_type argument to %s() can't be empty", name);
goto done;
}
if (strlen(partition_type) == 0) {
ErrorAbort(state, "partition_type argument to %s() can't be empty",
name);
goto done;
}
if (strlen(location) == 0) {
ErrorAbort(state, "location argument to %s() can't be empty", name);
goto done;
}
if (strlen(mount_point) == 0) {
ErrorAbort(state, "mount_point argument to %s() can't be empty", name);
goto done;
}
{
char *secontext = NULL;
if (sehandle) {
selabel_lookup(sehandle, &secontext, mount_point, 0755);
setfscreatecon(secontext);
}
mkdir(mount_point, 0755);
if (secontext) {
freecon(secontext);
setfscreatecon(NULL);
}
}
if (strcmp(partition_type, "MTD") == 0) {
mtd_scan_partitions();
const MtdPartition* mtd;
mtd = mtd_find_partition_by_name(location);
if (mtd == NULL) {
uiPrintf(state, "%s: no mtd partition named \"%s\"\n",
name, location);
result = strdup("");
goto done;
}
if (mtd_mount_partition(mtd, mount_point, fs_type, 0 /* rw */) != 0) {
uiPrintf(state, "mtd mount of %s failed: %s\n",
location, strerror(errno));
result = strdup("");
goto done;
}
result = mount_point;
} else {
if (mount(location, mount_point, fs_type,
MS_NOATIME | MS_NODEV | MS_NODIRATIME,
has_mount_options ? mount_options : "") < 0) {
uiPrintf(state, "%s: failed to mount %s at %s: %s\n",
name, location, mount_point, strerror(errno));
result = strdup("");
} else {
result = mount_point;
}
}
done:
free(fs_type);
free(partition_type);
free(location);
if (result != mount_point) free(mount_point);
if (has_mount_options) free(mount_options);
return StringValue(result);
}
// is_mounted(mount_point)
Value* IsMountedFn(const char* name, State* state, int argc, Expr* argv[]) {
char* result = NULL;
if (argc != 1) {
return ErrorAbort(state, "%s() expects 1 arg, got %d", name, argc);
}
char* mount_point;
if (ReadArgs(state, argv, 1, &mount_point) < 0) {
return NULL;
}
if (strlen(mount_point) == 0) {
ErrorAbort(state, "mount_point argument to unmount() can't be empty");
goto done;
}
scan_mounted_volumes();
{
const MountedVolume* vol = find_mounted_volume_by_mount_point(mount_point);
if (vol == NULL) {
result = strdup("");
} else {
result = mount_point;
}
}
done:
if (result != mount_point) free(mount_point);
return StringValue(result);
}
Value* UnmountFn(const char* name, State* state, int argc, Expr* argv[]) {
char* result = NULL;
if (argc != 1) {
return ErrorAbort(state, "%s() expects 1 arg, got %d", name, argc);
}
char* mount_point;
if (ReadArgs(state, argv, 1, &mount_point) < 0) {
return NULL;
}
if (strlen(mount_point) == 0) {
ErrorAbort(state, "mount_point argument to unmount() can't be empty");
goto done;
}
scan_mounted_volumes();
{
const MountedVolume* vol = find_mounted_volume_by_mount_point(mount_point);
if (vol == NULL) {
uiPrintf(state, "unmount of %s failed; no such volume\n", mount_point);
result = strdup("");
} else {
int ret = unmount_mounted_volume(vol);
if (ret != 0) {
uiPrintf(state, "unmount of %s failed (%d): %s\n",
mount_point, ret, strerror(errno));
}
result = mount_point;
}
}
done:
if (result != mount_point) free(mount_point);
return StringValue(result);
}
static int exec_cmd(const char* path, char* const argv[]) {
int status;
pid_t child;
if ((child = vfork()) == 0) {
execv(path, argv);
_exit(-1);
}
waitpid(child, &status, 0);
if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
printf("%s failed with status %d\n", path, WEXITSTATUS(status));
}
return WEXITSTATUS(status);
}
// format(fs_type, partition_type, location, fs_size, mount_point)
//
// fs_type="yaffs2" partition_type="MTD" location=partition fs_size=<bytes> mount_point=<location>
// fs_type="ext4" partition_type="EMMC" location=device fs_size=<bytes> mount_point=<location>
// fs_type="f2fs" partition_type="EMMC" location=device fs_size=<bytes> mount_point=<location>
// if fs_size == 0, then make fs uses the entire partition.
// if fs_size > 0, that is the size to use
// if fs_size < 0, then reserve that many bytes at the end of the partition (not for "f2fs")
Value* FormatFn(const char* name, State* state, int argc, Expr* argv[]) {
char* result = NULL;
if (argc != 5) {
return ErrorAbort(state, "%s() expects 5 args, got %d", name, argc);
}
char* fs_type;
char* partition_type;
char* location;
char* fs_size;
char* mount_point;
if (ReadArgs(state, argv, 5, &fs_type, &partition_type, &location, &fs_size, &mount_point) < 0) {
return NULL;
}
if (strlen(fs_type) == 0) {
ErrorAbort(state, "fs_type argument to %s() can't be empty", name);
goto done;
}
if (strlen(partition_type) == 0) {
ErrorAbort(state, "partition_type argument to %s() can't be empty",
name);
goto done;
}
if (strlen(location) == 0) {
ErrorAbort(state, "location argument to %s() can't be empty", name);
goto done;
}
if (strlen(mount_point) == 0) {
ErrorAbort(state, "mount_point argument to %s() can't be empty", name);
goto done;
}
if (strcmp(partition_type, "MTD") == 0) {
mtd_scan_partitions();
const MtdPartition* mtd = mtd_find_partition_by_name(location);
if (mtd == NULL) {
printf("%s: no mtd partition named \"%s\"",
name, location);
result = strdup("");
goto done;
}
MtdWriteContext* ctx = mtd_write_partition(mtd);
if (ctx == NULL) {
printf("%s: can't write \"%s\"", name, location);
result = strdup("");
goto done;
}
if (mtd_erase_blocks(ctx, -1) == -1) {
mtd_write_close(ctx);
printf("%s: failed to erase \"%s\"", name, location);
result = strdup("");
goto done;
}
if (mtd_write_close(ctx) != 0) {
printf("%s: failed to close \"%s\"", name, location);
result = strdup("");
goto done;
}
result = location;
#ifdef USE_EXT4
} else if (strcmp(fs_type, "ext4") == 0) {
int status = make_ext4fs(location, atoll(fs_size), mount_point, sehandle);
if (status != 0) {
printf("%s: make_ext4fs failed (%d) on %s",
name, status, location);
result = strdup("");
goto done;
}
result = location;
} else if (strcmp(fs_type, "f2fs") == 0) {
char *num_sectors;
if (asprintf(&num_sectors, "%lld", atoll(fs_size) / 512) <= 0) {
printf("format_volume: failed to create %s command for %s\n", fs_type, location);
result = strdup("");
goto done;
}
const char *f2fs_path = "/sbin/mkfs.f2fs";
const char* const f2fs_argv[] = {"mkfs.f2fs", "-t", "-d1", location, num_sectors, NULL};
int status = exec_cmd(f2fs_path, (char* const*)f2fs_argv);
free(num_sectors);
if (status != 0) {
printf("%s: mkfs.f2fs failed (%d) on %s",
name, status, location);
result = strdup("");
goto done;
}
result = location;
#endif
} else {
printf("%s: unsupported fs_type \"%s\" partition_type \"%s\"",
name, fs_type, partition_type);
}
done:
free(fs_type);
free(partition_type);
if (result != location) free(location);
return StringValue(result);
}
Value* RenameFn(const char* name, State* state, int argc, Expr* argv[]) {
char* result = NULL;
if (argc != 2) {
return ErrorAbort(state, "%s() expects 2 args, got %d", name, argc);
}
char* src_name;
char* dst_name;
if (ReadArgs(state, argv, 2, &src_name, &dst_name) < 0) {
return NULL;
}
if (strlen(src_name) == 0) {
ErrorAbort(state, "src_name argument to %s() can't be empty", name);
goto done;
}
if (strlen(dst_name) == 0) {
ErrorAbort(state, "dst_name argument to %s() can't be empty", name);
goto done;
}
if (make_parents(dst_name) != 0) {
ErrorAbort(state, "Creating parent of %s failed, error %s",
dst_name, strerror(errno));
} else if (access(dst_name, F_OK) == 0 && access(src_name, F_OK) != 0) {
// File was already moved
result = dst_name;
} else if (rename(src_name, dst_name) != 0) {
ErrorAbort(state, "Rename of %s to %s failed, error %s",
src_name, dst_name, strerror(errno));
} else {
result = dst_name;
}
done:
free(src_name);
if (result != dst_name) free(dst_name);
return StringValue(result);
}
Value* DeleteFn(const char* name, State* state, int argc, Expr* argv[]) {
char** paths = reinterpret_cast<char**>(malloc(argc * sizeof(char*)));
for (int i = 0; i < argc; ++i) {
paths[i] = Evaluate(state, argv[i]);
if (paths[i] == NULL) {
for (int j = 0; j < i; ++j) {
free(paths[j]);
}
free(paths);
return NULL;
}
}
bool recursive = (strcmp(name, "delete_recursive") == 0);
int success = 0;
for (int i = 0; i < argc; ++i) {
if ((recursive ? dirUnlinkHierarchy(paths[i]) : unlink(paths[i])) == 0)
++success;
free(paths[i]);
}
free(paths);
char buffer[10];
sprintf(buffer, "%d", success);
return StringValue(strdup(buffer));
}
Value* ShowProgressFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 2) {
return ErrorAbort(state, "%s() expects 2 args, got %d", name, argc);
}
char* frac_str;
char* sec_str;
if (ReadArgs(state, argv, 2, &frac_str, &sec_str) < 0) {
return NULL;
}
double frac = strtod(frac_str, NULL);
int sec;
android::base::ParseInt(sec_str, &sec);
UpdaterInfo* ui = (UpdaterInfo*)(state->cookie);
fprintf(ui->cmd_pipe, "progress %f %d\n", frac, sec);
free(sec_str);
return StringValue(frac_str);
}
Value* SetProgressFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 1) {
return ErrorAbort(state, "%s() expects 1 arg, got %d", name, argc);
}
char* frac_str;
if (ReadArgs(state, argv, 1, &frac_str) < 0) {
return NULL;
}
double frac = strtod(frac_str, NULL);
UpdaterInfo* ui = (UpdaterInfo*)(state->cookie);
fprintf(ui->cmd_pipe, "set_progress %f\n", frac);
return StringValue(frac_str);
}
// package_extract_dir(package_path, destination_path)
Value* PackageExtractDirFn(const char* name, State* state,
int argc, Expr* argv[]) {
if (argc != 2) {
return ErrorAbort(state, "%s() expects 2 args, got %d", name, argc);
}
char* zip_path;
char* dest_path;
if (ReadArgs(state, argv, 2, &zip_path, &dest_path) < 0) return NULL;
ZipArchive* za = ((UpdaterInfo*)(state->cookie))->package_zip;
// To create a consistent system image, never use the clock for timestamps.
struct utimbuf timestamp = { 1217592000, 1217592000 }; // 8/1/2008 default
bool success = mzExtractRecursive(za, zip_path, dest_path,
&timestamp,
NULL, NULL, sehandle);
free(zip_path);
free(dest_path);
return StringValue(strdup(success ? "t" : ""));
}
// package_extract_file(package_path, destination_path)
// or
// package_extract_file(package_path)
// to return the entire contents of the file as the result of this
// function (the char* returned is actually a FileContents*).
Value* PackageExtractFileFn(const char* name, State* state,
int argc, Expr* argv[]) {
if (argc < 1 || argc > 2) {
return ErrorAbort(state, "%s() expects 1 or 2 args, got %d",
name, argc);
}
bool success = false;
if (argc == 2) {
// The two-argument version extracts to a file.
ZipArchive* za = ((UpdaterInfo*)(state->cookie))->package_zip;
char* zip_path;
char* dest_path;
if (ReadArgs(state, argv, 2, &zip_path, &dest_path) < 0) return NULL;
const ZipEntry* entry = mzFindZipEntry(za, zip_path);
if (entry == NULL) {
printf("%s: no %s in package\n", name, zip_path);
goto done2;
}
{
int fd = TEMP_FAILURE_RETRY(ota_open(dest_path, O_WRONLY | O_CREAT | O_TRUNC,
S_IRUSR | S_IWUSR));
if (fd == -1) {
printf("%s: can't open %s for write: %s\n", name, dest_path, strerror(errno));
goto done2;
}
success = mzExtractZipEntryToFile(za, entry, fd);
if (ota_fsync(fd) == -1) {
printf("fsync of \"%s\" failed: %s\n", dest_path, strerror(errno));
success = false;
}
if (ota_close(fd) == -1) {
printf("close of \"%s\" failed: %s\n", dest_path, strerror(errno));
success = false;
}
}
done2:
free(zip_path);
free(dest_path);
return StringValue(strdup(success ? "t" : ""));
} else {
// The one-argument version returns the contents of the file
// as the result.
char* zip_path;
if (ReadArgs(state, argv, 1, &zip_path) < 0) return NULL;
Value* v = reinterpret_cast<Value*>(malloc(sizeof(Value)));
v->type = VAL_BLOB;
v->size = -1;
v->data = NULL;
ZipArchive* za = ((UpdaterInfo*)(state->cookie))->package_zip;
const ZipEntry* entry = mzFindZipEntry(za, zip_path);
if (entry == NULL) {
printf("%s: no %s in package\n", name, zip_path);
goto done1;
}
v->size = mzGetZipEntryUncompLen(entry);
v->data = reinterpret_cast<char*>(malloc(v->size));
if (v->data == NULL) {
printf("%s: failed to allocate %zd bytes for %s\n",
name, v->size, zip_path);
goto done1;
}
success = mzExtractZipEntryToBuffer(za, entry,
(unsigned char *)v->data);
done1:
free(zip_path);
if (!success) {
free(v->data);
v->data = NULL;
v->size = -1;
}
return v;
}
}
// Create all parent directories of name, if necessary.
static int make_parents(char* name) {
char* p;
for (p = name + (strlen(name)-1); p > name; --p) {
if (*p != '/') continue;
*p = '\0';
if (make_parents(name) < 0) return -1;
int result = mkdir(name, 0700);
if (result == 0) printf("created [%s]\n", name);
*p = '/';
if (result == 0 || errno == EEXIST) {
// successfully created or already existed; we're done
return 0;
} else {
printf("failed to mkdir %s: %s\n", name, strerror(errno));
return -1;
}
}
return 0;
}
// symlink target src1 src2 ...
// unlinks any previously existing src1, src2, etc before creating symlinks.
Value* SymlinkFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc == 0) {
return ErrorAbort(state, "%s() expects 1+ args, got %d", name, argc);
}
char* target;
target = Evaluate(state, argv[0]);
if (target == NULL) return NULL;
char** srcs = ReadVarArgs(state, argc-1, argv+1);
if (srcs == NULL) {
free(target);
return NULL;
}
int bad = 0;
int i;
for (i = 0; i < argc-1; ++i) {
if (unlink(srcs[i]) < 0) {
if (errno != ENOENT) {
printf("%s: failed to remove %s: %s\n",
name, srcs[i], strerror(errno));
++bad;
}
}
if (make_parents(srcs[i])) {
printf("%s: failed to symlink %s to %s: making parents failed\n",
name, srcs[i], target);
++bad;
}
if (symlink(target, srcs[i]) < 0) {
printf("%s: failed to symlink %s to %s: %s\n",
name, srcs[i], target, strerror(errno));
++bad;
}
free(srcs[i]);
}
free(srcs);
if (bad) {
return ErrorAbort(state, "%s: some symlinks failed", name);
}
return StringValue(strdup(""));
}
struct perm_parsed_args {
bool has_uid;
uid_t uid;
bool has_gid;
gid_t gid;
bool has_mode;
mode_t mode;
bool has_fmode;
mode_t fmode;
bool has_dmode;
mode_t dmode;
bool has_selabel;
char* selabel;
bool has_capabilities;
uint64_t capabilities;
};
static struct perm_parsed_args ParsePermArgs(State * state, int argc, char** args) {
int i;
struct perm_parsed_args parsed;
int bad = 0;
static int max_warnings = 20;
memset(&parsed, 0, sizeof(parsed));
for (i = 1; i < argc; i += 2) {
if (strcmp("uid", args[i]) == 0) {
int64_t uid;
if (sscanf(args[i+1], "%" SCNd64, &uid) == 1) {
parsed.uid = uid;
parsed.has_uid = true;
} else {
uiPrintf(state, "ParsePermArgs: invalid UID \"%s\"\n", args[i + 1]);
bad++;
}
continue;
}
if (strcmp("gid", args[i]) == 0) {
int64_t gid;
if (sscanf(args[i+1], "%" SCNd64, &gid) == 1) {
parsed.gid = gid;
parsed.has_gid = true;
} else {
uiPrintf(state, "ParsePermArgs: invalid GID \"%s\"\n", args[i + 1]);
bad++;
}
continue;
}
if (strcmp("mode", args[i]) == 0) {
int32_t mode;
if (sscanf(args[i+1], "%" SCNi32, &mode) == 1) {
parsed.mode = mode;
parsed.has_mode = true;
} else {
uiPrintf(state, "ParsePermArgs: invalid mode \"%s\"\n", args[i + 1]);
bad++;
}
continue;
}
if (strcmp("dmode", args[i]) == 0) {
int32_t mode;
if (sscanf(args[i+1], "%" SCNi32, &mode) == 1) {
parsed.dmode = mode;
parsed.has_dmode = true;
} else {
uiPrintf(state, "ParsePermArgs: invalid dmode \"%s\"\n", args[i + 1]);
bad++;
}
continue;
}
if (strcmp("fmode", args[i]) == 0) {
int32_t mode;
if (sscanf(args[i+1], "%" SCNi32, &mode) == 1) {
parsed.fmode = mode;
parsed.has_fmode = true;
} else {
uiPrintf(state, "ParsePermArgs: invalid fmode \"%s\"\n", args[i + 1]);
bad++;
}
continue;
}
if (strcmp("capabilities", args[i]) == 0) {
int64_t capabilities;
if (sscanf(args[i+1], "%" SCNi64, &capabilities) == 1) {
parsed.capabilities = capabilities;
parsed.has_capabilities = true;
} else {
uiPrintf(state, "ParsePermArgs: invalid capabilities \"%s\"\n", args[i + 1]);
bad++;
}
continue;
}
if (strcmp("selabel", args[i]) == 0) {
if (args[i+1][0] != '\0') {
parsed.selabel = args[i+1];
parsed.has_selabel = true;
} else {
uiPrintf(state, "ParsePermArgs: invalid selabel \"%s\"\n", args[i + 1]);
bad++;
}
continue;
}
if (max_warnings != 0) {
printf("ParsedPermArgs: unknown key \"%s\", ignoring\n", args[i]);
max_warnings--;
if (max_warnings == 0) {
printf("ParsedPermArgs: suppressing further warnings\n");
}
}
}
return parsed;
}
static int ApplyParsedPerms(
State * state,
const char* filename,
const struct stat *statptr,
struct perm_parsed_args parsed)
{
int bad = 0;
if (parsed.has_selabel) {
if (lsetfilecon(filename, parsed.selabel) != 0) {
uiPrintf(state, "ApplyParsedPerms: lsetfilecon of %s to %s failed: %s\n",
filename, parsed.selabel, strerror(errno));
bad++;
}
}
/* ignore symlinks */
if (S_ISLNK(statptr->st_mode)) {
return bad;
}
if (parsed.has_uid) {
if (chown(filename, parsed.uid, -1) < 0) {
uiPrintf(state, "ApplyParsedPerms: chown of %s to %d failed: %s\n",
filename, parsed.uid, strerror(errno));
bad++;
}
}
if (parsed.has_gid) {
if (chown(filename, -1, parsed.gid) < 0) {
uiPrintf(state, "ApplyParsedPerms: chgrp of %s to %d failed: %s\n",
filename, parsed.gid, strerror(errno));
bad++;
}
}
if (parsed.has_mode) {
if (chmod(filename, parsed.mode) < 0) {
uiPrintf(state, "ApplyParsedPerms: chmod of %s to %d failed: %s\n",
filename, parsed.mode, strerror(errno));
bad++;
}
}
if (parsed.has_dmode && S_ISDIR(statptr->st_mode)) {
if (chmod(filename, parsed.dmode) < 0) {
uiPrintf(state, "ApplyParsedPerms: chmod of %s to %d failed: %s\n",
filename, parsed.dmode, strerror(errno));
bad++;
}
}
if (parsed.has_fmode && S_ISREG(statptr->st_mode)) {
if (chmod(filename, parsed.fmode) < 0) {
uiPrintf(state, "ApplyParsedPerms: chmod of %s to %d failed: %s\n",
filename, parsed.fmode, strerror(errno));
bad++;
}
}
if (parsed.has_capabilities && S_ISREG(statptr->st_mode)) {
if (parsed.capabilities == 0) {
if ((removexattr(filename, XATTR_NAME_CAPS) == -1) && (errno != ENODATA)) {
// Report failure unless it's ENODATA (attribute not set)
uiPrintf(state, "ApplyParsedPerms: removexattr of %s to %" PRIx64 " failed: %s\n",
filename, parsed.capabilities, strerror(errno));
bad++;
}
} else {
struct vfs_cap_data cap_data;
memset(&cap_data, 0, sizeof(cap_data));
cap_data.magic_etc = VFS_CAP_REVISION | VFS_CAP_FLAGS_EFFECTIVE;
cap_data.data[0].permitted = (uint32_t) (parsed.capabilities & 0xffffffff);
cap_data.data[0].inheritable = 0;
cap_data.data[1].permitted = (uint32_t) (parsed.capabilities >> 32);
cap_data.data[1].inheritable = 0;
if (setxattr(filename, XATTR_NAME_CAPS, &cap_data, sizeof(cap_data), 0) < 0) {
uiPrintf(state, "ApplyParsedPerms: setcap of %s to %" PRIx64 " failed: %s\n",
filename, parsed.capabilities, strerror(errno));
bad++;
}
}
}
return bad;
}
// nftw doesn't allow us to pass along context, so we need to use
// global variables. *sigh*
static struct perm_parsed_args recursive_parsed_args;
static State* recursive_state;
static int do_SetMetadataRecursive(const char* filename, const struct stat *statptr,
int fileflags, struct FTW *pfwt) {
return ApplyParsedPerms(recursive_state, filename, statptr, recursive_parsed_args);
}
static Value* SetMetadataFn(const char* name, State* state, int argc, Expr* argv[]) {
int bad = 0;
struct stat sb;
Value* result = NULL;
bool recursive = (strcmp(name, "set_metadata_recursive") == 0);
if ((argc % 2) != 1) {
return ErrorAbort(state, "%s() expects an odd number of arguments, got %d", name, argc);
}
char** args = ReadVarArgs(state, argc, argv);
if (args == NULL) return NULL;
if (lstat(args[0], &sb) == -1) {
result = ErrorAbort(state, "%s: Error on lstat of \"%s\": %s", name, args[0], strerror(errno));
goto done;
}
{
struct perm_parsed_args parsed = ParsePermArgs(state, argc, args);
if (recursive) {
recursive_parsed_args = parsed;
recursive_state = state;
bad += nftw(args[0], do_SetMetadataRecursive, 30, FTW_CHDIR | FTW_DEPTH | FTW_PHYS);
memset(&recursive_parsed_args, 0, sizeof(recursive_parsed_args));
recursive_state = NULL;
} else {
bad += ApplyParsedPerms(state, args[0], &sb, parsed);
}
}
done:
for (int i = 0; i < argc; ++i) {
free(args[i]);
}
free(args);
if (result != NULL) {
return result;
}
if (bad > 0) {
return ErrorAbort(state, "%s: some changes failed", name);
}
return StringValue(strdup(""));
}
Value* GetPropFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 1) {
return ErrorAbort(state, "%s() expects 1 arg, got %d", name, argc);
}
char* key = Evaluate(state, argv[0]);
if (key == NULL) return NULL;
char value[PROPERTY_VALUE_MAX];
property_get(key, value, "");
free(key);
return StringValue(strdup(value));
}
// file_getprop(file, key)
//
// interprets 'file' as a getprop-style file (key=value pairs, one
// per line. # comment lines,blank lines, lines without '=' ignored),
// and returns the value for 'key' (or "" if it isn't defined).
Value* FileGetPropFn(const char* name, State* state, int argc, Expr* argv[]) {
char* result = NULL;
char* buffer = NULL;
char* filename;
char* key;
if (ReadArgs(state, argv, 2, &filename, &key) < 0) {
return NULL;
}
struct stat st;
if (stat(filename, &st) < 0) {
ErrorAbort(state, "%s: failed to stat \"%s\": %s", name, filename, strerror(errno));
goto done;
}
#define MAX_FILE_GETPROP_SIZE 65536
if (st.st_size > MAX_FILE_GETPROP_SIZE) {
ErrorAbort(state, "%s too large for %s (max %d)", filename, name, MAX_FILE_GETPROP_SIZE);
goto done;
}
buffer = reinterpret_cast<char*>(malloc(st.st_size+1));
if (buffer == NULL) {
ErrorAbort(state, "%s: failed to alloc %zu bytes", name,
static_cast<size_t>(st.st_size+1));
goto done;
}
FILE* f;
f = ota_fopen(filename, "rb");
if (f == NULL) {
ErrorAbort(state, "%s: failed to open %s: %s", name, filename, strerror(errno));
goto done;
}
if (ota_fread(buffer, 1, st.st_size, f) != static_cast<size_t>(st.st_size)) {
ErrorAbort(state, "%s: failed to read %zu bytes from %s",
name, static_cast<size_t>(st.st_size), filename);
ota_fclose(f);
goto done;
}
buffer[st.st_size] = '\0';
ota_fclose(f);
char* line;
line = strtok(buffer, "\n");
do {
// skip whitespace at start of line
while (*line && isspace(*line)) ++line;
// comment or blank line: skip to next line
if (*line == '\0' || *line == '#') continue;
char* equal = strchr(line, '=');
if (equal == NULL) {
continue;
}
// trim whitespace between key and '='
char* key_end = equal-1;
while (key_end > line && isspace(*key_end)) --key_end;
key_end[1] = '\0';
// not the key we're looking for
if (strcmp(key, line) != 0) continue;
// skip whitespace after the '=' to the start of the value
char* val_start = equal+1;
while(*val_start && isspace(*val_start)) ++val_start;
// trim trailing whitespace
char* val_end = val_start + strlen(val_start)-1;
while (val_end > val_start && isspace(*val_end)) --val_end;
val_end[1] = '\0';
result = strdup(val_start);
break;
} while ((line = strtok(NULL, "\n")));
if (result == NULL) result = strdup("");
done:
free(filename);
free(key);
free(buffer);
return StringValue(result);
}
// write_raw_image(filename_or_blob, partition)
Value* WriteRawImageFn(const char* name, State* state, int argc, Expr* argv[]) {
char* result = NULL;
Value* partition_value;
Value* contents;
if (ReadValueArgs(state, argv, 2, &contents, &partition_value) < 0) {
return NULL;
}
char* partition = NULL;
if (partition_value->type != VAL_STRING) {
ErrorAbort(state, "partition argument to %s must be string", name);
goto done;
}
partition = partition_value->data;
if (strlen(partition) == 0) {
ErrorAbort(state, "partition argument to %s can't be empty", name);
goto done;
}
if (contents->type == VAL_STRING && strlen((char*) contents->data) == 0) {
ErrorAbort(state, "file argument to %s can't be empty", name);
goto done;
}
mtd_scan_partitions();
const MtdPartition* mtd;
mtd = mtd_find_partition_by_name(partition);
if (mtd == NULL) {
printf("%s: no mtd partition named \"%s\"\n", name, partition);
result = strdup("");
goto done;
}
MtdWriteContext* ctx;
ctx = mtd_write_partition(mtd);
if (ctx == NULL) {
printf("%s: can't write mtd partition \"%s\"\n",
name, partition);
result = strdup("");
goto done;
}
bool success;
if (contents->type == VAL_STRING) {
// we're given a filename as the contents
char* filename = contents->data;
FILE* f = ota_fopen(filename, "rb");
if (f == NULL) {
printf("%s: can't open %s: %s\n", name, filename, strerror(errno));
result = strdup("");
goto done;
}
success = true;
char* buffer = reinterpret_cast<char*>(malloc(BUFSIZ));
int read;
while (success && (read = ota_fread(buffer, 1, BUFSIZ, f)) > 0) {
int wrote = mtd_write_data(ctx, buffer, read);
success = success && (wrote == read);
}
free(buffer);
ota_fclose(f);
} else {
// we're given a blob as the contents
ssize_t wrote = mtd_write_data(ctx, contents->data, contents->size);
success = (wrote == contents->size);
}
if (!success) {
printf("mtd_write_data to %s failed: %s\n",
partition, strerror(errno));
}
if (mtd_erase_blocks(ctx, -1) == -1) {
printf("%s: error erasing blocks of %s\n", name, partition);
}
if (mtd_write_close(ctx) != 0) {
printf("%s: error closing write of %s\n", name, partition);
}
printf("%s %s partition\n",
success ? "wrote" : "failed to write", partition);
result = success ? partition : strdup("");
done:
if (result != partition) FreeValue(partition_value);
FreeValue(contents);
return StringValue(result);
}
// apply_patch_space(bytes)
Value* ApplyPatchSpaceFn(const char* name, State* state,
int argc, Expr* argv[]) {
char* bytes_str;
if (ReadArgs(state, argv, 1, &bytes_str) < 0) {
return NULL;
}
size_t bytes;
if (!android::base::ParseUint(bytes_str, &bytes)) {
ErrorAbort(state, "%s(): can't parse \"%s\" as byte count\n\n", name, bytes_str);
free(bytes_str);
return nullptr;
}
return StringValue(strdup(CacheSizeCheck(bytes) ? "" : "t"));
}
// apply_patch(file, size, init_sha1, tgt_sha1, patch)
Value* ApplyPatchFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc < 6 || (argc % 2) == 1) {
return ErrorAbort(state, "%s(): expected at least 6 args and an "
"even number, got %d",
name, argc);
}
char* source_filename;
char* target_filename;
char* target_sha1;
char* target_size_str;
if (ReadArgs(state, argv, 4, &source_filename, &target_filename,
&target_sha1, &target_size_str) < 0) {
return NULL;
}
size_t target_size;
if (!android::base::ParseUint(target_size_str, &target_size)) {
ErrorAbort(state, "%s(): can't parse \"%s\" as byte count", name, target_size_str);
free(source_filename);
free(target_filename);
free(target_sha1);
free(target_size_str);
return nullptr;
}
int patchcount = (argc-4) / 2;
std::unique_ptr<Value*, decltype(&free)> arg_values(ReadValueVarArgs(state, argc-4, argv+4),
free);
if (!arg_values) {
return nullptr;
}
std::vector<std::unique_ptr<Value, decltype(&FreeValue)>> patch_shas;
std::vector<std::unique_ptr<Value, decltype(&FreeValue)>> patches;
// Protect values by unique_ptrs first to get rid of memory leak.
for (int i = 0; i < patchcount * 2; i += 2) {
patch_shas.emplace_back(arg_values.get()[i], FreeValue);
patches.emplace_back(arg_values.get()[i+1], FreeValue);
}
for (int i = 0; i < patchcount; ++i) {
if (patch_shas[i]->type != VAL_STRING) {
ErrorAbort(state, "%s(): sha-1 #%d is not string", name, i);
return nullptr;
}
if (patches[i]->type != VAL_BLOB) {
ErrorAbort(state, "%s(): patch #%d is not blob", name, i);
return nullptr;
}
}
std::vector<char*> patch_sha_str;
std::vector<Value*> patch_ptrs;
for (int i = 0; i < patchcount; ++i) {
patch_sha_str.push_back(patch_shas[i]->data);
patch_ptrs.push_back(patches[i].get());
}
int result = applypatch(source_filename, target_filename,
target_sha1, target_size,
patchcount, patch_sha_str.data(), patch_ptrs.data(), NULL);
return StringValue(strdup(result == 0 ? "t" : ""));
}
// apply_patch_check(file, [sha1_1, ...])
Value* ApplyPatchCheckFn(const char* name, State* state,
int argc, Expr* argv[]) {
if (argc < 1) {
return ErrorAbort(state, "%s(): expected at least 1 arg, got %d",
name, argc);
}
char* filename;
if (ReadArgs(state, argv, 1, &filename) < 0) {
return NULL;
}
int patchcount = argc-1;
char** sha1s = ReadVarArgs(state, argc-1, argv+1);
int result = applypatch_check(filename, patchcount, sha1s);
int i;
for (i = 0; i < patchcount; ++i) {
free(sha1s[i]);
}
free(sha1s);
return StringValue(strdup(result == 0 ? "t" : ""));
}
// This is the updater side handler for ui_print() in edify script. Contents
// will be sent over to the recovery side for on-screen display.
Value* UIPrintFn(const char* name, State* state, int argc, Expr* argv[]) {
char** args = ReadVarArgs(state, argc, argv);
if (args == NULL) {
return NULL;
}
std::string buffer;
for (int i = 0; i < argc; ++i) {
buffer += args[i];
free(args[i]);
}
free(args);
buffer += "\n";
uiPrint(state, buffer);
return StringValue(strdup(buffer.c_str()));
}
Value* WipeCacheFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 0) {
return ErrorAbort(state, "%s() expects no args, got %d", name, argc);
}
fprintf(((UpdaterInfo*)(state->cookie))->cmd_pipe, "wipe_cache\n");
return StringValue(strdup("t"));
}
Value* RunProgramFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc < 1) {
return ErrorAbort(state, "%s() expects at least 1 arg", name);
}
char** args = ReadVarArgs(state, argc, argv);
if (args == NULL) {
return NULL;
}
char** args2 = reinterpret_cast<char**>(malloc(sizeof(char*) * (argc+1)));
memcpy(args2, args, sizeof(char*) * argc);
args2[argc] = NULL;
printf("about to run program [%s] with %d args\n", args2[0], argc);
pid_t child = fork();
if (child == 0) {
execv(args2[0], args2);
printf("run_program: execv failed: %s\n", strerror(errno));
_exit(1);
}
int status;
waitpid(child, &status, 0);
if (WIFEXITED(status)) {
if (WEXITSTATUS(status) != 0) {
printf("run_program: child exited with status %d\n",
WEXITSTATUS(status));
}
} else if (WIFSIGNALED(status)) {
printf("run_program: child terminated by signal %d\n",
WTERMSIG(status));
}
int i;
for (i = 0; i < argc; ++i) {
free(args[i]);
}
free(args);
free(args2);
char buffer[20];
sprintf(buffer, "%d", status);
return StringValue(strdup(buffer));
}
// sha1_check(data)
// to return the sha1 of the data (given in the format returned by
// read_file).
//
// sha1_check(data, sha1_hex, [sha1_hex, ...])
// returns the sha1 of the file if it matches any of the hex
// strings passed, or "" if it does not equal any of them.
//
Value* Sha1CheckFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc < 1) {
return ErrorAbort(state, "%s() expects at least 1 arg", name);
}
std::unique_ptr<Value*, decltype(&free)> arg_values(ReadValueVarArgs(state, argc, argv), free);
if (arg_values == nullptr) {
return nullptr;
}
std::vector<std::unique_ptr<Value, decltype(&FreeValue)>> args;
for (int i = 0; i < argc; ++i) {
args.emplace_back(arg_values.get()[i], FreeValue);
}
if (args[0]->size < 0) {
return StringValue(strdup(""));
}
uint8_t digest[SHA_DIGEST_LENGTH];
SHA1(reinterpret_cast<uint8_t*>(args[0]->data), args[0]->size, digest);
if (argc == 1) {
return StringValue(PrintSha1(digest));
}
int i;
uint8_t arg_digest[SHA_DIGEST_LENGTH];
for (i = 1; i < argc; ++i) {
if (args[i]->type != VAL_STRING) {
printf("%s(): arg %d is not a string; skipping",
name, i);
} else if (ParseSha1(args[i]->data, arg_digest) != 0) {
// Warn about bad args and skip them.
printf("%s(): error parsing \"%s\" as sha-1; skipping",
name, args[i]->data);
} else if (memcmp(digest, arg_digest, SHA_DIGEST_LENGTH) == 0) {
break;
}
}
if (i >= argc) {
// Didn't match any of the hex strings; return false.
return StringValue(strdup(""));
}
// Found a match.
return args[i].release();
}
// Read a local file and return its contents (the Value* returned
// is actually a FileContents*).
Value* ReadFileFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 1) {
return ErrorAbort(state, "%s() expects 1 arg, got %d", name, argc);
}
char* filename;
if (ReadArgs(state, argv, 1, &filename) < 0) return NULL;
Value* v = static_cast<Value*>(malloc(sizeof(Value)));
if (v == nullptr) {
return nullptr;
}
v->type = VAL_BLOB;
v->size = -1;
v->data = nullptr;
FileContents fc;
if (LoadFileContents(filename, &fc) != 0) {
v->data = static_cast<char*>(malloc(fc.data.size()));
if (v->data != nullptr) {
memcpy(v->data, fc.data.data(), fc.data.size());
v->size = fc.data.size();
}
}
free(filename);
return v;
}
// Immediately reboot the device. Recovery is not finished normally,
// so if you reboot into recovery it will re-start applying the
// current package (because nothing has cleared the copy of the
// arguments stored in the BCB).
//
// The argument is the partition name passed to the android reboot
// property. It can be "recovery" to boot from the recovery
// partition, or "" (empty string) to boot from the regular boot
// partition.
Value* RebootNowFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 2) {
return ErrorAbort(state, "%s() expects 2 args, got %d", name, argc);
}
char* filename;
char* property;
if (ReadArgs(state, argv, 2, &filename, &property) < 0) return NULL;
char buffer[80];
// zero out the 'command' field of the bootloader message.
memset(buffer, 0, sizeof(((struct bootloader_message*)0)->command));
FILE* f = ota_fopen(filename, "r+b");
fseek(f, offsetof(struct bootloader_message, command), SEEK_SET);
ota_fwrite(buffer, sizeof(((struct bootloader_message*)0)->command), 1, f);
ota_fclose(f);
free(filename);
strcpy(buffer, "reboot,");
if (property != NULL) {
strncat(buffer, property, sizeof(buffer)-10);
}
property_set(ANDROID_RB_PROPERTY, buffer);
sleep(5);
free(property);
ErrorAbort(state, "%s() failed to reboot", name);
return NULL;
}
// Store a string value somewhere that future invocations of recovery
// can access it. This value is called the "stage" and can be used to
// drive packages that need to do reboots in the middle of
// installation and keep track of where they are in the multi-stage
// install.
//
// The first argument is the block device for the misc partition
// ("/misc" in the fstab), which is where this value is stored. The
// second argument is the string to store; it should not exceed 31
// bytes.
Value* SetStageFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 2) {
return ErrorAbort(state, "%s() expects 2 args, got %d", name, argc);
}
char* filename;
char* stagestr;
if (ReadArgs(state, argv, 2, &filename, &stagestr) < 0) return NULL;
// Store this value in the misc partition, immediately after the
// bootloader message that the main recovery uses to save its
// arguments in case of the device restarting midway through
// package installation.
FILE* f = ota_fopen(filename, "r+b");
fseek(f, offsetof(struct bootloader_message, stage), SEEK_SET);
int to_write = strlen(stagestr)+1;
int max_size = sizeof(((struct bootloader_message*)0)->stage);
if (to_write > max_size) {
to_write = max_size;
stagestr[max_size-1] = 0;
}
ota_fwrite(stagestr, to_write, 1, f);
ota_fclose(f);
free(stagestr);
return StringValue(filename);
}
// Return the value most recently saved with SetStageFn. The argument
// is the block device for the misc partition.
Value* GetStageFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 1) {
return ErrorAbort(state, "%s() expects 1 arg, got %d", name, argc);
}
char* filename;
if (ReadArgs(state, argv, 1, &filename) < 0) return NULL;
char buffer[sizeof(((struct bootloader_message*)0)->stage)];
FILE* f = ota_fopen(filename, "rb");
fseek(f, offsetof(struct bootloader_message, stage), SEEK_SET);
ota_fread(buffer, sizeof(buffer), 1, f);
ota_fclose(f);
buffer[sizeof(buffer)-1] = '\0';
return StringValue(strdup(buffer));
}
Value* WipeBlockDeviceFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 2) {
return ErrorAbort(state, "%s() expects 2 args, got %d", name, argc);
}
char* filename;
char* len_str;
if (ReadArgs(state, argv, 2, &filename, &len_str) < 0) return NULL;
size_t len;
android::base::ParseUint(len_str, &len);
int fd = ota_open(filename, O_WRONLY, 0644);
int success = wipe_block_device(fd, len);
free(filename);
free(len_str);
ota_close(fd);
return StringValue(strdup(success ? "t" : ""));
}
Value* EnableRebootFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc != 0) {
return ErrorAbort(state, "%s() expects no args, got %d", name, argc);
}
UpdaterInfo* ui = (UpdaterInfo*)(state->cookie);
fprintf(ui->cmd_pipe, "enable_reboot\n");
return StringValue(strdup("t"));
}
Value* Tune2FsFn(const char* name, State* state, int argc, Expr* argv[]) {
if (argc == 0) {
return ErrorAbort(state, "%s() expects args, got %d", name, argc);
}
char** args = ReadVarArgs(state, argc, argv);
if (args == NULL) {
return ErrorAbort(state, "%s() could not read args", name);
}
char** args2 = reinterpret_cast<char**>(malloc(sizeof(char*) * (argc+1)));
// Tune2fs expects the program name as its args[0]
args2[0] = strdup(name);
for (int i = 0; i < argc; ++i) {
args2[i + 1] = args[i];
}
int result = tune2fs_main(argc + 1, args2);
for (int i = 0; i < argc; ++i) {
free(args[i]);
}
free(args);
free(args2[0]);
free(args2);
if (result != 0) {
return ErrorAbort(state, "%s() returned error code %d", name, result);
}
return StringValue(strdup("t"));
}
void RegisterInstallFunctions() {
RegisterFunction("mount", MountFn);
RegisterFunction("is_mounted", IsMountedFn);
RegisterFunction("unmount", UnmountFn);
RegisterFunction("format", FormatFn);
RegisterFunction("show_progress", ShowProgressFn);
RegisterFunction("set_progress", SetProgressFn);
RegisterFunction("delete", DeleteFn);
RegisterFunction("delete_recursive", DeleteFn);
RegisterFunction("package_extract_dir", PackageExtractDirFn);
RegisterFunction("package_extract_file", PackageExtractFileFn);
RegisterFunction("symlink", SymlinkFn);
// Usage:
// set_metadata("filename", "key1", "value1", "key2", "value2", ...)
// Example:
// set_metadata("/system/bin/netcfg", "uid", 0, "gid", 3003, "mode", 02750, "selabel", "u:object_r:system_file:s0", "capabilities", 0x0);
RegisterFunction("set_metadata", SetMetadataFn);
// Usage:
// set_metadata_recursive("dirname", "key1", "value1", "key2", "value2", ...)
// Example:
// set_metadata_recursive("/system", "uid", 0, "gid", 0, "fmode", 0644, "dmode", 0755, "selabel", "u:object_r:system_file:s0", "capabilities", 0x0);
RegisterFunction("set_metadata_recursive", SetMetadataFn);
RegisterFunction("getprop", GetPropFn);
RegisterFunction("file_getprop", FileGetPropFn);
RegisterFunction("write_raw_image", WriteRawImageFn);
RegisterFunction("apply_patch", ApplyPatchFn);
RegisterFunction("apply_patch_check", ApplyPatchCheckFn);
RegisterFunction("apply_patch_space", ApplyPatchSpaceFn);
RegisterFunction("wipe_block_device", WipeBlockDeviceFn);
RegisterFunction("read_file", ReadFileFn);
RegisterFunction("sha1_check", Sha1CheckFn);
RegisterFunction("rename", RenameFn);
RegisterFunction("wipe_cache", WipeCacheFn);
RegisterFunction("ui_print", UIPrintFn);
RegisterFunction("run_program", RunProgramFn);
RegisterFunction("reboot_now", RebootNowFn);
RegisterFunction("get_stage", GetStageFn);
RegisterFunction("set_stage", SetStageFn);
RegisterFunction("enable_reboot", EnableRebootFn);
RegisterFunction("tune2fs", Tune2FsFn);
}