blob: 7634ff047990654142e1ba0654d53187923872d8 [file] [log] [blame]
/*
Copyright 2012 bigbiff/Dees_Troy TeamWin
This file is part of TWRP/TeamWin Recovery Project.
TWRP is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
TWRP is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with TWRP. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/vfs.h>
#include <unistd.h>
#include <vector>
#include <dirent.h>
#include <time.h>
#include <errno.h>
#include <fcntl.h>
#include <iostream>
#include <iomanip>
#include "variables.h"
#include "twcommon.h"
#include "partitions.hpp"
#include "data.hpp"
#include "twrp-functions.hpp"
#include "fixPermissions.hpp"
#include "twrpDigest.hpp"
#ifdef TW_INCLUDE_CRYPTO
#ifdef TW_INCLUDE_JB_CRYPTO
#include "crypto/jb/cryptfs.h"
#else
#include "crypto/ics/cryptfs.h"
#endif
#include "cutils/properties.h"
#endif
int TWPartitionManager::Process_Fstab(string Fstab_Filename, bool Display_Error) {
FILE *fstabFile;
char fstab_line[MAX_FSTAB_LINE_LENGTH];
bool Found_Settings_Storage = false;
fstabFile = fopen(Fstab_Filename.c_str(), "rt");
if (fstabFile == NULL) {
LOGERR("Critical Error: Unable to open fstab at '%s'.\n", Fstab_Filename.c_str());
return false;
}
while (fgets(fstab_line, sizeof(fstab_line), fstabFile) != NULL) {
if (fstab_line[0] != '/')
continue;
if (fstab_line[strlen(fstab_line) - 1] != '\n')
fstab_line[strlen(fstab_line)] = '\n';
TWPartition* partition = new TWPartition();
string line = fstab_line;
memset(fstab_line, 0, sizeof(fstab_line));
if (partition->Process_Fstab_Line(line, Display_Error)) {
if (!Found_Settings_Storage && partition->Is_Settings_Storage) {
Found_Settings_Storage = true;
Partitions.push_back(partition);
DataManager::SetValue("tw_settings_path", partition->Storage_Path);
DataManager::SetValue("tw_storage_path", partition->Storage_Path);
LOGINFO("Settings storage is '%s'\n", partition->Storage_Path.c_str());
} else {
partition->Is_Settings_Storage = false;
Partitions.push_back(partition);
}
} else {
delete partition;
}
}
fclose(fstabFile);
if (!Found_Settings_Storage) {
std::vector<TWPartition*>::iterator iter;
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Is_Storage) {
(*iter)->Is_Settings_Storage = true;
Found_Settings_Storage = true;
DataManager::SetValue("tw_settings_path", (*iter)->Storage_Path);
DataManager::SetValue("tw_storage_path", (*iter)->Storage_Path);
LOGINFO("Settings storage is '%s'\n", (*iter)->Storage_Path.c_str());
break;
}
}
if (!Found_Settings_Storage)
LOGERR("Unable to locate storage partition for storing settings file.\n");
}
if (!Write_Fstab()) {
if (Display_Error)
LOGERR("Error creating fstab\n");
else
LOGINFO("Error creating fstab\n");
}
Update_System_Details();
UnMount_Main_Partitions();
return true;
}
int TWPartitionManager::Write_Fstab(void) {
FILE *fp;
std::vector<TWPartition*>::iterator iter;
string Line;
fp = fopen("/etc/fstab", "w");
if (fp == NULL) {
LOGINFO("Can not open /etc/fstab.\n");
return false;
}
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Can_Be_Mounted) {
Line = (*iter)->Actual_Block_Device + " " + (*iter)->Mount_Point + " " + (*iter)->Current_File_System + " rw\n";
fputs(Line.c_str(), fp);
}
// Handle subpartition tracking
if ((*iter)->Is_SubPartition) {
TWPartition* ParentPartition = Find_Partition_By_Path((*iter)->SubPartition_Of);
if (ParentPartition)
ParentPartition->Has_SubPartition = true;
else
LOGERR("Unable to locate parent partition '%s' of '%s'\n", (*iter)->SubPartition_Of.c_str(), (*iter)->Mount_Point.c_str());
}
}
fclose(fp);
return true;
}
void TWPartitionManager::Output_Partition_Logging(void) {
std::vector<TWPartition*>::iterator iter;
printf("\n\nPartition Logs:\n");
for (iter = Partitions.begin(); iter != Partitions.end(); iter++)
Output_Partition((*iter));
}
void TWPartitionManager::Output_Partition(TWPartition* Part) {
unsigned long long mb = 1048576;
printf("%s | %s | Size: %iMB", Part->Mount_Point.c_str(), Part->Actual_Block_Device.c_str(), (int)(Part->Size / mb));
if (Part->Can_Be_Mounted) {
printf(" Used: %iMB Free: %iMB Backup Size: %iMB", (int)(Part->Used / mb), (int)(Part->Free / mb), (int)(Part->Backup_Size / mb));
}
printf("\n Flags: ");
if (Part->Can_Be_Mounted)
printf("Can_Be_Mounted ");
if (Part->Can_Be_Wiped)
printf("Can_Be_Wiped ");
if (Part->Use_Rm_Rf)
printf("Use_Rm_Rf ");
if (Part->Can_Be_Backed_Up)
printf("Can_Be_Backed_Up ");
if (Part->Wipe_During_Factory_Reset)
printf("Wipe_During_Factory_Reset ");
if (Part->Wipe_Available_in_GUI)
printf("Wipe_Available_in_GUI ");
if (Part->Is_SubPartition)
printf("Is_SubPartition ");
if (Part->Has_SubPartition)
printf("Has_SubPartition ");
if (Part->Removable)
printf("Removable ");
if (Part->Is_Present)
printf("IsPresent ");
if (Part->Can_Be_Encrypted)
printf("Can_Be_Encrypted ");
if (Part->Is_Encrypted)
printf("Is_Encrypted ");
if (Part->Is_Decrypted)
printf("Is_Decrypted ");
if (Part->Has_Data_Media)
printf("Has_Data_Media ");
if (Part->Can_Encrypt_Backup)
printf("Can_Encrypt_Backup ");
if (Part->Use_Userdata_Encryption)
printf("Use_Userdata_Encryption ");
if (Part->Has_Android_Secure)
printf("Has_Android_Secure ");
if (Part->Is_Storage)
printf("Is_Storage ");
if (Part->Is_Settings_Storage)
printf("Is_Settings_Storage ");
if (Part->Ignore_Blkid)
printf("Ignore_Blkid ");
if (Part->Retain_Layout_Version)
printf("Retain_Layout_Version ");
printf("\n");
if (!Part->SubPartition_Of.empty())
printf(" SubPartition_Of: %s\n", Part->SubPartition_Of.c_str());
if (!Part->Symlink_Path.empty())
printf(" Symlink_Path: %s\n", Part->Symlink_Path.c_str());
if (!Part->Symlink_Mount_Point.empty())
printf(" Symlink_Mount_Point: %s\n", Part->Symlink_Mount_Point.c_str());
if (!Part->Primary_Block_Device.empty())
printf(" Primary_Block_Device: %s\n", Part->Primary_Block_Device.c_str());
if (!Part->Alternate_Block_Device.empty())
printf(" Alternate_Block_Device: %s\n", Part->Alternate_Block_Device.c_str());
if (!Part->Decrypted_Block_Device.empty())
printf(" Decrypted_Block_Device: %s\n", Part->Decrypted_Block_Device.c_str());
if (Part->Length != 0)
printf(" Length: %i\n", Part->Length);
if (!Part->Display_Name.empty())
printf(" Display_Name: %s\n", Part->Display_Name.c_str());
if (!Part->Storage_Name.empty())
printf(" Storage_Name: %s\n", Part->Storage_Name.c_str());
if (!Part->Backup_Path.empty())
printf(" Backup_Path: %s\n", Part->Backup_Path.c_str());
if (!Part->Backup_Name.empty())
printf(" Backup_Name: %s\n", Part->Backup_Name.c_str());
if (!Part->Backup_Display_Name.empty())
printf(" Backup_Display_Name: %s\n", Part->Backup_Display_Name.c_str());
if (!Part->Backup_FileName.empty())
printf(" Backup_FileName: %s\n", Part->Backup_FileName.c_str());
if (!Part->Storage_Path.empty())
printf(" Storage_Path: %s\n", Part->Storage_Path.c_str());
if (!Part->Current_File_System.empty())
printf(" Current_File_System: %s\n", Part->Current_File_System.c_str());
if (!Part->Fstab_File_System.empty())
printf(" Fstab_File_System: %s\n", Part->Fstab_File_System.c_str());
if (Part->Format_Block_Size != 0)
printf(" Format_Block_Size: %i\n", Part->Format_Block_Size);
if (!Part->MTD_Name.empty())
printf(" MTD_Name: %s\n", Part->MTD_Name.c_str());
string back_meth = Part->Backup_Method_By_Name();
printf(" Backup_Method: %s\n\n", back_meth.c_str());
if (Part->Mount_Flags || !Part->Mount_Options.empty())
printf(" Mount_Flags=0x%8x, Mount_Options=%s\n", Part->Mount_Flags, Part->Mount_Options.c_str());
}
int TWPartitionManager::Mount_By_Path(string Path, bool Display_Error) {
std::vector<TWPartition*>::iterator iter;
int ret = false;
bool found = false;
string Local_Path = TWFunc::Get_Root_Path(Path);
if (Local_Path == "/tmp" || Local_Path == "/")
return true;
// Iterate through all partitions
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Mount_Point == Local_Path || (!(*iter)->Symlink_Mount_Point.empty() && (*iter)->Symlink_Mount_Point == Local_Path)) {
ret = (*iter)->Mount(Display_Error);
found = true;
} else if ((*iter)->Is_SubPartition && (*iter)->SubPartition_Of == Local_Path) {
(*iter)->Mount(Display_Error);
}
}
if (found) {
return ret;
} else if (Display_Error) {
LOGERR("Mount: Unable to find partition for path '%s'\n", Local_Path.c_str());
} else {
LOGINFO("Mount: Unable to find partition for path '%s'\n", Local_Path.c_str());
}
return false;
}
int TWPartitionManager::Mount_By_Block(string Block, bool Display_Error) {
TWPartition* Part = Find_Partition_By_Block(Block);
if (Part) {
if (Part->Has_SubPartition) {
std::vector<TWPartition*>::iterator subpart;
for (subpart = Partitions.begin(); subpart != Partitions.end(); subpart++) {
if ((*subpart)->Is_SubPartition && (*subpart)->SubPartition_Of == Part->Mount_Point)
(*subpart)->Mount(Display_Error);
}
return Part->Mount(Display_Error);
} else
return Part->Mount(Display_Error);
}
if (Display_Error)
LOGERR("Mount: Unable to find partition for block '%s'\n", Block.c_str());
else
LOGINFO("Mount: Unable to find partition for block '%s'\n", Block.c_str());
return false;
}
int TWPartitionManager::Mount_By_Name(string Name, bool Display_Error) {
TWPartition* Part = Find_Partition_By_Name(Name);
if (Part) {
if (Part->Has_SubPartition) {
std::vector<TWPartition*>::iterator subpart;
for (subpart = Partitions.begin(); subpart != Partitions.end(); subpart++) {
if ((*subpart)->Is_SubPartition && (*subpart)->SubPartition_Of == Part->Mount_Point)
(*subpart)->Mount(Display_Error);
}
return Part->Mount(Display_Error);
} else
return Part->Mount(Display_Error);
}
if (Display_Error)
LOGERR("Mount: Unable to find partition for name '%s'\n", Name.c_str());
else
LOGINFO("Mount: Unable to find partition for name '%s'\n", Name.c_str());
return false;
}
int TWPartitionManager::UnMount_By_Path(string Path, bool Display_Error) {
std::vector<TWPartition*>::iterator iter;
int ret = false;
bool found = false;
string Local_Path = TWFunc::Get_Root_Path(Path);
// Iterate through all partitions
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Mount_Point == Local_Path || (!(*iter)->Symlink_Mount_Point.empty() && (*iter)->Symlink_Mount_Point == Local_Path)) {
ret = (*iter)->UnMount(Display_Error);
found = true;
} else if ((*iter)->Is_SubPartition && (*iter)->SubPartition_Of == Local_Path) {
(*iter)->UnMount(Display_Error);
}
}
if (found) {
return ret;
} else if (Display_Error) {
LOGERR("UnMount: Unable to find partition for path '%s'\n", Local_Path.c_str());
} else {
LOGINFO("UnMount: Unable to find partition for path '%s'\n", Local_Path.c_str());
}
return false;
}
int TWPartitionManager::UnMount_By_Block(string Block, bool Display_Error) {
TWPartition* Part = Find_Partition_By_Block(Block);
if (Part) {
if (Part->Has_SubPartition) {
std::vector<TWPartition*>::iterator subpart;
for (subpart = Partitions.begin(); subpart != Partitions.end(); subpart++) {
if ((*subpart)->Is_SubPartition && (*subpart)->SubPartition_Of == Part->Mount_Point)
(*subpart)->UnMount(Display_Error);
}
return Part->UnMount(Display_Error);
} else
return Part->UnMount(Display_Error);
}
if (Display_Error)
LOGERR("UnMount: Unable to find partition for block '%s'\n", Block.c_str());
else
LOGINFO("UnMount: Unable to find partition for block '%s'\n", Block.c_str());
return false;
}
int TWPartitionManager::UnMount_By_Name(string Name, bool Display_Error) {
TWPartition* Part = Find_Partition_By_Name(Name);
if (Part) {
if (Part->Has_SubPartition) {
std::vector<TWPartition*>::iterator subpart;
for (subpart = Partitions.begin(); subpart != Partitions.end(); subpart++) {
if ((*subpart)->Is_SubPartition && (*subpart)->SubPartition_Of == Part->Mount_Point)
(*subpart)->UnMount(Display_Error);
}
return Part->UnMount(Display_Error);
} else
return Part->UnMount(Display_Error);
}
if (Display_Error)
LOGERR("UnMount: Unable to find partition for name '%s'\n", Name.c_str());
else
LOGINFO("UnMount: Unable to find partition for name '%s'\n", Name.c_str());
return false;
}
int TWPartitionManager::Is_Mounted_By_Path(string Path) {
TWPartition* Part = Find_Partition_By_Path(Path);
if (Part)
return Part->Is_Mounted();
else
LOGINFO("Is_Mounted: Unable to find partition for path '%s'\n", Path.c_str());
return false;
}
int TWPartitionManager::Is_Mounted_By_Block(string Block) {
TWPartition* Part = Find_Partition_By_Block(Block);
if (Part)
return Part->Is_Mounted();
else
LOGINFO("Is_Mounted: Unable to find partition for block '%s'\n", Block.c_str());
return false;
}
int TWPartitionManager::Is_Mounted_By_Name(string Name) {
TWPartition* Part = Find_Partition_By_Name(Name);
if (Part)
return Part->Is_Mounted();
else
LOGINFO("Is_Mounted: Unable to find partition for name '%s'\n", Name.c_str());
return false;
}
int TWPartitionManager::Mount_Current_Storage(bool Display_Error) {
string current_storage_path = DataManager::GetCurrentStoragePath();
if (Mount_By_Path(current_storage_path, Display_Error)) {
TWPartition* FreeStorage = Find_Partition_By_Path(current_storage_path);
if (FreeStorage)
DataManager::SetValue(TW_STORAGE_FREE_SIZE, (int)(FreeStorage->Free / 1048576LLU));
return true;
}
return false;
}
int TWPartitionManager::Mount_Settings_Storage(bool Display_Error) {
return Mount_By_Path(DataManager::GetSettingsStoragePath(), Display_Error);
}
TWPartition* TWPartitionManager::Find_Partition_By_Path(string Path) {
std::vector<TWPartition*>::iterator iter;
string Local_Path = TWFunc::Get_Root_Path(Path);
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Mount_Point == Local_Path || (!(*iter)->Symlink_Mount_Point.empty() && (*iter)->Symlink_Mount_Point == Local_Path))
return (*iter);
}
return NULL;
}
TWPartition* TWPartitionManager::Find_Partition_By_Block(string Block) {
std::vector<TWPartition*>::iterator iter;
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Primary_Block_Device == Block || (*iter)->Alternate_Block_Device == Block || ((*iter)->Is_Decrypted && (*iter)->Decrypted_Block_Device == Block))
return (*iter);
}
return NULL;
}
TWPartition* TWPartitionManager::Find_Partition_By_Name(string Name) {
std::vector<TWPartition*>::iterator iter;
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Display_Name == Name)
return (*iter);
}
return NULL;
}
int TWPartitionManager::Check_Backup_Name(bool Display_Error) {
// Check the backup name to ensure that it is the correct size and contains only valid characters
// and that a backup with that name doesn't already exist
char backup_name[MAX_BACKUP_NAME_LEN];
char backup_loc[255], tw_image_dir[255];
int copy_size;
int index, cur_char;
string Backup_Name, Backup_Loc;
DataManager::GetValue(TW_BACKUP_NAME, Backup_Name);
copy_size = Backup_Name.size();
// Check size
if (copy_size > MAX_BACKUP_NAME_LEN) {
if (Display_Error)
LOGERR("Backup name is too long.\n");
return -2;
}
// Check each character
strncpy(backup_name, Backup_Name.c_str(), copy_size);
if (copy_size == 1 && strncmp(backup_name, "0", 1) == 0)
return 0; // A "0" (zero) means to use the current timestamp for the backup name
for (index=0; index<copy_size; index++) {
cur_char = (int)backup_name[index];
if (cur_char == 32 || (cur_char >= 48 && cur_char <= 57) || (cur_char >= 65 && cur_char <= 91) || cur_char == 93 || cur_char == 95 || (cur_char >= 97 && cur_char <= 123) || cur_char == 125 || cur_char == 45 || cur_char == 46) {
// These are valid characters
// Numbers
// Upper case letters
// Lower case letters
// Space
// and -_.{}[]
} else {
if (Display_Error)
LOGERR("Backup name '%s' contains invalid character: '%c'\n", backup_name, (char)cur_char);
return -3;
}
}
// Check to make sure that a backup with this name doesn't already exist
DataManager::GetValue(TW_BACKUPS_FOLDER_VAR, Backup_Loc);
strcpy(backup_loc, Backup_Loc.c_str());
sprintf(tw_image_dir,"%s/%s", backup_loc, Backup_Name.c_str());
if (TWFunc::Path_Exists(tw_image_dir)) {
if (Display_Error)
LOGERR("A backup with this name already exists.\n");
return -4;
}
// No problems found, return 0
return 0;
}
bool TWPartitionManager::Make_MD5(bool generate_md5, string Backup_Folder, string Backup_Filename)
{
string command;
string Full_File = Backup_Folder + Backup_Filename;
string result;
twrpDigest md5sum;
if (!generate_md5)
return true;
TWFunc::GUI_Operation_Text(TW_GENERATE_MD5_TEXT, "Generating MD5");
gui_print(" * Generating md5...\n");
if (TWFunc::Path_Exists(Full_File)) {
md5sum.setfn(Backup_Folder + Backup_Filename);
if (md5sum.computeMD5() == 0)
if (md5sum.write_md5digest() == 0)
gui_print(" * MD5 Created.\n");
else
return -1;
else
gui_print(" * MD5 Error!\n");
} else {
char filename[512];
int index = 0;
string strfn;
sprintf(filename, "%s%03i", Full_File.c_str(), index);
strfn = filename;
while (index < 1000) {
md5sum.setfn(filename);
if (TWFunc::Path_Exists(filename)) {
if (md5sum.computeMD5() == 0) {
if (md5sum.write_md5digest() != 0)
{
gui_print(" * MD5 Error.\n");
return false;
}
} else {
gui_print(" * Error computing MD5.\n");
return false;
}
}
index++;
sprintf(filename, "%s%03i", Full_File.c_str(), index);
strfn = filename;
}
if (index == 0) {
LOGERR("Backup file: '%s' not found!\n", filename);
return false;
}
gui_print(" * MD5 Created.\n");
}
return true;
}
bool TWPartitionManager::Backup_Partition(TWPartition* Part, string Backup_Folder, bool generate_md5, unsigned long long* img_bytes_remaining, unsigned long long* file_bytes_remaining, unsigned long *img_time, unsigned long *file_time, unsigned long long *img_bytes, unsigned long long *file_bytes) {
time_t start, stop;
int img_bps;
unsigned long long file_bps;
unsigned long total_time, remain_time, section_time;
int use_compression, backup_time;
float pos;
if (Part == NULL)
return true;
DataManager::GetValue(TW_BACKUP_AVG_IMG_RATE, img_bps);
DataManager::GetValue(TW_USE_COMPRESSION_VAR, use_compression);
if (use_compression)
DataManager::GetValue(TW_BACKUP_AVG_FILE_COMP_RATE, file_bps);
else
DataManager::GetValue(TW_BACKUP_AVG_FILE_RATE, file_bps);
// We know the speed for both, how far into the whole backup are we, based on time
total_time = (*img_bytes / (unsigned long)img_bps) + (*file_bytes / (unsigned long)file_bps);
remain_time = (*img_bytes_remaining / (unsigned long)img_bps) + (*file_bytes_remaining / (unsigned long)file_bps);
pos = (total_time - remain_time) / (float) total_time;
DataManager::SetProgress(pos);
LOGINFO("Estimated Total time: %lu Estimated remaining time: %lu\n", total_time, remain_time);
// And get the time
if (Part->Backup_Method == 1)
section_time = Part->Backup_Size / file_bps;
else
section_time = Part->Backup_Size / img_bps;
// Set the position
pos = section_time / (float) total_time;
DataManager::ShowProgress(pos, section_time);
time(&start);
if (Part->Backup(Backup_Folder)) {
if (Part->Has_SubPartition) {
std::vector<TWPartition*>::iterator subpart;
for (subpart = Partitions.begin(); subpart != Partitions.end(); subpart++) {
if ((*subpart)->Can_Be_Backed_Up && (*subpart)->Is_SubPartition && (*subpart)->SubPartition_Of == Part->Mount_Point) {
if (!(*subpart)->Backup(Backup_Folder))
return false;
sync();
sync();
if (!Make_MD5(generate_md5, Backup_Folder, (*subpart)->Backup_FileName))
return false;
if (Part->Backup_Method == 1) {
*file_bytes_remaining -= (*subpart)->Backup_Size;
} else {
*img_bytes_remaining -= (*subpart)->Backup_Size;
}
}
}
}
time(&stop);
backup_time = (int) difftime(stop, start);
LOGINFO("Partition Backup time: %d\n", backup_time);
if (Part->Backup_Method == 1) {
*file_bytes_remaining -= Part->Backup_Size;
*file_time += backup_time;
} else {
*img_bytes_remaining -= Part->Backup_Size;
*img_time += backup_time;
}
return Make_MD5(generate_md5, Backup_Folder, Part->Backup_FileName);
} else {
return false;
}
}
int TWPartitionManager::Run_Backup(void) {
int check, do_md5, partition_count = 0;
string Backup_Folder, Backup_Name, Full_Backup_Path, Backup_List, backup_path;
unsigned long long total_bytes = 0, file_bytes = 0, img_bytes = 0, free_space = 0, img_bytes_remaining, file_bytes_remaining, subpart_size;
unsigned long img_time = 0, file_time = 0;
TWPartition* backup_part = NULL;
TWPartition* storage = NULL;
std::vector<TWPartition*>::iterator subpart;
struct tm *t;
time_t start, stop, seconds, total_start, total_stop;
size_t start_pos = 0, end_pos = 0;
seconds = time(0);
t = localtime(&seconds);
time(&total_start);
Update_System_Details();
if (!Mount_Current_Storage(true))
return false;
DataManager::GetValue(TW_SKIP_MD5_GENERATE_VAR, do_md5);
if (do_md5 == 0)
do_md5 = true;
else
do_md5 = false;
DataManager::GetValue(TW_BACKUPS_FOLDER_VAR, Backup_Folder);
DataManager::GetValue(TW_BACKUP_NAME, Backup_Name);
if (Backup_Name == "(Current Date)") {
Backup_Name = TWFunc::Get_Current_Date();
} else if (Backup_Name == "(Auto Generate)" || Backup_Name == "0" || Backup_Name.empty()) {
TWFunc::Auto_Generate_Backup_Name();
DataManager::GetValue(TW_BACKUP_NAME, Backup_Name);
}
LOGINFO("Backup Name is: '%s'\n", Backup_Name.c_str());
Full_Backup_Path = Backup_Folder + "/" + Backup_Name + "/";
LOGINFO("Full_Backup_Path is: '%s'\n", Full_Backup_Path.c_str());
LOGINFO("Calculating backup details...\n");
DataManager::GetValue("tw_backup_list", Backup_List);
if (!Backup_List.empty()) {
end_pos = Backup_List.find(";", start_pos);
while (end_pos != string::npos && start_pos < Backup_List.size()) {
backup_path = Backup_List.substr(start_pos, end_pos - start_pos);
backup_part = Find_Partition_By_Path(backup_path);
if (backup_part != NULL) {
partition_count++;
if (backup_part->Backup_Method == 1)
file_bytes += backup_part->Backup_Size;
else
img_bytes += backup_part->Backup_Size;
if (backup_part->Has_SubPartition) {
std::vector<TWPartition*>::iterator subpart;
for (subpart = Partitions.begin(); subpart != Partitions.end(); subpart++) {
if ((*subpart)->Can_Be_Backed_Up && (*subpart)->Is_Present && (*subpart)->Is_SubPartition && (*subpart)->SubPartition_Of == backup_part->Mount_Point) {
partition_count++;
if ((*subpart)->Backup_Method == 1)
file_bytes += (*subpart)->Backup_Size;
else
img_bytes += (*subpart)->Backup_Size;
}
}
}
} else {
LOGERR("Unable to locate '%s' partition for backup calculations.\n", backup_path.c_str());
}
start_pos = end_pos + 1;
end_pos = Backup_List.find(";", start_pos);
}
}
if (partition_count == 0) {
gui_print("No partitions selected for backup.\n");
return false;
}
total_bytes = file_bytes + img_bytes;
gui_print(" * Total number of partitions to back up: %d\n", partition_count);
gui_print(" * Total size of all data: %lluMB\n", total_bytes / 1024 / 1024);
storage = Find_Partition_By_Path(DataManager::GetCurrentStoragePath());
if (storage != NULL) {
free_space = storage->Free;
gui_print(" * Available space: %lluMB\n", free_space / 1024 / 1024);
} else {
LOGERR("Unable to locate storage device.\n");
return false;
}
if (free_space - (32 * 1024 * 1024) < total_bytes) {
// We require an extra 32MB just in case
LOGERR("Not enough free space on storage.\n");
return false;
}
img_bytes_remaining = img_bytes;
file_bytes_remaining = file_bytes;
gui_print("\n[BACKUP STARTED]\n");
gui_print(" * Backup Folder: %s\n", Full_Backup_Path.c_str());
if (!TWFunc::Recursive_Mkdir(Full_Backup_Path)) {
LOGERR("Failed to make backup folder.\n");
return false;
}
DataManager::SetProgress(0.0);
start_pos = 0;
end_pos = Backup_List.find(";", start_pos);
while (end_pos != string::npos && start_pos < Backup_List.size()) {
backup_path = Backup_List.substr(start_pos, end_pos - start_pos);
backup_part = Find_Partition_By_Path(backup_path);
if (backup_part != NULL) {
if (!Backup_Partition(backup_part, Full_Backup_Path, do_md5, &img_bytes_remaining, &file_bytes_remaining, &img_time, &file_time, &img_bytes, &file_bytes))
return false;
} else {
LOGERR("Unable to locate '%s' partition for backup process.\n", backup_path.c_str());
}
start_pos = end_pos + 1;
end_pos = Backup_List.find(";", start_pos);
}
// Average BPS
if (img_time == 0)
img_time = 1;
if (file_time == 0)
file_time = 1;
int img_bps = (int)img_bytes / (int)img_time;
unsigned long long file_bps = file_bytes / (int)file_time;
gui_print("Average backup rate for file systems: %llu MB/sec\n", (file_bps / (1024 * 1024)));
gui_print("Average backup rate for imaged drives: %lu MB/sec\n", (img_bps / (1024 * 1024)));
time(&total_stop);
int total_time = (int) difftime(total_stop, total_start);
unsigned long long actual_backup_size = TWFunc::Get_Folder_Size(Full_Backup_Path, true);
actual_backup_size /= (1024LLU * 1024LLU);
int prev_img_bps, use_compression;
unsigned long long prev_file_bps;
DataManager::GetValue(TW_BACKUP_AVG_IMG_RATE, prev_img_bps);
img_bps += (prev_img_bps * 4);
img_bps /= 5;
DataManager::GetValue(TW_USE_COMPRESSION_VAR, use_compression);
if (use_compression)
DataManager::GetValue(TW_BACKUP_AVG_FILE_COMP_RATE, prev_file_bps);
else
DataManager::GetValue(TW_BACKUP_AVG_FILE_RATE, prev_file_bps);
file_bps += (prev_file_bps * 4);
file_bps /= 5;
DataManager::SetValue(TW_BACKUP_AVG_IMG_RATE, img_bps);
if (use_compression)
DataManager::SetValue(TW_BACKUP_AVG_FILE_COMP_RATE, file_bps);
else
DataManager::SetValue(TW_BACKUP_AVG_FILE_RATE, file_bps);
gui_print("[%llu MB TOTAL BACKED UP]\n", actual_backup_size);
Update_System_Details();
UnMount_Main_Partitions();
gui_print("[BACKUP COMPLETED IN %d SECONDS]\n\n", total_time); // the end
string backup_log = Full_Backup_Path + "recovery.log";
TWFunc::copy_file("/tmp/recovery.log", backup_log, 0644);
return true;
}
bool TWPartitionManager::Restore_Partition(TWPartition* Part, string Restore_Name, int partition_count) {
time_t Start, Stop;
time(&Start);
DataManager::ShowProgress(1.0 / (float)partition_count, 150);
if (!Part->Restore(Restore_Name))
return false;
if (Part->Has_SubPartition) {
std::vector<TWPartition*>::iterator subpart;
for (subpart = Partitions.begin(); subpart != Partitions.end(); subpart++) {
if ((*subpart)->Is_SubPartition && (*subpart)->SubPartition_Of == Part->Mount_Point) {
if (!(*subpart)->Restore(Restore_Name))
return false;
}
}
}
time(&Stop);
gui_print("[%s done (%d seconds)]\n\n", Part->Backup_Display_Name.c_str(), (int)difftime(Stop, Start));
return true;
}
int TWPartitionManager::Run_Restore(string Restore_Name) {
int check_md5, check, partition_count = 0;
TWPartition* restore_part = NULL;
time_t rStart, rStop;
time(&rStart);
string Restore_List, restore_path;
size_t start_pos = 0, end_pos;
gui_print("\n[RESTORE STARTED]\n\n");
gui_print("Restore folder: '%s'\n", Restore_Name.c_str());
if (!Mount_Current_Storage(true))
return false;
DataManager::GetValue(TW_SKIP_MD5_CHECK_VAR, check_md5);
if (check_md5 > 0) {
// Check MD5 files first before restoring to ensure that all of them match before starting a restore
TWFunc::GUI_Operation_Text(TW_VERIFY_MD5_TEXT, "Verifying MD5");
gui_print("Verifying MD5...\n");
} else {
gui_print("Skipping MD5 check based on user setting.\n");
}
DataManager::GetValue("tw_restore_selected", Restore_List);
if (!Restore_List.empty()) {
end_pos = Restore_List.find(";", start_pos);
while (end_pos != string::npos && start_pos < Restore_List.size()) {
restore_path = Restore_List.substr(start_pos, end_pos - start_pos);
restore_part = Find_Partition_By_Path(restore_path);
if (restore_part != NULL) {
partition_count++;
if (check_md5 > 0 && !restore_part->Check_MD5(Restore_Name))
return false;
if (restore_part->Has_SubPartition) {
std::vector<TWPartition*>::iterator subpart;
for (subpart = Partitions.begin(); subpart != Partitions.end(); subpart++) {
if ((*subpart)->Is_SubPartition && (*subpart)->SubPartition_Of == restore_part->Mount_Point) {
if (!(*subpart)->Check_MD5(Restore_Name))
return false;
}
}
}
} else {
LOGERR("Unable to locate '%s' partition for restoring (restore list).\n", restore_path.c_str());
}
start_pos = end_pos + 1;
end_pos = Restore_List.find(";", start_pos);
}
}
if (partition_count == 0) {
LOGERR("No partitions selected for restore.\n");
return false;
}
gui_print("Restoring %i partitions...\n", partition_count);
DataManager::SetProgress(0.0);
start_pos = 0;
if (!Restore_List.empty()) {
end_pos = Restore_List.find(";", start_pos);
while (end_pos != string::npos && start_pos < Restore_List.size()) {
restore_path = Restore_List.substr(start_pos, end_pos - start_pos);
restore_part = Find_Partition_By_Path(restore_path);
if (restore_part != NULL) {
partition_count++;
if (!Restore_Partition(restore_part, Restore_Name, partition_count))
return false;
} else {
LOGERR("Unable to locate '%s' partition for restoring.\n", restore_path.c_str());
}
start_pos = end_pos + 1;
end_pos = Restore_List.find(";", start_pos);
}
}
TWFunc::GUI_Operation_Text(TW_UPDATE_SYSTEM_DETAILS_TEXT, "Updating System Details");
Update_System_Details();
UnMount_Main_Partitions();
time(&rStop);
gui_print("[RESTORE COMPLETED IN %d SECONDS]\n\n",(int)difftime(rStop,rStart));
return true;
}
void TWPartitionManager::Set_Restore_Files(string Restore_Name) {
// Start with the default values
string Restore_List;
bool get_date = true, check_encryption = true;
DataManager::SetValue("tw_restore_encrypted", 0);
DIR* d;
d = opendir(Restore_Name.c_str());
if (d == NULL)
{
LOGERR("Error opening %s\n", Restore_Name.c_str());
return;
}
struct dirent* de;
while ((de = readdir(d)) != NULL)
{
// Strip off three components
char str[256];
char* label;
char* fstype = NULL;
char* extn = NULL;
char* ptr;
strcpy(str, de->d_name);
if (strlen(str) <= 2)
continue;
if (get_date) {
char file_path[255];
struct stat st;
strcpy(file_path, Restore_Name.c_str());
strcat(file_path, "/");
strcat(file_path, str);
stat(file_path, &st);
string backup_date = ctime((const time_t*)(&st.st_mtime));
DataManager::SetValue(TW_RESTORE_FILE_DATE, backup_date);
get_date = false;
}
label = str;
ptr = label;
while (*ptr && *ptr != '.') ptr++;
if (*ptr == '.')
{
*ptr = 0x00;
ptr++;
fstype = ptr;
}
while (*ptr && *ptr != '.') ptr++;
if (*ptr == '.')
{
*ptr = 0x00;
ptr++;
extn = ptr;
}
if (fstype == NULL || extn == NULL || strcmp(fstype, "log") == 0) continue;
int extnlength = strlen(extn);
if (extnlength != 3 && extnlength != 6) continue;
if (extnlength >= 3 && strncmp(extn, "win", 3) != 0) continue;
//if (extnlength == 6 && strncmp(extn, "win000", 6) != 0) continue;
if (check_encryption) {
string filename = Restore_Name + "/";
filename += de->d_name;
if (TWFunc::Get_File_Type(filename) == 2) {
LOGINFO("'%s' is encrypted\n", filename.c_str());
DataManager::SetValue("tw_restore_encrypted", 1);
}
}
if (extnlength == 6 && strncmp(extn, "win000", 6) != 0) continue;
TWPartition* Part = Find_Partition_By_Path(label);
if (Part == NULL)
{
LOGERR(" Unable to locate partition by backup name: '%s'\n", label);
continue;
}
Part->Backup_FileName = de->d_name;
if (strlen(extn) > 3) {
Part->Backup_FileName.resize(Part->Backup_FileName.size() - strlen(extn) + 3);
}
Restore_List += Part->Backup_Path + ";";
}
closedir(d);
// Set the final value
DataManager::SetValue("tw_restore_list", Restore_List);
DataManager::SetValue("tw_restore_selected", Restore_List);
return;
}
int TWPartitionManager::Wipe_By_Path(string Path) {
std::vector<TWPartition*>::iterator iter;
int ret = false;
bool found = false;
string Local_Path = TWFunc::Get_Root_Path(Path);
// Iterate through all partitions
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Mount_Point == Local_Path || (!(*iter)->Symlink_Mount_Point.empty() && (*iter)->Symlink_Mount_Point == Local_Path)) {
if (Path == "/and-sec")
ret = (*iter)->Wipe_AndSec();
else
ret = (*iter)->Wipe();
found = true;
} else if ((*iter)->Is_SubPartition && (*iter)->SubPartition_Of == Local_Path) {
(*iter)->Wipe();
}
}
if (found) {
return ret;
} else
LOGERR("Wipe: Unable to find partition for path '%s'\n", Local_Path.c_str());
return false;
}
int TWPartitionManager::Wipe_By_Block(string Block) {
TWPartition* Part = Find_Partition_By_Block(Block);
if (Part) {
if (Part->Has_SubPartition) {
std::vector<TWPartition*>::iterator subpart;
for (subpart = Partitions.begin(); subpart != Partitions.end(); subpart++) {
if ((*subpart)->Is_SubPartition && (*subpart)->SubPartition_Of == Part->Mount_Point)
(*subpart)->Wipe();
}
return Part->Wipe();
} else
return Part->Wipe();
}
LOGERR("Wipe: Unable to find partition for block '%s'\n", Block.c_str());
return false;
}
int TWPartitionManager::Wipe_By_Name(string Name) {
TWPartition* Part = Find_Partition_By_Name(Name);
if (Part) {
if (Part->Has_SubPartition) {
std::vector<TWPartition*>::iterator subpart;
for (subpart = Partitions.begin(); subpart != Partitions.end(); subpart++) {
if ((*subpart)->Is_SubPartition && (*subpart)->SubPartition_Of == Part->Mount_Point)
(*subpart)->Wipe();
}
return Part->Wipe();
} else
return Part->Wipe();
}
LOGERR("Wipe: Unable to find partition for name '%s'\n", Name.c_str());
return false;
}
int TWPartitionManager::Factory_Reset(void) {
std::vector<TWPartition*>::iterator iter;
int ret = true;
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Wipe_During_Factory_Reset && (*iter)->Is_Present) {
if (!(*iter)->Wipe())
ret = false;
} else if ((*iter)->Has_Android_Secure) {
if (!(*iter)->Wipe_AndSec())
ret = false;
}
}
return ret;
}
int TWPartitionManager::Wipe_Dalvik_Cache(void) {
struct stat st;
vector <string> dir;
if (!Mount_By_Path("/data", true))
return false;
if (!Mount_By_Path("/cache", true))
return false;
dir.push_back("/data/dalvik-cache");
dir.push_back("/cache/dalvik-cache");
dir.push_back("/cache/dc");
gui_print("\nWiping Dalvik Cache Directories...\n");
for (unsigned i = 0; i < dir.size(); ++i) {
if (stat(dir.at(i).c_str(), &st) == 0) {
TWFunc::removeDir(dir.at(i), false);
gui_print("Cleaned: %s...\n", dir.at(i).c_str());
}
}
TWPartition* sdext = Find_Partition_By_Path("/sd-ext");
if (sdext && sdext->Is_Present && sdext->Mount(false))
{
if (stat("/sd-ext/dalvik-cache", &st) == 0)
{
TWFunc::removeDir("/sd-ext/dalvik-cache", false);
gui_print("Cleaned: /sd-ext/dalvik-cache...\n");
}
}
gui_print("-- Dalvik Cache Directories Wipe Complete!\n\n");
return true;
}
int TWPartitionManager::Wipe_Rotate_Data(void) {
if (!Mount_By_Path("/data", true))
return false;
unlink("/data/misc/akmd*");
unlink("/data/misc/rild*");
gui_print("Rotation data wiped.\n");
return true;
}
int TWPartitionManager::Wipe_Battery_Stats(void) {
struct stat st;
if (!Mount_By_Path("/data", true))
return false;
if (0 != stat("/data/system/batterystats.bin", &st)) {
gui_print("No Battery Stats Found. No Need To Wipe.\n");
} else {
remove("/data/system/batterystats.bin");
gui_print("Cleared battery stats.\n");
}
return true;
}
int TWPartitionManager::Wipe_Android_Secure(void) {
std::vector<TWPartition*>::iterator iter;
int ret = false;
bool found = false;
// Iterate through all partitions
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Has_Android_Secure) {
ret = (*iter)->Wipe_AndSec();
found = true;
}
}
if (found) {
return ret;
} else {
LOGERR("No android secure partitions found.\n");
}
return false;
}
int TWPartitionManager::Format_Data(void) {
TWPartition* dat = Find_Partition_By_Path("/data");
if (dat != NULL) {
if (!dat->UnMount(true))
return false;
return dat->Wipe_Encryption();
} else {
LOGERR("Unable to locate /data.\n");
return false;
}
return false;
}
int TWPartitionManager::Wipe_Media_From_Data(void) {
TWPartition* dat = Find_Partition_By_Path("/data");
if (dat != NULL) {
if (!dat->Has_Data_Media) {
LOGERR("This device does not have /data/media\n");
return false;
}
if (!dat->Mount(true))
return false;
gui_print("Wiping internal storage -- /data/media...\n");
TWFunc::removeDir("/data/media", false);
if (mkdir("/data/media", S_IRWXU | S_IRWXG | S_IWGRP | S_IXGRP) != 0)
return -1;
if (dat->Has_Data_Media) {
dat->Recreate_Media_Folder();
// Unmount and remount - slightly hackish way to ensure that the "/sdcard" folder is still mounted properly after wiping
dat->UnMount(false);
dat->Mount(false);
}
return true;
} else {
LOGERR("Unable to locate /data.\n");
return false;
}
return false;
}
void TWPartitionManager::Refresh_Sizes(void) {
Update_System_Details();
return;
}
void TWPartitionManager::Update_System_Details(void) {
std::vector<TWPartition*>::iterator iter;
int data_size = 0;
gui_print("Updating partition details...\n");
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Can_Be_Mounted) {
(*iter)->Update_Size(true);
if ((*iter)->Mount_Point == "/system") {
int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU);
DataManager::SetValue(TW_BACKUP_SYSTEM_SIZE, backup_display_size);
} else if ((*iter)->Mount_Point == "/data" || (*iter)->Mount_Point == "/datadata") {
data_size += (int)((*iter)->Backup_Size / 1048576LLU);
} else if ((*iter)->Mount_Point == "/cache") {
int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU);
DataManager::SetValue(TW_BACKUP_CACHE_SIZE, backup_display_size);
} else if ((*iter)->Mount_Point == "/sd-ext") {
int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU);
DataManager::SetValue(TW_BACKUP_SDEXT_SIZE, backup_display_size);
if ((*iter)->Backup_Size == 0) {
DataManager::SetValue(TW_HAS_SDEXT_PARTITION, 0);
DataManager::SetValue(TW_BACKUP_SDEXT_VAR, 0);
} else
DataManager::SetValue(TW_HAS_SDEXT_PARTITION, 1);
} else if ((*iter)->Has_Android_Secure) {
int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU);
DataManager::SetValue(TW_BACKUP_ANDSEC_SIZE, backup_display_size);
if ((*iter)->Backup_Size == 0) {
DataManager::SetValue(TW_HAS_ANDROID_SECURE, 0);
DataManager::SetValue(TW_BACKUP_ANDSEC_VAR, 0);
} else
DataManager::SetValue(TW_HAS_ANDROID_SECURE, 1);
} else if ((*iter)->Mount_Point == "/boot") {
int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU);
DataManager::SetValue(TW_BACKUP_BOOT_SIZE, backup_display_size);
if ((*iter)->Backup_Size == 0) {
DataManager::SetValue("tw_has_boot_partition", 0);
DataManager::SetValue(TW_BACKUP_BOOT_VAR, 0);
} else
DataManager::SetValue("tw_has_boot_partition", 1);
}
#ifdef SP1_NAME
if ((*iter)->Backup_Name == EXPAND(SP1_NAME)) {
int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU);
DataManager::SetValue(TW_BACKUP_SP1_SIZE, backup_display_size);
}
#endif
#ifdef SP2_NAME
if ((*iter)->Backup_Name == EXPAND(SP2_NAME)) {
int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU);
DataManager::SetValue(TW_BACKUP_SP2_SIZE, backup_display_size);
}
#endif
#ifdef SP3_NAME
if ((*iter)->Backup_Name == EXPAND(SP3_NAME)) {
int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU);
DataManager::SetValue(TW_BACKUP_SP3_SIZE, backup_display_size);
}
#endif
} else {
// Handle unmountable partitions in case we reset defaults
if ((*iter)->Mount_Point == "/boot") {
int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU);
DataManager::SetValue(TW_BACKUP_BOOT_SIZE, backup_display_size);
if ((*iter)->Backup_Size == 0) {
DataManager::SetValue(TW_HAS_BOOT_PARTITION, 0);
DataManager::SetValue(TW_BACKUP_BOOT_VAR, 0);
} else
DataManager::SetValue(TW_HAS_BOOT_PARTITION, 1);
} else if ((*iter)->Mount_Point == "/recovery") {
int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU);
DataManager::SetValue(TW_BACKUP_RECOVERY_SIZE, backup_display_size);
if ((*iter)->Backup_Size == 0) {
DataManager::SetValue(TW_HAS_RECOVERY_PARTITION, 0);
DataManager::SetValue(TW_BACKUP_RECOVERY_VAR, 0);
} else
DataManager::SetValue(TW_HAS_RECOVERY_PARTITION, 1);
} else if ((*iter)->Mount_Point == "/data") {
data_size += (int)((*iter)->Backup_Size / 1048576LLU);
}
#ifdef SP1_NAME
if ((*iter)->Backup_Name == EXPAND(SP1_NAME)) {
int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU);
DataManager::SetValue(TW_BACKUP_SP1_SIZE, backup_display_size);
}
#endif
#ifdef SP2_NAME
if ((*iter)->Backup_Name == EXPAND(SP2_NAME)) {
int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU);
DataManager::SetValue(TW_BACKUP_SP2_SIZE, backup_display_size);
}
#endif
#ifdef SP3_NAME
if ((*iter)->Backup_Name == EXPAND(SP3_NAME)) {
int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU);
DataManager::SetValue(TW_BACKUP_SP3_SIZE, backup_display_size);
}
#endif
}
}
DataManager::SetValue(TW_BACKUP_DATA_SIZE, data_size);
string current_storage_path = DataManager::GetCurrentStoragePath();
TWPartition* FreeStorage = Find_Partition_By_Path(current_storage_path);
if (FreeStorage != NULL) {
// Attempt to mount storage
if (!FreeStorage->Mount(false)) {
// We couldn't mount storage... check to see if we have dual storage
int has_dual_storage;
DataManager::GetValue(TW_HAS_DUAL_STORAGE, has_dual_storage);
if (has_dual_storage == 1) {
// We have dual storage, see if we're using the internal storage that should always be present
if (current_storage_path == DataManager::GetSettingsStoragePath()) {
if (!FreeStorage->Is_Encrypted) {
// Not able to use internal, so error!
LOGERR("Unable to mount internal storage.\n");
}
DataManager::SetValue(TW_STORAGE_FREE_SIZE, 0);
} else {
// We were using external, flip to internal
DataManager::SetValue(TW_USE_EXTERNAL_STORAGE, 0);
current_storage_path = DataManager::GetCurrentStoragePath();
FreeStorage = Find_Partition_By_Path(current_storage_path);
if (FreeStorage != NULL) {
DataManager::SetValue(TW_STORAGE_FREE_SIZE, (int)(FreeStorage->Free / 1048576LLU));
} else {
LOGERR("Unable to locate internal storage partition.\n");
DataManager::SetValue(TW_STORAGE_FREE_SIZE, 0);
}
}
} else {
// No dual storage and unable to mount storage, error!
LOGERR("Unable to mount storage.\n");
DataManager::SetValue(TW_STORAGE_FREE_SIZE, 0);
}
} else {
DataManager::SetValue(TW_STORAGE_FREE_SIZE, (int)(FreeStorage->Free / 1048576LLU));
}
} else {
LOGINFO("Unable to find storage partition '%s'.\n", current_storage_path.c_str());
}
if (!Write_Fstab())
LOGERR("Error creating fstab\n");
return;
}
int TWPartitionManager::Decrypt_Device(string Password) {
#ifdef TW_INCLUDE_CRYPTO
int ret_val, password_len;
char crypto_blkdev[255], cPassword[255];
size_t result;
property_set("ro.crypto.state", "encrypted");
#ifdef TW_INCLUDE_JB_CRYPTO
// No extra flags needed
#else
property_set("ro.crypto.fs_type", CRYPTO_FS_TYPE);
property_set("ro.crypto.fs_real_blkdev", CRYPTO_REAL_BLKDEV);
property_set("ro.crypto.fs_mnt_point", CRYPTO_MNT_POINT);
property_set("ro.crypto.fs_options", CRYPTO_FS_OPTIONS);
property_set("ro.crypto.fs_flags", CRYPTO_FS_FLAGS);
property_set("ro.crypto.keyfile.userdata", CRYPTO_KEY_LOC);
#ifdef CRYPTO_SD_FS_TYPE
property_set("ro.crypto.sd_fs_type", CRYPTO_SD_FS_TYPE);
property_set("ro.crypto.sd_fs_real_blkdev", CRYPTO_SD_REAL_BLKDEV);
property_set("ro.crypto.sd_fs_mnt_point", EXPAND(TW_INTERNAL_STORAGE_PATH));
#endif
property_set("rw.km_fips_status", "ready");
#endif
// some samsung devices store "footer" on efs partition
TWPartition *efs = Find_Partition_By_Path("/efs");
if(efs && !efs->Is_Mounted())
efs->Mount(false);
else
efs = 0;
#ifdef TW_EXTERNAL_STORAGE_PATH
#ifdef TW_INCLUDE_CRYPTO_SAMSUNG
TWPartition* sdcard = Find_Partition_By_Path(EXPAND(TW_EXTERNAL_STORAGE_PATH));
if (sdcard && sdcard->Mount(false)) {
property_set("ro.crypto.external_encrypted", "1");
property_set("ro.crypto.external_blkdev", sdcard->Actual_Block_Device.c_str());
} else {
property_set("ro.crypto.external_encrypted", "0");
}
#endif
#endif
strcpy(cPassword, Password.c_str());
int pwret = cryptfs_check_passwd(cPassword);
if (pwret != 0) {
LOGERR("Failed to decrypt data.\n");
return -1;
}
if(efs)
efs->UnMount(false);
property_get("ro.crypto.fs_crypto_blkdev", crypto_blkdev, "error");
if (strcmp(crypto_blkdev, "error") == 0) {
LOGERR("Error retrieving decrypted data block device.\n");
} else {
TWPartition* dat = Find_Partition_By_Path("/data");
if (dat != NULL) {
DataManager::SetValue(TW_DATA_BLK_DEVICE, dat->Primary_Block_Device);
DataManager::SetValue(TW_IS_DECRYPTED, 1);
dat->Is_Decrypted = true;
dat->Decrypted_Block_Device = crypto_blkdev;
dat->Setup_File_System(false);
dat->Current_File_System = dat->Fstab_File_System; // Needed if we're ignoring blkid because encrypted devices start out as emmc
gui_print("Data successfully decrypted, new block device: '%s'\n", crypto_blkdev);
#ifdef CRYPTO_SD_FS_TYPE
char crypto_blkdev_sd[255];
property_get("ro.crypto.sd_fs_crypto_blkdev", crypto_blkdev_sd, "error");
if (strcmp(crypto_blkdev_sd, "error") == 0) {
LOGERR("Error retrieving decrypted data block device.\n");
} else if(TWPartition* emmc = Find_Partition_By_Path(EXPAND(TW_INTERNAL_STORAGE_PATH))){
emmc->Is_Decrypted = true;
emmc->Decrypted_Block_Device = crypto_blkdev_sd;
emmc->Setup_File_System(false);
gui_print("Internal SD successfully decrypted, new block device: '%s'\n", crypto_blkdev_sd);
}
#endif //ifdef CRYPTO_SD_FS_TYPE
#ifdef TW_EXTERNAL_STORAGE_PATH
#ifdef TW_INCLUDE_CRYPTO_SAMSUNG
char is_external_decrypted[255];
property_get("ro.crypto.external_use_ecryptfs", is_external_decrypted, "0");
if (strcmp(is_external_decrypted, "1") == 0) {
sdcard->Is_Decrypted = true;
sdcard->EcryptFS_Password = Password;
sdcard->Decrypted_Block_Device = sdcard->Actual_Block_Device;
string MetaEcfsFile = EXPAND(TW_EXTERNAL_STORAGE_PATH);
MetaEcfsFile += "/.MetaEcfsFile";
if (!TWFunc::Path_Exists(MetaEcfsFile)) {
// External storage isn't actually encrypted so unmount and remount without ecryptfs
sdcard->UnMount(false);
sdcard->Mount(false);
}
} else {
LOGINFO("External storage '%s' is not encrypted.\n", sdcard->Mount_Point.c_str());
sdcard->Is_Decrypted = false;
sdcard->Decrypted_Block_Device = "";
}
#endif
#endif //ifdef TW_EXTERNAL_STORAGE_PATH
// Sleep for a bit so that the device will be ready
sleep(1);
#ifdef RECOVERY_SDCARD_ON_DATA
if (dat->Mount(false) && TWFunc::Path_Exists("/data/media/0")) {
dat->Storage_Path = "/data/media/0";
dat->Symlink_Path = dat->Storage_Path;
DataManager::SetValue(TW_INTERNAL_PATH, "/data/media/0");
dat->UnMount(false);
DataManager::SetBackupFolder();
Output_Partition(dat);
}
#endif
Update_System_Details();
UnMount_Main_Partitions();
} else
LOGERR("Unable to locate data partition.\n");
}
return 0;
#else
LOGERR("No crypto support was compiled into this build.\n");
return -1;
#endif
return 1;
}
int TWPartitionManager::Fix_Permissions(void) {
int result = 0;
if (!Mount_By_Path("/data", true))
return false;
if (!Mount_By_Path("/system", true))
return false;
Mount_By_Path("/sd-ext", false);
fixPermissions perms;
result = perms.fixPerms(true, false);
UnMount_Main_Partitions();
gui_print("Done.\n\n");
return result;
}
int TWPartitionManager::Open_Lun_File(string Partition_Path, string Lun_File) {
TWPartition* Part = Find_Partition_By_Path(Partition_Path);
if (Part == NULL) {
LOGERR("Unable to locate volume information for USB storage mode.");
return false;
}
if (!Part->UnMount(true))
return false;
if (TWFunc::write_file(Lun_File, Part->Actual_Block_Device)) {
LOGERR("Unable to write to ums lunfile '%s': (%s)\n", Lun_File.c_str(), strerror(errno));
return false;
}
return true;
}
int TWPartitionManager::usb_storage_enable(void) {
int has_dual, has_data_media;
char lun_file[255];
string ext_path;
bool has_multiple_lun = false;
DataManager::GetValue(TW_HAS_DUAL_STORAGE, has_dual);
DataManager::GetValue(TW_HAS_DATA_MEDIA, has_data_media);
if (has_dual == 1 && has_data_media == 0) {
string Lun_File_str = CUSTOM_LUN_FILE;
size_t found = Lun_File_str.find("%");
if (found != string::npos) {
sprintf(lun_file, CUSTOM_LUN_FILE, 1);
if (TWFunc::Path_Exists(lun_file))
has_multiple_lun = true;
}
if (!has_multiple_lun) {
// Device doesn't have multiple lun files, mount current storage
sprintf(lun_file, CUSTOM_LUN_FILE, 0);
return Open_Lun_File(DataManager::GetCurrentStoragePath(), lun_file);
} else {
// Device has multiple lun files
sprintf(lun_file, CUSTOM_LUN_FILE, 0);
if (!Open_Lun_File(DataManager::GetSettingsStoragePath(), lun_file))
return false;
DataManager::GetValue(TW_EXTERNAL_PATH, ext_path);
sprintf(lun_file, CUSTOM_LUN_FILE, 1);
return Open_Lun_File(ext_path, lun_file);
}
} else {
if (has_data_media == 0)
ext_path = DataManager::GetCurrentStoragePath();
else
DataManager::GetValue(TW_EXTERNAL_PATH, ext_path);
sprintf(lun_file, CUSTOM_LUN_FILE, 0);
return Open_Lun_File(ext_path, lun_file);
}
return true;
}
int TWPartitionManager::usb_storage_disable(void) {
int index, ret;
char lun_file[255], ch[2] = {0, 0};
string str = ch;
for (index=0; index<2; index++) {
sprintf(lun_file, CUSTOM_LUN_FILE, index);
ret = TWFunc::write_file(lun_file, str);
Mount_All_Storage();
Update_System_Details();
if (ret < 0) {
break;
}
}
Mount_All_Storage();
Update_System_Details();
UnMount_Main_Partitions();
if (ret < 0 && index == 0) {
LOGERR("Unable to write to ums lunfile '%s'.", lun_file);
return false;
} else {
return true;
}
return true;
}
void TWPartitionManager::Mount_All_Storage(void) {
std::vector<TWPartition*>::iterator iter;
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Is_Storage)
(*iter)->Mount(false);
}
}
void TWPartitionManager::UnMount_Main_Partitions(void) {
// Unmounts system and data if data is not data/media
// Also unmounts boot if boot is mountable
LOGINFO("Unmounting main partitions...\n");
TWPartition* Boot_Partition = Find_Partition_By_Path("/boot");
UnMount_By_Path("/system", true);
#ifndef RECOVERY_SDCARD_ON_DATA
UnMount_By_Path("/data", true);
#endif
if (Boot_Partition != NULL && Boot_Partition->Can_Be_Mounted)
Boot_Partition->UnMount(true);
}
int TWPartitionManager::Partition_SDCard(void) {
char mkdir_path[255], temp[255], line[512];
string Command, Device, fat_str, ext_str, swap_str, start_loc, end_loc, ext_format, sd_path, tmpdevice;
int ext, swap, total_size = 0, fat_size;
FILE* fp;
gui_print("Partitioning SD Card...\n");
#ifdef TW_EXTERNAL_STORAGE_PATH
TWPartition* SDCard = Find_Partition_By_Path(EXPAND(TW_EXTERNAL_STORAGE_PATH));
#else
TWPartition* SDCard = Find_Partition_By_Path("/sdcard");
#endif
if (SDCard == NULL) {
LOGERR("Unable to locate device to partition.\n");
return false;
}
if (!SDCard->UnMount(true))
return false;
TWPartition* SDext = Find_Partition_By_Path("/sd-ext");
if (SDext != NULL) {
if (!SDext->UnMount(true))
return false;
}
TWFunc::Exec_Cmd("umount \"$SWAPPATH\"");
Device = SDCard->Actual_Block_Device;
// Just use the root block device
Device.resize(strlen("/dev/block/mmcblkX"));
// Find the size of the block device:
fp = fopen("/proc/partitions", "rt");
if (fp == NULL) {
LOGERR("Unable to open /proc/partitions\n");
return false;
}
while (fgets(line, sizeof(line), fp) != NULL)
{
unsigned long major, minor, blocks;
char device[512];
char tmpString[64];
if (strlen(line) < 7 || line[0] == 'm') continue;
sscanf(line + 1, "%lu %lu %lu %s", &major, &minor, &blocks, device);
tmpdevice = "/dev/block/";
tmpdevice += device;
if (tmpdevice == Device) {
// Adjust block size to byte size
total_size = (int)(blocks * 1024ULL / 1000000LLU);
break;
}
}
fclose(fp);
DataManager::GetValue("tw_sdext_size", ext);
DataManager::GetValue("tw_swap_size", swap);
DataManager::GetValue("tw_sdpart_file_system", ext_format);
fat_size = total_size - ext - swap;
LOGINFO("sd card block device is '%s', sdcard size is: %iMB, fat size: %iMB, ext size: %iMB, ext system: '%s', swap size: %iMB\n", Device.c_str(), total_size, fat_size, ext, ext_format.c_str(), swap);
memset(temp, 0, sizeof(temp));
sprintf(temp, "%i", fat_size);
fat_str = temp;
memset(temp, 0, sizeof(temp));
sprintf(temp, "%i", fat_size + ext);
ext_str = temp;
memset(temp, 0, sizeof(temp));
sprintf(temp, "%i", fat_size + ext + swap);
swap_str = temp;
if (ext + swap > total_size) {
LOGERR("EXT + Swap size is larger than sdcard size.\n");
return false;
}
gui_print("Removing partition table...\n");
Command = "parted -s " + Device + " mklabel msdos";
LOGINFO("Command is: '%s'\n", Command.c_str());
if (TWFunc::Exec_Cmd(Command) != 0) {
LOGERR("Unable to remove partition table.\n");
Update_System_Details();
return false;
}
gui_print("Creating FAT32 partition...\n");
Command = "parted " + Device + " mkpartfs primary fat32 0 " + fat_str + "MB";
LOGINFO("Command is: '%s'\n", Command.c_str());
if (TWFunc::Exec_Cmd(Command) != 0) {
LOGERR("Unable to create FAT32 partition.\n");
return false;
}
if (ext > 0) {
gui_print("Creating EXT partition...\n");
Command = "parted " + Device + " mkpartfs primary ext2 " + fat_str + "MB " + ext_str + "MB";
LOGINFO("Command is: '%s'\n", Command.c_str());
if (TWFunc::Exec_Cmd(Command) != 0) {
LOGERR("Unable to create EXT partition.\n");
Update_System_Details();
return false;
}
}
if (swap > 0) {
gui_print("Creating swap partition...\n");
Command = "parted " + Device + " mkpartfs primary linux-swap " + ext_str + "MB " + swap_str + "MB";
LOGINFO("Command is: '%s'\n", Command.c_str());
if (TWFunc::Exec_Cmd(Command) != 0) {
LOGERR("Unable to create swap partition.\n");
Update_System_Details();
return false;
}
}
// recreate TWRP folder and rewrite settings - these will be gone after sdcard is partitioned
#ifdef TW_EXTERNAL_STORAGE_PATH
Mount_By_Path(EXPAND(TW_EXTERNAL_STORAGE_PATH), 1);
DataManager::GetValue(TW_EXTERNAL_PATH, sd_path);
memset(mkdir_path, 0, sizeof(mkdir_path));
sprintf(mkdir_path, "%s/TWRP", sd_path.c_str());
#else
Mount_By_Path("/sdcard", 1);
strcpy(mkdir_path, "/sdcard/TWRP");
#endif
mkdir(mkdir_path, 0777);
DataManager::Flush();
#ifdef TW_EXTERNAL_STORAGE_PATH
DataManager::SetValue(TW_ZIP_EXTERNAL_VAR, EXPAND(TW_EXTERNAL_STORAGE_PATH));
if (DataManager::GetIntValue(TW_USE_EXTERNAL_STORAGE) == 1)
DataManager::SetValue(TW_ZIP_LOCATION_VAR, EXPAND(TW_EXTERNAL_STORAGE_PATH));
#else
DataManager::SetValue(TW_ZIP_EXTERNAL_VAR, "/sdcard");
if (DataManager::GetIntValue(TW_USE_EXTERNAL_STORAGE) == 1)
DataManager::SetValue(TW_ZIP_LOCATION_VAR, "/sdcard");
#endif
if (ext > 0) {
if (SDext == NULL) {
LOGERR("Unable to locate sd-ext partition.\n");
return false;
}
Command = "mke2fs -t " + ext_format + " -m 0 " + SDext->Actual_Block_Device;
gui_print("Formatting sd-ext as %s...\n", ext_format.c_str());
LOGINFO("Formatting sd-ext after partitioning, command: '%s'\n", Command.c_str());
TWFunc::Exec_Cmd(Command);
}
Update_System_Details();
gui_print("Partitioning complete.\n");
return true;
}
void TWPartitionManager::Get_Partition_List(string ListType, std::vector<PartitionList> *Partition_List) {
std::vector<TWPartition*>::iterator iter;
if (ListType == "mount") {
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Can_Be_Mounted && !(*iter)->Is_SubPartition) {
struct PartitionList part;
part.Display_Name = (*iter)->Display_Name;
part.Mount_Point = (*iter)->Mount_Point;
part.selected = (*iter)->Is_Mounted();
Partition_List->push_back(part);
}
}
} else if (ListType == "storage") {
char free_space[255];
string Current_Storage = DataManager::GetCurrentStoragePath();
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Is_Storage) {
struct PartitionList part;
sprintf(free_space, "%llu", (*iter)->Free / 1024 / 1024);
part.Display_Name = (*iter)->Storage_Name + " (";
part.Display_Name += free_space;
part.Display_Name += "MB)";
part.Mount_Point = (*iter)->Storage_Path;
if ((*iter)->Storage_Path == Current_Storage)
part.selected = 1;
else
part.selected = 0;
Partition_List->push_back(part);
}
}
} else if (ListType == "backup") {
char backup_size[255];
unsigned long long Backup_Size;
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Can_Be_Backed_Up && !(*iter)->Is_SubPartition && (*iter)->Is_Present) {
struct PartitionList part;
Backup_Size = (*iter)->Backup_Size;
if ((*iter)->Has_SubPartition) {
std::vector<TWPartition*>::iterator subpart;
for (subpart = Partitions.begin(); subpart != Partitions.end(); subpart++) {
if ((*subpart)->Is_SubPartition && (*subpart)->Can_Be_Backed_Up && (*subpart)->Is_Present && (*subpart)->SubPartition_Of == (*iter)->Mount_Point)
Backup_Size += (*subpart)->Backup_Size;
}
}
sprintf(backup_size, "%llu", Backup_Size / 1024 / 1024);
part.Display_Name = (*iter)->Backup_Display_Name + " (";
part.Display_Name += backup_size;
part.Display_Name += "MB)";
part.Mount_Point = (*iter)->Backup_Path;
part.selected = 0;
Partition_List->push_back(part);
}
}
} else if (ListType == "restore") {
string Restore_List, restore_path;
TWPartition* restore_part = NULL;
DataManager::GetValue("tw_restore_list", Restore_List);
if (!Restore_List.empty()) {
size_t start_pos = 0, end_pos = Restore_List.find(";", start_pos);
while (end_pos != string::npos && start_pos < Restore_List.size()) {
restore_path = Restore_List.substr(start_pos, end_pos - start_pos);
if ((restore_part = Find_Partition_By_Path(restore_path)) != NULL) {
if (restore_part->Backup_Name == "recovery" || restore_part->Is_SubPartition) {
// Don't allow restore of recovery (causes problems on some devices)
// Don't add subpartitions to the list of items
} else {
struct PartitionList part;
part.Display_Name = restore_part->Backup_Display_Name;
part.Mount_Point = restore_part->Backup_Path;
part.selected = 1;
Partition_List->push_back(part);
}
} else {
LOGERR("Unable to locate '%s' partition for restore.\n", restore_path.c_str());
}
start_pos = end_pos + 1;
end_pos = Restore_List.find(";", start_pos);
}
}
} else if (ListType == "wipe") {
struct PartitionList dalvik;
dalvik.Display_Name = "Dalvik Cache";
dalvik.Mount_Point = "DALVIK";
dalvik.selected = 0;
Partition_List->push_back(dalvik);
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Wipe_Available_in_GUI && !(*iter)->Is_SubPartition) {
struct PartitionList part;
part.Display_Name = (*iter)->Display_Name;
part.Mount_Point = (*iter)->Mount_Point;
part.selected = 0;
Partition_List->push_back(part);
}
if ((*iter)->Has_Android_Secure) {
struct PartitionList part;
part.Display_Name = (*iter)->Backup_Display_Name;
part.Mount_Point = (*iter)->Backup_Path;
part.selected = 0;
Partition_List->push_back(part);
}
if ((*iter)->Has_Data_Media) {
struct PartitionList datamedia;
datamedia.Display_Name = (*iter)->Storage_Name;
datamedia.Mount_Point = "INTERNAL";
datamedia.selected = 0;
Partition_List->push_back(datamedia);
}
}
} else {
LOGERR("Unknown list type '%s' requested for TWPartitionManager::Get_Partition_List\n", ListType.c_str());
}
}
int TWPartitionManager::Fstab_Processed(void) {
return Partitions.size();
}
void TWPartitionManager::Output_Storage_Fstab(void) {
std::vector<TWPartition*>::iterator iter;
char storage_partition[255];
string Temp;
FILE *fp = fopen("/cache/recovery/storage.fstab", "w");
if (fp == NULL) {
LOGERR("Unable to open '/cache/recovery/storage.fstab'.\n");
return;
}
// Iterate through all partitions
for (iter = Partitions.begin(); iter != Partitions.end(); iter++) {
if ((*iter)->Is_Storage) {
Temp = (*iter)->Storage_Path + ";" + (*iter)->Storage_Name + ";\n";
strcpy(storage_partition, Temp.c_str());
fwrite(storage_partition, sizeof(storage_partition[0]), strlen(storage_partition) / sizeof(storage_partition[0]), fp);
}
}
fclose(fp);
}