Dees Troy | 4dff2e6 | 2013-11-10 04:11:43 +0000 | [diff] [blame] | 1 | /*- |
| 2 | * Copyright 2009 Colin Percival |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions |
| 7 | * are met: |
| 8 | * 1. Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * 2. Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in the |
| 12 | * documentation and/or other materials provided with the distribution. |
| 13 | * |
| 14 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| 15 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 16 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 17 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 18 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 19 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 20 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 21 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 22 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 23 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 24 | * SUCH DAMAGE. |
| 25 | * |
| 26 | * This file was originally written by Colin Percival as part of the Tarsnap |
| 27 | * online backup system. |
| 28 | */ |
| 29 | #include "scrypt_platform.h" |
| 30 | |
| 31 | #include <errno.h> |
| 32 | #include <stdint.h> |
| 33 | #include <stdlib.h> |
| 34 | #include <string.h> |
| 35 | |
| 36 | #ifdef USE_OPENSSL_PBKDF2 |
| 37 | #include <openssl/evp.h> |
| 38 | #else |
| 39 | #include "sha256.h" |
| 40 | #endif |
| 41 | #include "sysendian.h" |
| 42 | |
| 43 | #include "crypto_scrypt.h" |
| 44 | |
| 45 | static void blkcpy(uint8_t *, uint8_t *, size_t); |
| 46 | static void blkxor(uint8_t *, uint8_t *, size_t); |
| 47 | static void salsa20_8(uint8_t[64]); |
| 48 | static void blockmix_salsa8(uint8_t *, uint8_t *, size_t); |
| 49 | static uint64_t integerify(uint8_t *, size_t); |
| 50 | static void smix(uint8_t *, size_t, uint64_t, uint8_t *, uint8_t *); |
| 51 | |
| 52 | static void |
| 53 | blkcpy(uint8_t * dest, uint8_t * src, size_t len) |
| 54 | { |
| 55 | size_t i; |
| 56 | |
| 57 | for (i = 0; i < len; i++) |
| 58 | dest[i] = src[i]; |
| 59 | } |
| 60 | |
| 61 | static void |
| 62 | blkxor(uint8_t * dest, uint8_t * src, size_t len) |
| 63 | { |
| 64 | size_t i; |
| 65 | |
| 66 | for (i = 0; i < len; i++) |
| 67 | dest[i] ^= src[i]; |
| 68 | } |
| 69 | |
| 70 | /** |
| 71 | * salsa20_8(B): |
| 72 | * Apply the salsa20/8 core to the provided block. |
| 73 | */ |
| 74 | static void |
| 75 | salsa20_8(uint8_t B[64]) |
| 76 | { |
| 77 | uint32_t B32[16]; |
| 78 | uint32_t x[16]; |
| 79 | size_t i; |
| 80 | |
| 81 | /* Convert little-endian values in. */ |
| 82 | for (i = 0; i < 16; i++) |
| 83 | B32[i] = le32dec(&B[i * 4]); |
| 84 | |
| 85 | /* Compute x = doubleround^4(B32). */ |
| 86 | for (i = 0; i < 16; i++) |
| 87 | x[i] = B32[i]; |
| 88 | for (i = 0; i < 8; i += 2) { |
| 89 | #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) |
| 90 | /* Operate on columns. */ |
| 91 | x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9); |
| 92 | x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18); |
| 93 | |
| 94 | x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9); |
| 95 | x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18); |
| 96 | |
| 97 | x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9); |
| 98 | x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18); |
| 99 | |
| 100 | x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9); |
| 101 | x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18); |
| 102 | |
| 103 | /* Operate on rows. */ |
| 104 | x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9); |
| 105 | x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18); |
| 106 | |
| 107 | x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9); |
| 108 | x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18); |
| 109 | |
| 110 | x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9); |
| 111 | x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18); |
| 112 | |
| 113 | x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9); |
| 114 | x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18); |
| 115 | #undef R |
| 116 | } |
| 117 | |
| 118 | /* Compute B32 = B32 + x. */ |
| 119 | for (i = 0; i < 16; i++) |
| 120 | B32[i] += x[i]; |
| 121 | |
| 122 | /* Convert little-endian values out. */ |
| 123 | for (i = 0; i < 16; i++) |
| 124 | le32enc(&B[4 * i], B32[i]); |
| 125 | } |
| 126 | |
| 127 | /** |
| 128 | * blockmix_salsa8(B, Y, r): |
| 129 | * Compute B = BlockMix_{salsa20/8, r}(B). The input B must be 128r bytes in |
| 130 | * length; the temporary space Y must also be the same size. |
| 131 | */ |
| 132 | static void |
| 133 | blockmix_salsa8(uint8_t * B, uint8_t * Y, size_t r) |
| 134 | { |
| 135 | uint8_t X[64]; |
| 136 | size_t i; |
| 137 | |
| 138 | /* 1: X <-- B_{2r - 1} */ |
| 139 | blkcpy(X, &B[(2 * r - 1) * 64], 64); |
| 140 | |
| 141 | /* 2: for i = 0 to 2r - 1 do */ |
| 142 | for (i = 0; i < 2 * r; i++) { |
| 143 | /* 3: X <-- H(X \xor B_i) */ |
| 144 | blkxor(X, &B[i * 64], 64); |
| 145 | salsa20_8(X); |
| 146 | |
| 147 | /* 4: Y_i <-- X */ |
| 148 | blkcpy(&Y[i * 64], X, 64); |
| 149 | } |
| 150 | |
| 151 | /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
| 152 | for (i = 0; i < r; i++) |
| 153 | blkcpy(&B[i * 64], &Y[(i * 2) * 64], 64); |
| 154 | for (i = 0; i < r; i++) |
| 155 | blkcpy(&B[(i + r) * 64], &Y[(i * 2 + 1) * 64], 64); |
| 156 | } |
| 157 | |
| 158 | /** |
| 159 | * integerify(B, r): |
| 160 | * Return the result of parsing B_{2r-1} as a little-endian integer. |
| 161 | */ |
| 162 | static uint64_t |
| 163 | integerify(uint8_t * B, size_t r) |
| 164 | { |
| 165 | uint8_t * X = &B[(2 * r - 1) * 64]; |
| 166 | |
| 167 | return (le64dec(X)); |
| 168 | } |
| 169 | |
| 170 | /** |
| 171 | * smix(B, r, N, V, XY): |
| 172 | * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; the |
| 173 | * temporary storage V must be 128rN bytes in length; the temporary storage |
| 174 | * XY must be 256r bytes in length. The value N must be a power of 2. |
| 175 | */ |
| 176 | static void |
| 177 | smix(uint8_t * B, size_t r, uint64_t N, uint8_t * V, uint8_t * XY) |
| 178 | { |
| 179 | uint8_t * X = XY; |
| 180 | uint8_t * Y = &XY[128 * r]; |
| 181 | uint64_t i; |
| 182 | uint64_t j; |
| 183 | |
| 184 | /* 1: X <-- B */ |
| 185 | blkcpy(X, B, 128 * r); |
| 186 | |
| 187 | /* 2: for i = 0 to N - 1 do */ |
| 188 | for (i = 0; i < N; i++) { |
| 189 | /* 3: V_i <-- X */ |
| 190 | blkcpy(&V[i * (128 * r)], X, 128 * r); |
| 191 | |
| 192 | /* 4: X <-- H(X) */ |
| 193 | blockmix_salsa8(X, Y, r); |
| 194 | } |
| 195 | |
| 196 | /* 6: for i = 0 to N - 1 do */ |
| 197 | for (i = 0; i < N; i++) { |
| 198 | /* 7: j <-- Integerify(X) mod N */ |
| 199 | j = integerify(X, r) & (N - 1); |
| 200 | |
| 201 | /* 8: X <-- H(X \xor V_j) */ |
| 202 | blkxor(X, &V[j * (128 * r)], 128 * r); |
| 203 | blockmix_salsa8(X, Y, r); |
| 204 | } |
| 205 | |
| 206 | /* 10: B' <-- X */ |
| 207 | blkcpy(B, X, 128 * r); |
| 208 | } |
| 209 | |
| 210 | /** |
| 211 | * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen): |
| 212 | * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r, |
| 213 | * p, buflen) and write the result into buf. The parameters r, p, and buflen |
| 214 | * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N |
| 215 | * must be a power of 2. |
| 216 | * |
| 217 | * Return 0 on success; or -1 on error. |
| 218 | */ |
| 219 | int |
| 220 | crypto_scrypt(const uint8_t * passwd, size_t passwdlen, |
| 221 | const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p, |
| 222 | uint8_t * buf, size_t buflen) |
| 223 | { |
| 224 | uint8_t * B; |
| 225 | uint8_t * V; |
| 226 | uint8_t * XY; |
| 227 | uint32_t i; |
| 228 | |
| 229 | /* Sanity-check parameters. */ |
| 230 | #if SIZE_MAX > UINT32_MAX |
| 231 | if (buflen > (((uint64_t)(1) << 32) - 1) * 32) { |
| 232 | errno = EFBIG; |
| 233 | goto err0; |
| 234 | } |
| 235 | #endif |
| 236 | if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) { |
| 237 | errno = EFBIG; |
| 238 | goto err0; |
| 239 | } |
| 240 | if (((N & (N - 1)) != 0) || (N == 0)) { |
| 241 | errno = EINVAL; |
| 242 | goto err0; |
| 243 | } |
| 244 | if ((r > SIZE_MAX / 128 / p) || |
| 245 | #if SIZE_MAX / 256 <= UINT32_MAX |
| 246 | (r > SIZE_MAX / 256) || |
| 247 | #endif |
| 248 | (N > SIZE_MAX / 128 / r)) { |
| 249 | errno = ENOMEM; |
| 250 | goto err0; |
| 251 | } |
| 252 | |
| 253 | /* Allocate memory. */ |
| 254 | if ((B = malloc(128 * r * p)) == NULL) |
| 255 | goto err0; |
| 256 | if ((XY = malloc(256 * r)) == NULL) |
| 257 | goto err1; |
| 258 | if ((V = malloc(128 * r * N)) == NULL) |
| 259 | goto err2; |
| 260 | |
| 261 | /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ |
| 262 | #ifdef USE_OPENSSL_PBKDF2 |
| 263 | PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, salt, saltlen, 1, EVP_sha256(), p * 128 * r, B); |
| 264 | #else |
| 265 | PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r); |
| 266 | #endif |
| 267 | |
| 268 | /* 2: for i = 0 to p - 1 do */ |
| 269 | for (i = 0; i < p; i++) { |
| 270 | /* 3: B_i <-- MF(B_i, N) */ |
| 271 | smix(&B[i * 128 * r], r, N, V, XY); |
| 272 | } |
| 273 | |
| 274 | /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ |
| 275 | #ifdef USE_OPENSSL_PBKDF2 |
| 276 | PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, B, p * 128 * r, 1, EVP_sha256(), buflen, buf); |
| 277 | #else |
| 278 | PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen); |
| 279 | #endif |
| 280 | |
| 281 | /* Free memory. */ |
| 282 | free(V); |
| 283 | free(XY); |
| 284 | free(B); |
| 285 | |
| 286 | /* Success! */ |
| 287 | return (0); |
| 288 | |
| 289 | err2: |
| 290 | free(XY); |
| 291 | err1: |
| 292 | free(B); |
| 293 | err0: |
| 294 | /* Failure! */ |
| 295 | return (-1); |
| 296 | } |