| /* |
| * Copyright 2007 The Android Open Source Project |
| * |
| * General purpose hash table, used for finding classes, methods, etc. |
| * |
| * When the number of elements reaches 3/4 of the table's capacity, the |
| * table will be resized. |
| */ |
| #ifndef _MINZIP_HASH |
| #define _MINZIP_HASH |
| |
| #include "inline_magic.h" |
| |
| #include <stdlib.h> |
| #include <stdbool.h> |
| #include <assert.h> |
| |
| /* compute the hash of an item with a specific type */ |
| typedef unsigned int (*HashCompute)(const void* item); |
| |
| /* |
| * Compare a hash entry with a "loose" item after their hash values match. |
| * Returns { <0, 0, >0 } depending on ordering of items (same semantics |
| * as strcmp()). |
| */ |
| typedef int (*HashCompareFunc)(const void* tableItem, const void* looseItem); |
| |
| /* |
| * This function will be used to free entries in the table. This can be |
| * NULL if no free is required, free(), or a custom function. |
| */ |
| typedef void (*HashFreeFunc)(void* ptr); |
| |
| /* |
| * Used by mzHashForeach(). |
| */ |
| typedef int (*HashForeachFunc)(void* data, void* arg); |
| |
| /* |
| * One entry in the hash table. "data" values are expected to be (or have |
| * the same characteristics as) valid pointers. In particular, a NULL |
| * value for "data" indicates an empty slot, and HASH_TOMBSTONE indicates |
| * a no-longer-used slot that must be stepped over during probing. |
| * |
| * Attempting to add a NULL or tombstone value is an error. |
| * |
| * When an entry is released, we will call (HashFreeFunc)(entry->data). |
| */ |
| typedef struct HashEntry { |
| unsigned int hashValue; |
| void* data; |
| } HashEntry; |
| |
| #define HASH_TOMBSTONE ((void*) 0xcbcacccd) // invalid ptr value |
| |
| /* |
| * Expandable hash table. |
| * |
| * This structure should be considered opaque. |
| */ |
| typedef struct HashTable { |
| int tableSize; /* must be power of 2 */ |
| int numEntries; /* current #of "live" entries */ |
| int numDeadEntries; /* current #of tombstone entries */ |
| HashEntry* pEntries; /* array on heap */ |
| HashFreeFunc freeFunc; |
| } HashTable; |
| |
| /* |
| * Create and initialize a HashTable structure, using "initialSize" as |
| * a basis for the initial capacity of the table. (The actual initial |
| * table size may be adjusted upward.) If you know exactly how many |
| * elements the table will hold, pass the result from mzHashSize() in.) |
| * |
| * Returns "false" if unable to allocate the table. |
| */ |
| HashTable* mzHashTableCreate(size_t initialSize, HashFreeFunc freeFunc); |
| |
| /* |
| * Compute the capacity needed for a table to hold "size" elements. Use |
| * this when you know ahead of time how many elements the table will hold. |
| * Pass this value into mzHashTableCreate() to ensure that you can add |
| * all elements without needing to reallocate the table. |
| */ |
| size_t mzHashSize(size_t size); |
| |
| /* |
| * Clear out a hash table, freeing the contents of any used entries. |
| */ |
| void mzHashTableClear(HashTable* pHashTable); |
| |
| /* |
| * Free a hash table. |
| */ |
| void mzHashTableFree(HashTable* pHashTable); |
| |
| /* |
| * Get #of entries in hash table. |
| */ |
| INLINE int mzHashTableNumEntries(HashTable* pHashTable) { |
| return pHashTable->numEntries; |
| } |
| |
| /* |
| * Get total size of hash table (for memory usage calculations). |
| */ |
| INLINE int mzHashTableMemUsage(HashTable* pHashTable) { |
| return sizeof(HashTable) + pHashTable->tableSize * sizeof(HashEntry); |
| } |
| |
| /* |
| * Look up an entry in the table, possibly adding it if it's not there. |
| * |
| * If "item" is not found, and "doAdd" is false, NULL is returned. |
| * Otherwise, a pointer to the found or added item is returned. (You can |
| * tell the difference by seeing if return value == item.) |
| * |
| * An "add" operation may cause the entire table to be reallocated. |
| */ |
| void* mzHashTableLookup(HashTable* pHashTable, unsigned int itemHash, void* item, |
| HashCompareFunc cmpFunc, bool doAdd); |
| |
| /* |
| * Remove an item from the hash table, given its "data" pointer. Does not |
| * invoke the "free" function; just detaches it from the table. |
| */ |
| bool mzHashTableRemove(HashTable* pHashTable, unsigned int hash, void* item); |
| |
| /* |
| * Execute "func" on every entry in the hash table. |
| * |
| * If "func" returns a nonzero value, terminate early and return the value. |
| */ |
| int mzHashForeach(HashTable* pHashTable, HashForeachFunc func, void* arg); |
| |
| /* |
| * An alternative to mzHashForeach(), using an iterator. |
| * |
| * Use like this: |
| * HashIter iter; |
| * for (mzHashIterBegin(hashTable, &iter); !mzHashIterDone(&iter); |
| * mzHashIterNext(&iter)) |
| * { |
| * MyData* data = (MyData*)mzHashIterData(&iter); |
| * } |
| */ |
| typedef struct HashIter { |
| void* data; |
| HashTable* pHashTable; |
| int idx; |
| } HashIter; |
| INLINE void mzHashIterNext(HashIter* pIter) { |
| int i = pIter->idx +1; |
| int lim = pIter->pHashTable->tableSize; |
| for ( ; i < lim; i++) { |
| void* data = pIter->pHashTable->pEntries[i].data; |
| if (data != NULL && data != HASH_TOMBSTONE) |
| break; |
| } |
| pIter->idx = i; |
| } |
| INLINE void mzHashIterBegin(HashTable* pHashTable, HashIter* pIter) { |
| pIter->pHashTable = pHashTable; |
| pIter->idx = -1; |
| mzHashIterNext(pIter); |
| } |
| INLINE bool mzHashIterDone(HashIter* pIter) { |
| return (pIter->idx >= pIter->pHashTable->tableSize); |
| } |
| INLINE void* mzHashIterData(HashIter* pIter) { |
| assert(pIter->idx >= 0 && pIter->idx < pIter->pHashTable->tableSize); |
| return pIter->pHashTable->pEntries[pIter->idx].data; |
| } |
| |
| |
| /* |
| * Evaluate hash table performance by examining the number of times we |
| * have to probe for an entry. |
| * |
| * The caller should lock the table beforehand. |
| */ |
| typedef unsigned int (*HashCalcFunc)(const void* item); |
| void mzHashTableProbeCount(HashTable* pHashTable, HashCalcFunc calcFunc, |
| HashCompareFunc cmpFunc); |
| |
| #endif /*_MINZIP_HASH*/ |