FsCrypt update: support fscrypt policies v1 and v2

This patchset introduces support decryption for Android 11.

In this update we deprecate ext4crypt. To specify the
policy version to use, use TW_USE_FSCRYPT_POLICY := 1 or
TW_USE_FSCRYPT_POLICY := 2. By default policy version will
be set to 2 if this variable is omitted.

Change-Id: I62a29c1bef36c259ec4b11259f71be613d20a112
diff --git a/crypto/fscrypt/cryptfs.cpp b/crypto/fscrypt/cryptfs.cpp
new file mode 100644
index 0000000..b58c343
--- /dev/null
+++ b/crypto/fscrypt/cryptfs.cpp
@@ -0,0 +1,2902 @@
+/*
+ * Copyright (C) 2010 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "Cryptfs"
+
+#include "cryptfs.h"
+
+#include "Checkpoint.h"
+#include "CryptoType.h"
+#include "EncryptInplace.h"
+#include "FsCrypt.h"
+#include "Keymaster.h"
+#include "Process.h"
+#include "ScryptParameters.h"
+#include "Utils.h"
+#include "VoldUtil.h"
+#include "VolumeManager.h"
+
+#include <android-base/parseint.h>
+#include <android-base/properties.h>
+#include <android-base/stringprintf.h>
+#include <android-base/strings.h>
+#include <bootloader_message/bootloader_message.h>
+#include <cutils/android_reboot.h>
+#include <cutils/properties.h>
+#include <ext4_utils/ext4_utils.h>
+#include <f2fs_sparseblock.h>
+#include <fs_mgr.h>
+#include <fscrypt/fscrypt.h>
+#include <libdm/dm.h>
+#include <log/log.h>
+#include <logwrap/logwrap.h>
+#include <openssl/evp.h>
+#include <openssl/sha.h>
+#include <selinux/selinux.h>
+// #include <wakelock/wakelock.h>
+
+#include <ctype.h>
+#include <errno.h>
+#include <fcntl.h>
+#include <inttypes.h>
+#include <libgen.h>
+#include <linux/kdev_t.h>
+#include <math.h>
+#include <mntent.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/mount.h>
+#include <sys/param.h>
+#include <sys/stat.h>
+#include <sys/types.h>
+#include <sys/wait.h>
+#include <time.h>
+#include <unistd.h>
+
+#include <chrono>
+#include <thread>
+
+extern "C" {
+#include <crypto_scrypt.h>
+}
+
+using android::base::ParseUint;
+using android::base::StringPrintf;
+using android::fs_mgr::GetEntryForMountPoint;
+using ::CryptoType;
+using ::KeyBuffer;
+using ::KeyGeneration;
+using namespace android::dm;
+using namespace std::chrono_literals;
+
+/* The current cryptfs version */
+#define CURRENT_MAJOR_VERSION 1
+#define CURRENT_MINOR_VERSION 3
+
+#define CRYPT_FOOTER_TO_PERSIST_OFFSET 0x1000
+#define CRYPT_PERSIST_DATA_SIZE 0x1000
+
+#define MAX_CRYPTO_TYPE_NAME_LEN 64
+
+#define MAX_KEY_LEN 48
+#define SALT_LEN 16
+#define SCRYPT_LEN 32
+
+/* definitions of flags in the structure below */
+#define CRYPT_MNT_KEY_UNENCRYPTED 0x1 /* The key for the partition is not encrypted. */
+#define CRYPT_ENCRYPTION_IN_PROGRESS       \
+    0x2 /* Encryption partially completed, \
+           encrypted_upto valid*/
+#define CRYPT_INCONSISTENT_STATE                    \
+    0x4 /* Set when starting encryption, clear when \
+           exit cleanly, either through success or  \
+           correctly marked partial encryption */
+#define CRYPT_DATA_CORRUPT                      \
+    0x8 /* Set when encryption is fine, but the \
+           underlying volume is corrupt */
+#define CRYPT_FORCE_ENCRYPTION                        \
+    0x10 /* Set when it is time to encrypt this       \
+            volume on boot. Everything in this        \
+            structure is set up correctly as          \
+            though device is encrypted except         \
+            that the master key is encrypted with the \
+            default password. */
+#define CRYPT_FORCE_COMPLETE                           \
+    0x20 /* Set when the above encryption cycle is     \
+            complete. On next cryptkeeper entry, match \
+            the password. If it matches fix the master \
+            key and remove this flag. */
+
+/* Allowed values for type in the structure below */
+#define CRYPT_TYPE_PASSWORD                       \
+    0 /* master_key is encrypted with a password  \
+       * Must be zero to be compatible with pre-L \
+       * devices where type is always password.*/
+#define CRYPT_TYPE_DEFAULT                                            \
+    1                         /* master_key is encrypted with default \
+                               * password */
+#define CRYPT_TYPE_PATTERN 2  /* master_key is encrypted with a pattern */
+#define CRYPT_TYPE_PIN 3      /* master_key is encrypted with a pin */
+#define CRYPT_TYPE_MAX_TYPE 3 /* type cannot be larger than this value */
+
+#define CRYPT_MNT_MAGIC 0xD0B5B1C4
+#define PERSIST_DATA_MAGIC 0xE950CD44
+
+/* Key Derivation Function algorithms */
+#define KDF_PBKDF2 1
+#define KDF_SCRYPT 2
+/* Algorithms 3 & 4 deprecated before shipping outside of google, so removed */
+#define KDF_SCRYPT_KEYMASTER 5
+
+/* Maximum allowed keymaster blob size. */
+#define KEYMASTER_BLOB_SIZE 2048
+
+/* __le32 and __le16 defined in system/extras/ext4_utils/ext4_utils.h */
+#define __le8 unsigned char
+
+#if !defined(SHA256_DIGEST_LENGTH)
+#define SHA256_DIGEST_LENGTH 32
+#endif
+
+/* This structure starts 16,384 bytes before the end of a hardware
+ * partition that is encrypted, or in a separate partition.  It's location
+ * is specified by a property set in init.<device>.rc.
+ * The structure allocates 48 bytes for a key, but the real key size is
+ * specified in the struct.  Currently, the code is hardcoded to use 128
+ * bit keys.
+ * The fields after salt are only valid in rev 1.1 and later stuctures.
+ * Obviously, the filesystem does not include the last 16 kbytes
+ * of the partition if the crypt_mnt_ftr lives at the end of the
+ * partition.
+ */
+
+struct crypt_mnt_ftr {
+    __le32 magic; /* See above */
+    __le16 major_version;
+    __le16 minor_version;
+    __le32 ftr_size;             /* in bytes, not including key following */
+    __le32 flags;                /* See above */
+    __le32 keysize;              /* in bytes */
+    __le32 crypt_type;           /* how master_key is encrypted. Must be a
+                                  * CRYPT_TYPE_XXX value */
+    __le64 fs_size;              /* Size of the encrypted fs, in 512 byte sectors */
+    __le32 failed_decrypt_count; /* count of # of failed attempts to decrypt and
+                                    mount, set to 0 on successful mount */
+    unsigned char crypto_type_name[MAX_CRYPTO_TYPE_NAME_LEN]; /* The type of encryption
+                                                                 needed to decrypt this
+                                                                 partition, null terminated */
+    __le32 spare2;                                            /* ignored */
+    unsigned char master_key[MAX_KEY_LEN]; /* The encrypted key for decrypting the filesystem */
+    unsigned char salt[SALT_LEN];          /* The salt used for this encryption */
+    __le64 persist_data_offset[2];         /* Absolute offset to both copies of crypt_persist_data
+                                            * on device with that info, either the footer of the
+                                            * real_blkdevice or the metadata partition. */
+
+    __le32 persist_data_size; /* The number of bytes allocated to each copy of the
+                               * persistent data table*/
+
+    __le8 kdf_type; /* The key derivation function used. */
+
+    /* scrypt parameters. See www.tarsnap.com/scrypt/scrypt.pdf */
+    __le8 N_factor;        /* (1 << N) */
+    __le8 r_factor;        /* (1 << r) */
+    __le8 p_factor;        /* (1 << p) */
+    __le64 encrypted_upto; /* If we are in state CRYPT_ENCRYPTION_IN_PROGRESS and
+                              we have to stop (e.g. power low) this is the last
+                              encrypted 512 byte sector.*/
+    __le8 hash_first_block[SHA256_DIGEST_LENGTH]; /* When CRYPT_ENCRYPTION_IN_PROGRESS
+                                                     set, hash of first block, used
+                                                     to validate before continuing*/
+
+    /* key_master key, used to sign the derived key which is then used to generate
+     * the intermediate key
+     * This key should be used for no other purposes! We use this key to sign unpadded
+     * data, which is acceptable but only if the key is not reused elsewhere. */
+    __le8 keymaster_blob[KEYMASTER_BLOB_SIZE];
+    __le32 keymaster_blob_size;
+
+    /* Store scrypt of salted intermediate key. When decryption fails, we can
+       check if this matches, and if it does, we know that the problem is with the
+       drive, and there is no point in asking the user for more passwords.
+
+       Note that if any part of this structure is corrupt, this will not match and
+       we will continue to believe the user entered the wrong password. In that
+       case the only solution is for the user to enter a password enough times to
+       force a wipe.
+
+       Note also that there is no need to worry about migration. If this data is
+       wrong, we simply won't recognise a right password, and will continue to
+       prompt. On the first password change, this value will be populated and
+       then we will be OK.
+     */
+    unsigned char scrypted_intermediate_key[SCRYPT_LEN];
+
+    /* sha of this structure with this element set to zero
+       Used when encrypting on reboot to validate structure before doing something
+       fatal
+     */
+    unsigned char sha256[SHA256_DIGEST_LENGTH];
+};
+
+/* Persistant data that should be available before decryption.
+ * Things like airplane mode, locale and timezone are kept
+ * here and can be retrieved by the CryptKeeper UI to properly
+ * configure the phone before asking for the password
+ * This is only valid if the major and minor version above
+ * is set to 1.1 or higher.
+ *
+ * This is a 4K structure.  There are 2 copies, and the code alternates
+ * writing one and then clearing the previous one.  The reading
+ * code reads the first valid copy it finds, based on the magic number.
+ * The absolute offset to the first of the two copies is kept in rev 1.1
+ * and higher crypt_mnt_ftr structures.
+ */
+struct crypt_persist_entry {
+    char key[PROPERTY_KEY_MAX];
+    char val[PROPERTY_VALUE_MAX];
+};
+
+/* Should be exactly 4K in size */
+struct crypt_persist_data {
+    __le32 persist_magic;
+    __le32 persist_valid_entries;
+    __le32 persist_spare[30];
+    struct crypt_persist_entry persist_entry[0];
+};
+
+static int wait_and_unmount(const char* mountpoint, bool kill);
+
+typedef int (*kdf_func)(const char* passwd, const unsigned char* salt, unsigned char* ikey,
+                        void* params);
+
+#define UNUSED __attribute__((unused))
+
+#define HASH_COUNT 2000
+
+constexpr size_t INTERMEDIATE_KEY_LEN_BYTES = 16;
+constexpr size_t INTERMEDIATE_IV_LEN_BYTES = 16;
+constexpr size_t INTERMEDIATE_BUF_SIZE = (INTERMEDIATE_KEY_LEN_BYTES + INTERMEDIATE_IV_LEN_BYTES);
+
+// SCRYPT_LEN is used by struct crypt_mnt_ftr for its intermediate key.
+static_assert(INTERMEDIATE_BUF_SIZE == SCRYPT_LEN, "Mismatch of intermediate key sizes");
+
+#define KEY_IN_FOOTER "footer"
+
+#define DEFAULT_PASSWORD "default_password"
+
+#define CRYPTO_BLOCK_DEVICE "userdata"
+
+#define BREADCRUMB_FILE "/data/misc/vold/convert_fde"
+
+#define EXT4_FS 1
+#define F2FS_FS 2
+
+#define TABLE_LOAD_RETRIES 10
+
+#define RSA_KEY_SIZE 2048
+#define RSA_KEY_SIZE_BYTES (RSA_KEY_SIZE / 8)
+#define RSA_EXPONENT 0x10001
+#define KEYMASTER_CRYPTFS_RATE_LIMIT 1  // Maximum one try per second
+
+#define RETRY_MOUNT_ATTEMPTS 10
+#define RETRY_MOUNT_DELAY_SECONDS 1
+
+#define CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE (1)
+
+static int put_crypt_ftr_and_key(struct crypt_mnt_ftr* crypt_ftr);
+
+static unsigned char saved_master_key[MAX_KEY_LEN];
+static char* saved_mount_point;
+static int master_key_saved = 0;
+static struct crypt_persist_data* persist_data = NULL;
+
+constexpr CryptoType aes_128_cbc = CryptoType()
+                                           .set_config_name("AES-128-CBC")
+                                           .set_kernel_name("aes-cbc-essiv:sha256")
+                                           .set_keysize(16);
+
+constexpr CryptoType supported_crypto_types[] = {aes_128_cbc, ::adiantum};
+
+static_assert(validateSupportedCryptoTypes(MAX_KEY_LEN, supported_crypto_types,
+                                           array_length(supported_crypto_types)),
+              "We have a CryptoType with keysize > MAX_KEY_LEN or which was "
+              "incompletely constructed.");
+
+static const CryptoType& get_crypto_type() {
+    // We only want to parse this read-only property once.  But we need to wait
+    // until the system is initialized before we can read it.  So we use a static
+    // scoped within this function to get it only once.
+    static CryptoType crypto_type =
+            lookup_crypto_algorithm(supported_crypto_types, array_length(supported_crypto_types),
+                                    aes_128_cbc, "ro.crypto.fde_algorithm");
+    return crypto_type;
+}
+
+const KeyGeneration cryptfs_get_keygen() {
+    return KeyGeneration{get_crypto_type().get_keysize(), true, false};
+}
+
+/* Should we use keymaster? */
+static int keymaster_check_compatibility() {
+    return keymaster_compatibility_cryptfs_scrypt();
+}
+
+/* Create a new keymaster key and store it in this footer */
+static int keymaster_create_key(struct crypt_mnt_ftr* ftr) {
+    if (ftr->keymaster_blob_size) {
+        SLOGI("Already have key");
+        return 0;
+    }
+
+    int rc = keymaster_create_key_for_cryptfs_scrypt(
+        RSA_KEY_SIZE, RSA_EXPONENT, KEYMASTER_CRYPTFS_RATE_LIMIT, ftr->keymaster_blob,
+        KEYMASTER_BLOB_SIZE, &ftr->keymaster_blob_size);
+    if (rc) {
+        if (ftr->keymaster_blob_size > KEYMASTER_BLOB_SIZE) {
+            SLOGE("Keymaster key blob too large");
+            ftr->keymaster_blob_size = 0;
+        }
+        SLOGE("Failed to generate keypair");
+        return -1;
+    }
+    return 0;
+}
+
+/* This signs the given object using the keymaster key. */
+static int keymaster_sign_object(struct crypt_mnt_ftr* ftr, const unsigned char* object,
+                                 const size_t object_size, unsigned char** signature,
+                                 size_t* signature_size) {
+    unsigned char to_sign[RSA_KEY_SIZE_BYTES];
+    size_t to_sign_size = sizeof(to_sign);
+    memset(to_sign, 0, RSA_KEY_SIZE_BYTES);
+
+    // To sign a message with RSA, the message must satisfy two
+    // constraints:
+    //
+    // 1. The message, when interpreted as a big-endian numeric value, must
+    //    be strictly less than the public modulus of the RSA key.  Note
+    //    that because the most significant bit of the public modulus is
+    //    guaranteed to be 1 (else it's an (n-1)-bit key, not an n-bit
+    //    key), an n-bit message with most significant bit 0 always
+    //    satisfies this requirement.
+    //
+    // 2. The message must have the same length in bits as the public
+    //    modulus of the RSA key.  This requirement isn't mathematically
+    //    necessary, but is necessary to ensure consistency in
+    //    implementations.
+    switch (ftr->kdf_type) {
+        case KDF_SCRYPT_KEYMASTER:
+            // This ensures the most significant byte of the signed message
+            // is zero.  We could have zero-padded to the left instead, but
+            // this approach is slightly more robust against changes in
+            // object size.  However, it's still broken (but not unusably
+            // so) because we really should be using a proper deterministic
+            // RSA padding function, such as PKCS1.
+            memcpy(to_sign + 1, object, std::min((size_t)RSA_KEY_SIZE_BYTES - 1, object_size));
+            SLOGI("Signing safely-padded object");
+            break;
+        default:
+            SLOGE("Unknown KDF type %d", ftr->kdf_type);
+            return -1;
+    }
+    for (;;) {
+        auto result = keymaster_sign_object_for_cryptfs_scrypt(
+            ftr->keymaster_blob, ftr->keymaster_blob_size, KEYMASTER_CRYPTFS_RATE_LIMIT, to_sign,
+            to_sign_size, signature, signature_size);
+        switch (result) {
+            case KeymasterSignResult::ok:
+                return 0;
+            case KeymasterSignResult::upgrade:
+                break;
+            default:
+                return -1;
+        }
+        SLOGD("Upgrading key");
+        if (keymaster_upgrade_key_for_cryptfs_scrypt(
+                RSA_KEY_SIZE, RSA_EXPONENT, KEYMASTER_CRYPTFS_RATE_LIMIT, ftr->keymaster_blob,
+                ftr->keymaster_blob_size, ftr->keymaster_blob, KEYMASTER_BLOB_SIZE,
+                &ftr->keymaster_blob_size) != 0) {
+            SLOGE("Failed to upgrade key");
+            return -1;
+        }
+        if (put_crypt_ftr_and_key(ftr) != 0) {
+            SLOGE("Failed to write upgraded key to disk");
+        }
+        SLOGD("Key upgraded successfully");
+    }
+}
+
+/* Store password when userdata is successfully decrypted and mounted.
+ * Cleared by cryptfs_clear_password
+ *
+ * To avoid a double prompt at boot, we need to store the CryptKeeper
+ * password and pass it to KeyGuard, which uses it to unlock KeyStore.
+ * Since the entire framework is torn down and rebuilt after encryption,
+ * we have to use a daemon or similar to store the password. Since vold
+ * is secured against IPC except from system processes, it seems a reasonable
+ * place to store this.
+ *
+ * password should be cleared once it has been used.
+ *
+ * password is aged out after password_max_age_seconds seconds.
+ */
+static char* password = 0;
+static int password_expiry_time = 0;
+static const int password_max_age_seconds = 60;
+
+enum class RebootType { reboot, recovery, shutdown };
+static void cryptfs_reboot(RebootType rt) {
+    switch (rt) {
+        case RebootType::reboot:
+            property_set(ANDROID_RB_PROPERTY, "reboot");
+            break;
+
+        case RebootType::recovery:
+            property_set(ANDROID_RB_PROPERTY, "reboot,recovery");
+            break;
+
+        case RebootType::shutdown:
+            property_set(ANDROID_RB_PROPERTY, "shutdown");
+            break;
+    }
+
+    sleep(20);
+
+    /* Shouldn't get here, reboot should happen before sleep times out */
+    return;
+}
+
+/**
+ * Gets the default device scrypt parameters for key derivation time tuning.
+ * The parameters should lead to about one second derivation time for the
+ * given device.
+ */
+static void get_device_scrypt_params(struct crypt_mnt_ftr* ftr) {
+    char paramstr[PROPERTY_VALUE_MAX];
+    int Nf, rf, pf;
+
+    property_get(SCRYPT_PROP, paramstr, SCRYPT_DEFAULTS);
+    if (!parse_scrypt_parameters(paramstr, &Nf, &rf, &pf)) {
+        SLOGW("bad scrypt parameters '%s' should be like '12:8:1'; using defaults", paramstr);
+        parse_scrypt_parameters(SCRYPT_DEFAULTS, &Nf, &rf, &pf);
+    }
+    ftr->N_factor = Nf;
+    ftr->r_factor = rf;
+    ftr->p_factor = pf;
+}
+
+static uint64_t get_fs_size(const char* dev) {
+    int fd, block_size;
+    struct ext4_super_block sb;
+    uint64_t len;
+
+    if ((fd = open(dev, O_RDONLY | O_CLOEXEC)) < 0) {
+        SLOGE("Cannot open device to get filesystem size ");
+        return 0;
+    }
+
+    if (lseek64(fd, 1024, SEEK_SET) < 0) {
+        SLOGE("Cannot seek to superblock");
+        return 0;
+    }
+
+    if (read(fd, &sb, sizeof(sb)) != sizeof(sb)) {
+        SLOGE("Cannot read superblock");
+        return 0;
+    }
+
+    close(fd);
+
+    if (le32_to_cpu(sb.s_magic) != EXT4_SUPER_MAGIC) {
+        SLOGE("Not a valid ext4 superblock");
+        return 0;
+    }
+    block_size = 1024 << sb.s_log_block_size;
+    /* compute length in bytes */
+    len = (((uint64_t)sb.s_blocks_count_hi << 32) + sb.s_blocks_count_lo) * block_size;
+
+    /* return length in sectors */
+    return len / 512;
+}
+
+static void get_crypt_info(std::string* key_loc, std::string* real_blk_device) {
+    for (const auto& entry : fstab_default) {
+        if (!entry.fs_mgr_flags.vold_managed &&
+            (entry.fs_mgr_flags.crypt || entry.fs_mgr_flags.force_crypt ||
+             entry.fs_mgr_flags.force_fde_or_fbe || entry.fs_mgr_flags.file_encryption)) {
+            if (key_loc != nullptr) {
+                *key_loc = entry.key_loc;
+            }
+            if (real_blk_device != nullptr) {
+                *real_blk_device = entry.blk_device;
+            }
+            return;
+        }
+    }
+}
+
+static int get_crypt_ftr_info(char** metadata_fname, off64_t* off) {
+    static int cached_data = 0;
+    static uint64_t cached_off = 0;
+    static char cached_metadata_fname[PROPERTY_VALUE_MAX] = "";
+    char key_loc[PROPERTY_VALUE_MAX];
+    char real_blkdev[PROPERTY_VALUE_MAX];
+    int rc = -1;
+
+    if (!cached_data) {
+        std::string key_loc;
+        std::string real_blkdev;
+        get_crypt_info(&key_loc, &real_blkdev);
+
+        if (key_loc == KEY_IN_FOOTER) {
+            if (::GetBlockDevSize(real_blkdev, &cached_off) == android::OK) {
+                /* If it's an encrypted Android partition, the last 16 Kbytes contain the
+                 * encryption info footer and key, and plenty of bytes to spare for future
+                 * growth.
+                 */
+                strlcpy(cached_metadata_fname, real_blkdev.c_str(), sizeof(cached_metadata_fname));
+                cached_off -= CRYPT_FOOTER_OFFSET;
+                cached_data = 1;
+            } else {
+                SLOGE("Cannot get size of block device %s\n", real_blkdev.c_str());
+            }
+        } else {
+            strlcpy(cached_metadata_fname, key_loc.c_str(), sizeof(cached_metadata_fname));
+            cached_off = 0;
+            cached_data = 1;
+        }
+    }
+
+    if (cached_data) {
+        if (metadata_fname) {
+            *metadata_fname = cached_metadata_fname;
+        }
+        if (off) {
+            *off = cached_off;
+        }
+        rc = 0;
+    }
+
+    return rc;
+}
+
+/* Set sha256 checksum in structure */
+static void set_ftr_sha(struct crypt_mnt_ftr* crypt_ftr) {
+    SHA256_CTX c;
+    SHA256_Init(&c);
+    memset(crypt_ftr->sha256, 0, sizeof(crypt_ftr->sha256));
+    SHA256_Update(&c, crypt_ftr, sizeof(*crypt_ftr));
+    SHA256_Final(crypt_ftr->sha256, &c);
+}
+
+/* key or salt can be NULL, in which case just skip writing that value.  Useful to
+ * update the failed mount count but not change the key.
+ */
+static int put_crypt_ftr_and_key(struct crypt_mnt_ftr* crypt_ftr) {
+    int fd;
+    unsigned int cnt;
+    /* starting_off is set to the SEEK_SET offset
+     * where the crypto structure starts
+     */
+    off64_t starting_off;
+    int rc = -1;
+    char* fname = NULL;
+    struct stat statbuf;
+
+    set_ftr_sha(crypt_ftr);
+
+    if (get_crypt_ftr_info(&fname, &starting_off)) {
+        SLOGE("Unable to get crypt_ftr_info\n");
+        return -1;
+    }
+    if (fname[0] != '/') {
+        SLOGE("put_crypt_ftr_and_key::Unexpected value for crypto key location: %s\n", fname);
+        return -1;
+    }
+    if ((fd = open(fname, O_RDWR | O_CREAT | O_CLOEXEC, 0600)) < 0) {
+        SLOGE("Cannot open footer file %s for put\n", fname);
+        return -1;
+    }
+
+    /* Seek to the start of the crypt footer */
+    if (lseek64(fd, starting_off, SEEK_SET) == -1) {
+        SLOGE("Cannot seek to real block device footer\n");
+        goto errout;
+    }
+
+    if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
+        SLOGE("Cannot write real block device footer\n");
+        goto errout;
+    }
+
+    fstat(fd, &statbuf);
+    /* If the keys are kept on a raw block device, do not try to truncate it. */
+    if (S_ISREG(statbuf.st_mode)) {
+        if (ftruncate(fd, 0x4000)) {
+            SLOGE("Cannot set footer file size\n");
+            goto errout;
+        }
+    }
+
+    /* Success! */
+    rc = 0;
+
+errout:
+    close(fd);
+    return rc;
+}
+
+static bool check_ftr_sha(const struct crypt_mnt_ftr* crypt_ftr) {
+    struct crypt_mnt_ftr copy;
+    memcpy(&copy, crypt_ftr, sizeof(copy));
+    set_ftr_sha(&copy);
+    return memcmp(copy.sha256, crypt_ftr->sha256, sizeof(copy.sha256)) == 0;
+}
+
+static inline int unix_read(int fd, void* buff, int len) {
+    return TEMP_FAILURE_RETRY(read(fd, buff, len));
+}
+
+static inline int unix_write(int fd, const void* buff, int len) {
+    return TEMP_FAILURE_RETRY(write(fd, buff, len));
+}
+
+static void init_empty_persist_data(struct crypt_persist_data* pdata, int len) {
+    memset(pdata, 0, len);
+    pdata->persist_magic = PERSIST_DATA_MAGIC;
+    pdata->persist_valid_entries = 0;
+}
+
+/* A routine to update the passed in crypt_ftr to the lastest version.
+ * fd is open read/write on the device that holds the crypto footer and persistent
+ * data, crypt_ftr is a pointer to the struct to be updated, and offset is the
+ * absolute offset to the start of the crypt_mnt_ftr on the passed in fd.
+ */
+static void upgrade_crypt_ftr(int fd, struct crypt_mnt_ftr* crypt_ftr, off64_t offset) {
+    int orig_major = crypt_ftr->major_version;
+    int orig_minor = crypt_ftr->minor_version;
+
+    if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 0)) {
+        struct crypt_persist_data* pdata;
+        off64_t pdata_offset = offset + CRYPT_FOOTER_TO_PERSIST_OFFSET;
+
+        SLOGW("upgrading crypto footer to 1.1");
+
+        pdata = (crypt_persist_data*)malloc(CRYPT_PERSIST_DATA_SIZE);
+        if (pdata == NULL) {
+            SLOGE("Cannot allocate persisent data\n");
+            return;
+        }
+        memset(pdata, 0, CRYPT_PERSIST_DATA_SIZE);
+
+        /* Need to initialize the persistent data area */
+        if (lseek64(fd, pdata_offset, SEEK_SET) == -1) {
+            SLOGE("Cannot seek to persisent data offset\n");
+            free(pdata);
+            return;
+        }
+        /* Write all zeros to the first copy, making it invalid */
+        unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE);
+
+        /* Write a valid but empty structure to the second copy */
+        init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
+        unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE);
+
+        /* Update the footer */
+        crypt_ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE;
+        crypt_ftr->persist_data_offset[0] = pdata_offset;
+        crypt_ftr->persist_data_offset[1] = pdata_offset + CRYPT_PERSIST_DATA_SIZE;
+        crypt_ftr->minor_version = 1;
+        free(pdata);
+    }
+
+    if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 1)) {
+        SLOGW("upgrading crypto footer to 1.2");
+        /* But keep the old kdf_type.
+         * It will get updated later to KDF_SCRYPT after the password has been verified.
+         */
+        crypt_ftr->kdf_type = KDF_PBKDF2;
+        get_device_scrypt_params(crypt_ftr);
+        crypt_ftr->minor_version = 2;
+    }
+
+    if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 2)) {
+        SLOGW("upgrading crypto footer to 1.3");
+        crypt_ftr->crypt_type = CRYPT_TYPE_PASSWORD;
+        crypt_ftr->minor_version = 3;
+    }
+
+    if ((orig_major != crypt_ftr->major_version) || (orig_minor != crypt_ftr->minor_version)) {
+        if (lseek64(fd, offset, SEEK_SET) == -1) {
+            SLOGE("Cannot seek to crypt footer\n");
+            return;
+        }
+        unix_write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr));
+    }
+}
+
+static int get_crypt_ftr_and_key(struct crypt_mnt_ftr* crypt_ftr) {
+    int fd;
+    unsigned int cnt;
+    off64_t starting_off;
+    int rc = -1;
+    char* fname = NULL;
+    struct stat statbuf;
+
+    if (get_crypt_ftr_info(&fname, &starting_off)) {
+        SLOGE("Unable to get crypt_ftr_info\n");
+        return -1;
+    }
+    if (fname[0] != '/') {
+        SLOGE("get_crypt_ftr_and_key::Unexpected value for crypto key location: %s\n", fname);
+        return -1;
+    }
+    if ((fd = open(fname, O_RDWR | O_CLOEXEC)) < 0) {
+        SLOGE("Cannot open footer file %s for get\n", fname);
+        return -1;
+    }
+
+    /* Make sure it's 16 Kbytes in length */
+    fstat(fd, &statbuf);
+    if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) {
+        SLOGE("footer file %s is not the expected size!\n", fname);
+        goto errout;
+    }
+
+    /* Seek to the start of the crypt footer */
+    if (lseek64(fd, starting_off, SEEK_SET) == -1) {
+        SLOGE("Cannot seek to real block device footer\n");
+        goto errout;
+    }
+
+    if ((cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
+        SLOGE("Cannot read real block device footer\n");
+        goto errout;
+    }
+
+    if (crypt_ftr->magic != CRYPT_MNT_MAGIC) {
+        SLOGE("Bad magic for real block device %s\n", fname);
+        goto errout;
+    }
+
+    if (crypt_ftr->major_version != CURRENT_MAJOR_VERSION) {
+        SLOGE("Cannot understand major version %d real block device footer; expected %d\n",
+              crypt_ftr->major_version, CURRENT_MAJOR_VERSION);
+        goto errout;
+    }
+
+    // We risk buffer overflows with oversized keys, so we just reject them.
+    // 0-sized keys are problematic (essentially by-passing encryption), and
+    // AES-CBC key wrapping only works for multiples of 16 bytes.
+    if ((crypt_ftr->keysize == 0) || ((crypt_ftr->keysize % 16) != 0) ||
+        (crypt_ftr->keysize > MAX_KEY_LEN)) {
+        SLOGE(
+            "Invalid keysize (%u) for block device %s; Must be non-zero, "
+            "divisible by 16, and <= %d\n",
+            crypt_ftr->keysize, fname, MAX_KEY_LEN);
+        goto errout;
+    }
+
+    if (crypt_ftr->minor_version > CURRENT_MINOR_VERSION) {
+        SLOGW("Warning: crypto footer minor version %d, expected <= %d, continuing...\n",
+              crypt_ftr->minor_version, CURRENT_MINOR_VERSION);
+    }
+
+    /* If this is a verion 1.0 crypt_ftr, make it a 1.1 crypt footer, and update the
+     * copy on disk before returning.
+     */
+    if (crypt_ftr->minor_version < CURRENT_MINOR_VERSION) {
+        upgrade_crypt_ftr(fd, crypt_ftr, starting_off);
+    }
+
+    /* Success! */
+    rc = 0;
+
+errout:
+    close(fd);
+    return rc;
+}
+
+static int validate_persistent_data_storage(struct crypt_mnt_ftr* crypt_ftr) {
+    if (crypt_ftr->persist_data_offset[0] + crypt_ftr->persist_data_size >
+        crypt_ftr->persist_data_offset[1]) {
+        SLOGE("Crypt_ftr persist data regions overlap");
+        return -1;
+    }
+
+    if (crypt_ftr->persist_data_offset[0] >= crypt_ftr->persist_data_offset[1]) {
+        SLOGE("Crypt_ftr persist data region 0 starts after region 1");
+        return -1;
+    }
+
+    if (((crypt_ftr->persist_data_offset[1] + crypt_ftr->persist_data_size) -
+         (crypt_ftr->persist_data_offset[0] - CRYPT_FOOTER_TO_PERSIST_OFFSET)) >
+        CRYPT_FOOTER_OFFSET) {
+        SLOGE("Persistent data extends past crypto footer");
+        return -1;
+    }
+
+    return 0;
+}
+
+static int load_persistent_data(void) {
+    struct crypt_mnt_ftr crypt_ftr;
+    struct crypt_persist_data* pdata = NULL;
+    char encrypted_state[PROPERTY_VALUE_MAX];
+    char* fname;
+    int found = 0;
+    int fd;
+    int ret;
+    int i;
+
+    if (persist_data) {
+        /* Nothing to do, we've already loaded or initialized it */
+        return 0;
+    }
+
+    /* If not encrypted, just allocate an empty table and initialize it */
+    property_get("ro.crypto.state", encrypted_state, "");
+    if (strcmp(encrypted_state, "encrypted")) {
+        pdata = (crypt_persist_data*)malloc(CRYPT_PERSIST_DATA_SIZE);
+        if (pdata) {
+            init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
+            persist_data = pdata;
+            return 0;
+        }
+        return -1;
+    }
+
+    if (get_crypt_ftr_and_key(&crypt_ftr)) {
+        return -1;
+    }
+
+    if ((crypt_ftr.major_version < 1) ||
+        (crypt_ftr.major_version == 1 && crypt_ftr.minor_version < 1)) {
+        SLOGE("Crypt_ftr version doesn't support persistent data");
+        return -1;
+    }
+
+    if (get_crypt_ftr_info(&fname, NULL)) {
+        return -1;
+    }
+
+    ret = validate_persistent_data_storage(&crypt_ftr);
+    if (ret) {
+        return -1;
+    }
+
+    fd = open(fname, O_RDONLY | O_CLOEXEC);
+    if (fd < 0) {
+        SLOGE("Cannot open %s metadata file", fname);
+        return -1;
+    }
+
+    pdata = (crypt_persist_data*)malloc(crypt_ftr.persist_data_size);
+    if (pdata == NULL) {
+        SLOGE("Cannot allocate memory for persistent data");
+        goto err;
+    }
+
+    for (i = 0; i < 2; i++) {
+        if (lseek64(fd, crypt_ftr.persist_data_offset[i], SEEK_SET) < 0) {
+            SLOGE("Cannot seek to read persistent data on %s", fname);
+            goto err2;
+        }
+        if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0) {
+            SLOGE("Error reading persistent data on iteration %d", i);
+            goto err2;
+        }
+        if (pdata->persist_magic == PERSIST_DATA_MAGIC) {
+            found = 1;
+            break;
+        }
+    }
+
+    if (!found) {
+        SLOGI("Could not find valid persistent data, creating");
+        init_empty_persist_data(pdata, crypt_ftr.persist_data_size);
+    }
+
+    /* Success */
+    persist_data = pdata;
+    close(fd);
+    return 0;
+
+err2:
+    free(pdata);
+
+err:
+    close(fd);
+    return -1;
+}
+
+static int save_persistent_data(void) {
+    struct crypt_mnt_ftr crypt_ftr;
+    struct crypt_persist_data* pdata;
+    char* fname;
+    off64_t write_offset;
+    off64_t erase_offset;
+    int fd;
+    int ret;
+
+    if (persist_data == NULL) {
+        SLOGE("No persistent data to save");
+        return -1;
+    }
+
+    if (get_crypt_ftr_and_key(&crypt_ftr)) {
+        return -1;
+    }
+
+    if ((crypt_ftr.major_version < 1) ||
+        (crypt_ftr.major_version == 1 && crypt_ftr.minor_version < 1)) {
+        SLOGE("Crypt_ftr version doesn't support persistent data");
+        return -1;
+    }
+
+    ret = validate_persistent_data_storage(&crypt_ftr);
+    if (ret) {
+        return -1;
+    }
+
+    if (get_crypt_ftr_info(&fname, NULL)) {
+        return -1;
+    }
+
+    fd = open(fname, O_RDWR | O_CLOEXEC);
+    if (fd < 0) {
+        SLOGE("Cannot open %s metadata file", fname);
+        return -1;
+    }
+
+    pdata = (crypt_persist_data*)malloc(crypt_ftr.persist_data_size);
+    if (pdata == NULL) {
+        SLOGE("Cannot allocate persistant data");
+        goto err;
+    }
+
+    if (lseek64(fd, crypt_ftr.persist_data_offset[0], SEEK_SET) < 0) {
+        SLOGE("Cannot seek to read persistent data on %s", fname);
+        goto err2;
+    }
+
+    if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0) {
+        SLOGE("Error reading persistent data before save");
+        goto err2;
+    }
+
+    if (pdata->persist_magic == PERSIST_DATA_MAGIC) {
+        /* The first copy is the curent valid copy, so write to
+         * the second copy and erase this one */
+        write_offset = crypt_ftr.persist_data_offset[1];
+        erase_offset = crypt_ftr.persist_data_offset[0];
+    } else {
+        /* The second copy must be the valid copy, so write to
+         * the first copy, and erase the second */
+        write_offset = crypt_ftr.persist_data_offset[0];
+        erase_offset = crypt_ftr.persist_data_offset[1];
+    }
+
+    /* Write the new copy first, if successful, then erase the old copy */
+    if (lseek64(fd, write_offset, SEEK_SET) < 0) {
+        SLOGE("Cannot seek to write persistent data");
+        goto err2;
+    }
+    if (unix_write(fd, persist_data, crypt_ftr.persist_data_size) ==
+        (int)crypt_ftr.persist_data_size) {
+        if (lseek64(fd, erase_offset, SEEK_SET) < 0) {
+            SLOGE("Cannot seek to erase previous persistent data");
+            goto err2;
+        }
+        fsync(fd);
+        memset(pdata, 0, crypt_ftr.persist_data_size);
+        if (unix_write(fd, pdata, crypt_ftr.persist_data_size) != (int)crypt_ftr.persist_data_size) {
+            SLOGE("Cannot write to erase previous persistent data");
+            goto err2;
+        }
+        fsync(fd);
+    } else {
+        SLOGE("Cannot write to save persistent data");
+        goto err2;
+    }
+
+    /* Success */
+    free(pdata);
+    close(fd);
+    return 0;
+
+err2:
+    free(pdata);
+err:
+    close(fd);
+    return -1;
+}
+
+/* Convert a binary key of specified length into an ascii hex string equivalent,
+ * without the leading 0x and with null termination
+ */
+static void convert_key_to_hex_ascii(const unsigned char* master_key, unsigned int keysize,
+                                     char* master_key_ascii) {
+    unsigned int i, a;
+    unsigned char nibble;
+
+    for (i = 0, a = 0; i < keysize; i++, a += 2) {
+        /* For each byte, write out two ascii hex digits */
+        nibble = (master_key[i] >> 4) & 0xf;
+        master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30);
+
+        nibble = master_key[i] & 0xf;
+        master_key_ascii[a + 1] = nibble + (nibble > 9 ? 0x37 : 0x30);
+    }
+
+    /* Add the null termination */
+    master_key_ascii[a] = '\0';
+}
+
+/*
+ * If the ro.crypto.fde_sector_size system property is set, append the
+ * parameters to make dm-crypt use the specified crypto sector size and round
+ * the crypto device size down to a crypto sector boundary.
+ */
+static int add_sector_size_param(DmTargetCrypt* target, struct crypt_mnt_ftr* ftr) {
+    constexpr char DM_CRYPT_SECTOR_SIZE[] = "ro.crypto.fde_sector_size";
+    char value[PROPERTY_VALUE_MAX];
+
+    if (property_get(DM_CRYPT_SECTOR_SIZE, value, "") > 0) {
+        unsigned int sector_size;
+
+        if (!ParseUint(value, &sector_size) || sector_size < 512 || sector_size > 4096 ||
+            (sector_size & (sector_size - 1)) != 0) {
+            SLOGE("Invalid value for %s: %s.  Must be >= 512, <= 4096, and a power of 2\n",
+                  DM_CRYPT_SECTOR_SIZE, value);
+            return -1;
+        }
+
+        target->SetSectorSize(sector_size);
+
+        // With this option, IVs will match the sector numbering, instead
+        // of being hard-coded to being based on 512-byte sectors.
+        target->SetIvLargeSectors();
+
+        // Round the crypto device size down to a crypto sector boundary.
+        ftr->fs_size &= ~((sector_size / 512) - 1);
+    }
+    return 0;
+}
+
+static int create_crypto_blk_dev(struct crypt_mnt_ftr* crypt_ftr, const unsigned char* master_key,
+                                 const char* real_blk_name, std::string* crypto_blk_name,
+                                 const char* name, uint32_t flags) {
+    auto& dm = DeviceMapper::Instance();
+    ALOGE("create_crypto_blk_dev\n");
+
+    // We need two ASCII characters to represent each byte, and need space for
+    // the '\0' terminator.
+    char master_key_ascii[MAX_KEY_LEN * 2 + 1];
+    convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii);
+
+    auto target = std::make_unique<DmTargetCrypt>(0, crypt_ftr->fs_size,
+                                                  (const char*)crypt_ftr->crypto_type_name,
+                                                  master_key_ascii, 0, real_blk_name, 0);
+    target->AllowDiscards();
+
+    if (flags & CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE) {
+        target->AllowEncryptOverride();
+    }
+    if (add_sector_size_param(target.get(), crypt_ftr)) {
+        SLOGE("Error processing dm-crypt sector size param\n");
+        return -1;
+    }
+
+    DmTable table;
+    table.AddTarget(std::move(target));
+
+    int load_count = 1;
+    while (load_count < TABLE_LOAD_RETRIES) {
+        if (dm.CreateDevice(name, table)) {
+            break;
+        }
+        load_count++;
+    }
+
+    if (load_count >= TABLE_LOAD_RETRIES) {
+        SLOGE("Cannot load dm-crypt mapping table.\n");
+        return -1;
+    }
+    if (load_count > 1) {
+        SLOGI("Took %d tries to load dmcrypt table.\n", load_count);
+    }
+
+    // ALOGE("GetDmDevicePathByName::%s::%s\n", name, crypto_blk_name->c_str());
+    if (!dm.GetDmDevicePathByName(name, crypto_blk_name)) {
+        SLOGE("Cannot determine dm-crypt path for %s.\n", name);
+        return -1;
+    }
+
+    /* Ensure the dm device has been created before returning. */
+    if (::WaitForFile(crypto_blk_name->c_str(), 1s) < 0) {
+        // WaitForFile generates a suitable log message
+        return -1;
+    }
+    return 0;
+}
+
+static int delete_crypto_blk_dev(const std::string& name) {
+    bool ret;
+    auto& dm = DeviceMapper::Instance();
+    // TODO(b/149396179) there appears to be a race somewhere in the system where trying
+    // to delete the device fails with EBUSY; for now, work around this by retrying.
+    int tries = 5;
+    while (tries-- > 0) {
+        ret = dm.DeleteDevice(name);
+        if (ret || errno != EBUSY) {
+            break;
+        }
+        SLOGW("DM_DEV Cannot remove dm-crypt device %s: %s, retrying...\n", name.c_str(),
+              strerror(errno));
+        std::this_thread::sleep_for(std::chrono::milliseconds(100));
+    }
+    if (!ret) {
+        SLOGE("DM_DEV Cannot remove dm-crypt device %s: %s\n", name.c_str(), strerror(errno));
+        return -1;
+    }
+    return 0;
+}
+
+static int pbkdf2(const char* passwd, const unsigned char* salt, unsigned char* ikey,
+                  void* params UNUSED) {
+    SLOGI("Using pbkdf2 for cryptfs KDF");
+
+    /* Turn the password into a key and IV that can decrypt the master key */
+    return PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, SALT_LEN, HASH_COUNT,
+                                  INTERMEDIATE_BUF_SIZE, ikey) != 1;
+}
+
+static int scrypt(const char* passwd, const unsigned char* salt, unsigned char* ikey, void* params) {
+    SLOGI("Using scrypt for cryptfs KDF");
+
+    struct crypt_mnt_ftr* ftr = (struct crypt_mnt_ftr*)params;
+
+    int N = 1 << ftr->N_factor;
+    int r = 1 << ftr->r_factor;
+    int p = 1 << ftr->p_factor;
+
+    /* Turn the password into a key and IV that can decrypt the master key */
+    crypto_scrypt((const uint8_t*)passwd, strlen(passwd), salt, SALT_LEN, N, r, p, ikey,
+                  INTERMEDIATE_BUF_SIZE);
+
+    return 0;
+}
+
+static int scrypt_keymaster(const char* passwd, const unsigned char* salt, unsigned char* ikey,
+                            void* params) {
+    SLOGI("Using scrypt with keymaster for cryptfs KDF");
+
+    int rc;
+    size_t signature_size;
+    unsigned char* signature;
+    struct crypt_mnt_ftr* ftr = (struct crypt_mnt_ftr*)params;
+
+    int N = 1 << ftr->N_factor;
+    int r = 1 << ftr->r_factor;
+    int p = 1 << ftr->p_factor;
+
+    rc = crypto_scrypt((const uint8_t*)passwd, strlen(passwd), salt, SALT_LEN, N, r, p, ikey,
+                       INTERMEDIATE_BUF_SIZE);
+
+    if (rc) {
+        SLOGE("scrypt failed");
+        return -1;
+    }
+
+    if (keymaster_sign_object(ftr, ikey, INTERMEDIATE_BUF_SIZE, &signature, &signature_size)) {
+        SLOGE("Signing failed");
+        return -1;
+    }
+
+    rc = crypto_scrypt(signature, signature_size, salt, SALT_LEN, N, r, p, ikey,
+                       INTERMEDIATE_BUF_SIZE);
+    free(signature);
+
+    if (rc) {
+        SLOGE("scrypt failed");
+        return -1;
+    }
+
+    return 0;
+}
+
+static int encrypt_master_key(const char* passwd, const unsigned char* salt,
+                              const unsigned char* decrypted_master_key,
+                              unsigned char* encrypted_master_key, struct crypt_mnt_ftr* crypt_ftr) {
+    unsigned char ikey[INTERMEDIATE_BUF_SIZE] = {0};
+    EVP_CIPHER_CTX e_ctx;
+    int encrypted_len, final_len;
+    int rc = 0;
+
+    /* Turn the password into an intermediate key and IV that can decrypt the master key */
+    get_device_scrypt_params(crypt_ftr);
+
+    switch (crypt_ftr->kdf_type) {
+        case KDF_SCRYPT_KEYMASTER:
+            if (keymaster_create_key(crypt_ftr)) {
+                SLOGE("keymaster_create_key failed");
+                return -1;
+            }
+
+            if (scrypt_keymaster(passwd, salt, ikey, crypt_ftr)) {
+                SLOGE("scrypt failed");
+                return -1;
+            }
+            break;
+
+        case KDF_SCRYPT:
+            if (scrypt(passwd, salt, ikey, crypt_ftr)) {
+                SLOGE("scrypt failed");
+                return -1;
+            }
+            break;
+
+        default:
+            SLOGE("Invalid kdf_type");
+            return -1;
+    }
+
+    /* Initialize the decryption engine */
+    EVP_CIPHER_CTX_init(&e_ctx);
+    if (!EVP_EncryptInit_ex(&e_ctx, EVP_aes_128_cbc(), NULL, ikey,
+                            ikey + INTERMEDIATE_KEY_LEN_BYTES)) {
+        SLOGE("EVP_EncryptInit failed\n");
+        return -1;
+    }
+    EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */
+
+    /* Encrypt the master key */
+    if (!EVP_EncryptUpdate(&e_ctx, encrypted_master_key, &encrypted_len, decrypted_master_key,
+                           crypt_ftr->keysize)) {
+        SLOGE("EVP_EncryptUpdate failed\n");
+        return -1;
+    }
+    if (!EVP_EncryptFinal_ex(&e_ctx, encrypted_master_key + encrypted_len, &final_len)) {
+        SLOGE("EVP_EncryptFinal failed\n");
+        return -1;
+    }
+
+    if (encrypted_len + final_len != static_cast<int>(crypt_ftr->keysize)) {
+        SLOGE("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len);
+        return -1;
+    }
+
+    /* Store the scrypt of the intermediate key, so we can validate if it's a
+       password error or mount error when things go wrong.
+       Note there's no need to check for errors, since if this is incorrect, we
+       simply won't wipe userdata, which is the correct default behavior
+    */
+    int N = 1 << crypt_ftr->N_factor;
+    int r = 1 << crypt_ftr->r_factor;
+    int p = 1 << crypt_ftr->p_factor;
+
+    rc = crypto_scrypt(ikey, INTERMEDIATE_KEY_LEN_BYTES, crypt_ftr->salt, sizeof(crypt_ftr->salt),
+                       N, r, p, crypt_ftr->scrypted_intermediate_key,
+                       sizeof(crypt_ftr->scrypted_intermediate_key));
+
+    if (rc) {
+        SLOGE("encrypt_master_key: crypto_scrypt failed");
+    }
+
+    EVP_CIPHER_CTX_cleanup(&e_ctx);
+
+    return 0;
+}
+
+static int decrypt_master_key_aux(const char* passwd, unsigned char* salt,
+                                  const unsigned char* encrypted_master_key, size_t keysize,
+                                  unsigned char* decrypted_master_key, kdf_func kdf,
+                                  void* kdf_params, unsigned char** intermediate_key,
+                                  size_t* intermediate_key_size) {
+    unsigned char ikey[INTERMEDIATE_BUF_SIZE] = {0};
+    EVP_CIPHER_CTX d_ctx;
+    int decrypted_len, final_len;
+
+    /* Turn the password into an intermediate key and IV that can decrypt the
+       master key */
+    if (kdf(passwd, salt, ikey, kdf_params)) {
+        SLOGE("kdf failed");
+        return -1;
+    }
+
+    /* Initialize the decryption engine */
+    EVP_CIPHER_CTX_init(&d_ctx);
+    if (!EVP_DecryptInit_ex(&d_ctx, EVP_aes_128_cbc(), NULL, ikey,
+                            ikey + INTERMEDIATE_KEY_LEN_BYTES)) {
+        return -1;
+    }
+    EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */
+    /* Decrypt the master key */
+    if (!EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len, encrypted_master_key,
+                           keysize)) {
+        return -1;
+    }
+    if (!EVP_DecryptFinal_ex(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) {
+        return -1;
+    }
+
+    if (decrypted_len + final_len != static_cast<int>(keysize)) {
+        return -1;
+    }
+
+    /* Copy intermediate key if needed by params */
+    if (intermediate_key && intermediate_key_size) {
+        *intermediate_key = (unsigned char*)malloc(INTERMEDIATE_KEY_LEN_BYTES);
+        if (*intermediate_key) {
+            memcpy(*intermediate_key, ikey, INTERMEDIATE_KEY_LEN_BYTES);
+            *intermediate_key_size = INTERMEDIATE_KEY_LEN_BYTES;
+        }
+    }
+
+    EVP_CIPHER_CTX_cleanup(&d_ctx);
+
+    return 0;
+}
+
+static void get_kdf_func(struct crypt_mnt_ftr* ftr, kdf_func* kdf, void** kdf_params) {
+    if (ftr->kdf_type == KDF_SCRYPT_KEYMASTER) {
+        *kdf = scrypt_keymaster;
+        *kdf_params = ftr;
+    } else if (ftr->kdf_type == KDF_SCRYPT) {
+        *kdf = scrypt;
+        *kdf_params = ftr;
+    } else {
+        *kdf = pbkdf2;
+        *kdf_params = NULL;
+    }
+}
+
+static int decrypt_master_key(const char* passwd, unsigned char* decrypted_master_key,
+                              struct crypt_mnt_ftr* crypt_ftr, unsigned char** intermediate_key,
+                              size_t* intermediate_key_size) {
+    kdf_func kdf;
+    void* kdf_params;
+    int ret;
+
+    get_kdf_func(crypt_ftr, &kdf, &kdf_params);
+    ret = decrypt_master_key_aux(passwd, crypt_ftr->salt, crypt_ftr->master_key, crypt_ftr->keysize,
+                                 decrypted_master_key, kdf, kdf_params, intermediate_key,
+                                 intermediate_key_size);
+    if (ret != 0) {
+        SLOGW("failure decrypting master key");
+    }
+
+    return ret;
+}
+
+static int create_encrypted_random_key(const char* passwd, unsigned char* master_key,
+                                       unsigned char* salt, struct crypt_mnt_ftr* crypt_ftr) {
+    unsigned char key_buf[MAX_KEY_LEN];
+
+    /* Get some random bits for a key and salt */
+    if (::ReadRandomBytes(sizeof(key_buf), reinterpret_cast<char*>(key_buf)) != 0) {
+        return -1;
+    }
+    if (::ReadRandomBytes(SALT_LEN, reinterpret_cast<char*>(salt)) != 0) {
+        return -1;
+    }
+
+    /* Now encrypt it with the password */
+    return encrypt_master_key(passwd, salt, key_buf, master_key, crypt_ftr);
+}
+
+static void ensure_subdirectory_unmounted(const char *prefix) {
+    std::vector<std::string> umount_points;
+    std::unique_ptr<FILE, int (*)(FILE*)> mnts(setmntent("/proc/mounts", "r"), endmntent);
+    if (!mnts) {
+        SLOGW("could not read mount files");
+        return;
+    }
+
+    //Find sudirectory mount point
+    mntent* mentry;
+    std::string top_directory(prefix);
+    if (!android::base::EndsWith(prefix, "/")) {
+        top_directory = top_directory + "/";
+    }
+    while ((mentry = getmntent(mnts.get())) != nullptr) {
+        if (strcmp(mentry->mnt_dir, top_directory.c_str()) == 0) {
+            continue;
+        }
+
+        if (android::base::StartsWith(mentry->mnt_dir, top_directory)) {
+            SLOGW("found sub-directory mount %s - %s\n", prefix, mentry->mnt_dir);
+            umount_points.push_back(mentry->mnt_dir);
+        }
+    }
+
+    //Sort by path length to umount longest path first
+    std::sort(std::begin(umount_points), std::end(umount_points),
+        [](const std::string& s1, const std::string& s2) {return s1.length() > s2.length(); });
+
+    for (std::string& mount_point : umount_points) {
+        umount(mount_point.c_str());
+        SLOGW("umount sub-directory mount %s\n", mount_point.c_str());
+    }
+}
+
+static int wait_and_unmount(const char* mountpoint, bool kill) {
+    int i, err, rc;
+
+    // Subdirectory mount will cause a failure of umount.
+    ensure_subdirectory_unmounted(mountpoint);
+#define WAIT_UNMOUNT_COUNT 20
+
+    /*  Now umount the tmpfs filesystem */
+    for (i = 0; i < WAIT_UNMOUNT_COUNT; i++) {
+        if (umount(mountpoint) == 0) {
+            break;
+        }
+
+        if (errno == EINVAL) {
+            /* EINVAL is returned if the directory is not a mountpoint,
+             * i.e. there is no filesystem mounted there.  So just get out.
+             */
+            break;
+        }
+
+        err = errno;
+
+        /* If allowed, be increasingly aggressive before the last two retries */
+        if (kill) {
+            if (i == (WAIT_UNMOUNT_COUNT - 3)) {
+                SLOGW("sending SIGHUP to processes with open files\n");
+                android::vold::KillProcessesWithOpenFiles(mountpoint, SIGTERM);
+            } else if (i == (WAIT_UNMOUNT_COUNT - 2)) {
+                SLOGW("sending SIGKILL to processes with open files\n");
+                android::vold::KillProcessesWithOpenFiles(mountpoint, SIGKILL);
+            }
+        }
+
+        sleep(1);
+    }
+
+    if (i < WAIT_UNMOUNT_COUNT) {
+        SLOGD("unmounting %s succeeded\n", mountpoint);
+        rc = 0;
+    } else {
+        android::vold::KillProcessesWithOpenFiles(mountpoint, 0);
+        SLOGE("unmounting %s failed: %s\n", mountpoint, strerror(err));
+        rc = -1;
+    }
+
+    return rc;
+}
+
+static void prep_data_fs(void) {
+    // NOTE: post_fs_data results in init calling back around to vold, so all
+    // callers to this method must be async
+
+    /* Do the prep of the /data filesystem */
+    property_set("vold.post_fs_data_done", "0");
+    property_set("vold.decrypt", "trigger_post_fs_data");
+    SLOGD("Just triggered post_fs_data");
+
+    /* Wait a max of 50 seconds, hopefully it takes much less */
+    while (!android::base::WaitForProperty("vold.post_fs_data_done", "1", std::chrono::seconds(15))) {
+        /* We timed out to prep /data in time.  Continue wait. */
+        SLOGE("waited 15s for vold.post_fs_data_done, still waiting...");
+    }
+    SLOGD("post_fs_data done");
+}
+
+static void cryptfs_set_corrupt() {
+    // Mark the footer as bad
+    struct crypt_mnt_ftr crypt_ftr;
+    if (get_crypt_ftr_and_key(&crypt_ftr)) {
+        SLOGE("Failed to get crypto footer - panic");
+        return;
+    }
+
+    crypt_ftr.flags |= CRYPT_DATA_CORRUPT;
+    if (put_crypt_ftr_and_key(&crypt_ftr)) {
+        SLOGE("Failed to set crypto footer - panic");
+        return;
+    }
+}
+
+static void cryptfs_trigger_restart_min_framework() {
+    if (fs_mgr_do_tmpfs_mount(DATA_MNT_POINT)) {
+        SLOGE("Failed to mount tmpfs on data - panic");
+        return;
+    }
+
+    if (property_set("vold.decrypt", "trigger_post_fs_data")) {
+        SLOGE("Failed to trigger post fs data - panic");
+        return;
+    }
+
+    if (property_set("vold.decrypt", "trigger_restart_min_framework")) {
+        SLOGE("Failed to trigger restart min framework - panic");
+        return;
+    }
+}
+
+/* returns < 0 on failure */
+static int cryptfs_restart_internal(int restart_main) {
+    char crypto_blkdev[MAXPATHLEN];
+    int rc = -1;
+    static int restart_successful = 0;
+
+    /* Validate that it's OK to call this routine */
+    if (!master_key_saved) {
+        SLOGE("Encrypted filesystem not validated, aborting");
+        return -1;
+    }
+
+    if (restart_successful) {
+        SLOGE("System already restarted with encrypted disk, aborting");
+        return -1;
+    }
+
+    if (restart_main) {
+        /* Here is where we shut down the framework.  The init scripts
+         * start all services in one of these classes: core, early_hal, hal,
+         * main and late_start. To get to the minimal UI for PIN entry, we
+         * need to start core, early_hal, hal and main. When we want to
+         * shutdown the framework again, we need to stop most of the services in
+         * these classes, but only those services that were started after
+         * /data was mounted. This excludes critical services like vold and
+         * ueventd, which need to keep running. We could possible stop
+         * even fewer services, but because we want services to pick up APEX
+         * libraries from the real /data, restarting is better, as it makes
+         * these devices consistent with FBE devices and lets them use the
+         * most recent code.
+         *
+         * Once these services have stopped, we should be able
+         * to umount the tmpfs /data, then mount the encrypted /data.
+         * We then restart the class core, hal, main, and also the class
+         * late_start.
+         *
+         * At the moment, I've only put a few things in late_start that I know
+         * are not needed to bring up the framework, and that also cause problems
+         * with unmounting the tmpfs /data, but I hope to add add more services
+         * to the late_start class as we optimize this to decrease the delay
+         * till the user is asked for the password to the filesystem.
+         */
+
+        /* The init files are setup to stop the right set of services when
+         * vold.decrypt is set to trigger_shutdown_framework.
+         */
+        property_set("vold.decrypt", "trigger_shutdown_framework");
+        SLOGD("Just asked init to shut down class main\n");
+
+        /* Ugh, shutting down the framework is not synchronous, so until it
+         * can be fixed, this horrible hack will wait a moment for it all to
+         * shut down before proceeding.  Without it, some devices cannot
+         * restart the graphics services.
+         */
+        sleep(2);
+    }
+
+    /* Now that the framework is shutdown, we should be able to umount()
+     * the tmpfs filesystem, and mount the real one.
+     */
+
+    property_get("ro.crypto.fs_crypto_blkdev", crypto_blkdev, "");
+    if (strlen(crypto_blkdev) == 0) {
+        SLOGE("fs_crypto_blkdev not set\n");
+        return -1;
+    }
+
+    if (!(rc = wait_and_unmount(DATA_MNT_POINT, true))) {
+        /* If ro.crypto.readonly is set to 1, mount the decrypted
+         * filesystem readonly.  This is used when /data is mounted by
+         * recovery mode.
+         */
+        char ro_prop[PROPERTY_VALUE_MAX];
+        property_get("ro.crypto.readonly", ro_prop, "");
+        if (strlen(ro_prop) > 0 && std::stoi(ro_prop)) {
+            auto entry = GetEntryForMountPoint(&fstab_default, DATA_MNT_POINT);
+            if (entry != nullptr) {
+                entry->flags |= MS_RDONLY;
+            }
+        }
+
+        /* If that succeeded, then mount the decrypted filesystem */
+        int retries = RETRY_MOUNT_ATTEMPTS;
+        int mount_rc;
+
+        /*
+         * fs_mgr_do_mount runs fsck. Use setexeccon to run trusted
+         * partitions in the fsck domain.
+         */
+        if (setexeccon(::sFsckContext)) {
+            SLOGE("Failed to setexeccon");
+            return -1;
+        }
+        bool needs_cp = ::cp_needsCheckpoint();
+        while ((mount_rc = fs_mgr_do_mount(&fstab_default, DATA_MNT_POINT, crypto_blkdev, 0,
+                                           needs_cp, false)) != 0) {
+            if (mount_rc == FS_MGR_DOMNT_BUSY) {
+                /* TODO: invoke something similar to
+                   Process::killProcessWithOpenFiles(DATA_MNT_POINT,
+                                   retries > RETRY_MOUNT_ATTEMPT/2 ? 1 : 2 ) */
+                SLOGI("Failed to mount %s because it is busy - waiting", crypto_blkdev);
+                if (--retries) {
+                    sleep(RETRY_MOUNT_DELAY_SECONDS);
+                } else {
+                    /* Let's hope that a reboot clears away whatever is keeping
+                       the mount busy */
+                    cryptfs_reboot(RebootType::reboot);
+                }
+            } else {
+                SLOGE("Failed to mount decrypted data");
+                cryptfs_set_corrupt();
+                cryptfs_trigger_restart_min_framework();
+                SLOGI("Started framework to offer wipe");
+                if (setexeccon(NULL)) {
+                    SLOGE("Failed to setexeccon");
+                }
+                return -1;
+            }
+        }
+        if (setexeccon(NULL)) {
+            SLOGE("Failed to setexeccon");
+            return -1;
+        }
+
+        /* Create necessary paths on /data */
+        prep_data_fs();
+        property_set("vold.decrypt", "trigger_load_persist_props");
+
+        /* startup service classes main and late_start */
+        property_set("vold.decrypt", "trigger_restart_framework");
+        SLOGD("Just triggered restart_framework\n");
+
+        /* Give it a few moments to get started */
+        sleep(1);
+    }
+
+    if (rc == 0) {
+        restart_successful = 1;
+    }
+
+    return rc;
+}
+
+int cryptfs_restart(void) {
+    SLOGI("cryptfs_restart");
+    if (fscrypt_is_native()) {
+        SLOGE("cryptfs_restart not valid for file encryption:");
+        return -1;
+    }
+
+    /* Call internal implementation forcing a restart of main service group */
+    return cryptfs_restart_internal(1);
+}
+
+static int do_crypto_complete(const char* mount_point) {
+    struct crypt_mnt_ftr crypt_ftr;
+    char encrypted_state[PROPERTY_VALUE_MAX];
+
+    property_get("ro.crypto.state", encrypted_state, "");
+    if (strcmp(encrypted_state, "encrypted")) {
+        SLOGE("not running with encryption, aborting");
+        return CRYPTO_COMPLETE_NOT_ENCRYPTED;
+    }
+
+    // crypto_complete is full disk encrypted status
+    if (fscrypt_is_native()) {
+        return CRYPTO_COMPLETE_NOT_ENCRYPTED;
+    }
+
+    if (get_crypt_ftr_and_key(&crypt_ftr)) {
+        std::string key_loc;
+        get_crypt_info(&key_loc, nullptr);
+
+        /*
+         * Only report this error if key_loc is a file and it exists.
+         * If the device was never encrypted, and /data is not mountable for
+         * some reason, returning 1 should prevent the UI from presenting the
+         * a "enter password" screen, or worse, a "press button to wipe the
+         * device" screen.
+         */
+        if (!key_loc.empty() && key_loc[0] == '/' && (access("key_loc", F_OK) == -1)) {
+            SLOGE("master key file does not exist, aborting");
+            return CRYPTO_COMPLETE_NOT_ENCRYPTED;
+        } else {
+            SLOGE("Error getting crypt footer and key\n");
+            return CRYPTO_COMPLETE_BAD_METADATA;
+        }
+    }
+
+    // Test for possible error flags
+    if (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS) {
+        SLOGE("Encryption process is partway completed\n");
+        return CRYPTO_COMPLETE_PARTIAL;
+    }
+
+    if (crypt_ftr.flags & CRYPT_INCONSISTENT_STATE) {
+        SLOGE("Encryption process was interrupted but cannot continue\n");
+        return CRYPTO_COMPLETE_INCONSISTENT;
+    }
+
+    if (crypt_ftr.flags & CRYPT_DATA_CORRUPT) {
+        SLOGE("Encryption is successful but data is corrupt\n");
+        return CRYPTO_COMPLETE_CORRUPT;
+    }
+
+    /* We passed the test! We shall diminish, and return to the west */
+    return CRYPTO_COMPLETE_ENCRYPTED;
+}
+
+static int test_mount_encrypted_fs(struct crypt_mnt_ftr* crypt_ftr, const char* passwd,
+                                   const char* mount_point, const char* label) {
+    unsigned char decrypted_master_key[MAX_KEY_LEN];
+    std::string crypto_blkdev;
+    std::string real_blkdev;
+    char tmp_mount_point[64];
+    unsigned int orig_failed_decrypt_count;
+    int rc;
+    int use_keymaster = 0;
+    int upgrade = 0;
+    unsigned char* intermediate_key = 0;
+    size_t intermediate_key_size = 0;
+    int N = 1 << crypt_ftr->N_factor;
+    int r = 1 << crypt_ftr->r_factor;
+    int p = 1 << crypt_ftr->p_factor;
+
+    SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr->fs_size);
+    orig_failed_decrypt_count = crypt_ftr->failed_decrypt_count;
+
+    if (!(crypt_ftr->flags & CRYPT_MNT_KEY_UNENCRYPTED)) {
+        if (decrypt_master_key(passwd, decrypted_master_key, crypt_ftr, &intermediate_key,
+                               &intermediate_key_size)) {
+            SLOGE("Failed to decrypt master key\n");
+            rc = -1;
+            goto errout;
+        }
+    }
+
+    get_crypt_info(nullptr, &real_blkdev);
+
+    // Create crypto block device - all (non fatal) code paths
+    // need it
+    if (create_crypto_blk_dev(crypt_ftr, decrypted_master_key, real_blkdev.c_str(), &crypto_blkdev,
+                              label, 0)) {
+        SLOGE("Error creating decrypted block device\n");
+        rc = -1;
+        goto errout;
+    }
+
+    /* Work out if the problem is the password or the data */
+    unsigned char scrypted_intermediate_key[sizeof(crypt_ftr->scrypted_intermediate_key)];
+
+    rc = crypto_scrypt(intermediate_key, intermediate_key_size, crypt_ftr->salt,
+                       sizeof(crypt_ftr->salt), N, r, p, scrypted_intermediate_key,
+                       sizeof(scrypted_intermediate_key));
+
+    // Does the key match the crypto footer?
+    if (rc == 0 && memcmp(scrypted_intermediate_key, crypt_ftr->scrypted_intermediate_key,
+                          sizeof(scrypted_intermediate_key)) == 0) {
+        SLOGI("Password matches");
+        rc = 0;
+    } else {
+        /* Try mounting the file system anyway, just in case the problem's with
+         * the footer, not the key. */
+        snprintf(tmp_mount_point, sizeof(tmp_mount_point), "%s/tmp_mnt", mount_point);
+        mkdir(tmp_mount_point, 0755);
+        if (fs_mgr_do_mount(&fstab_default, DATA_MNT_POINT,
+                            const_cast<char*>(crypto_blkdev.c_str()), tmp_mount_point)) {
+            SLOGE("Error temp mounting decrypted block device\n");
+            delete_crypto_blk_dev(label);
+
+            rc = ++crypt_ftr->failed_decrypt_count;
+            put_crypt_ftr_and_key(crypt_ftr);
+        } else {
+            /* Success! */
+            SLOGI("Password did not match but decrypted drive mounted - continue");
+            umount(tmp_mount_point);
+            rc = 0;
+        }
+    }
+
+    if (rc == 0) {
+        crypt_ftr->failed_decrypt_count = 0;
+        if (orig_failed_decrypt_count != 0) {
+            put_crypt_ftr_and_key(crypt_ftr);
+        }
+
+        /* Save the name of the crypto block device
+         * so we can mount it when restarting the framework. */
+        property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev.c_str());
+
+        /* Also save a the master key so we can reencrypted the key
+         * the key when we want to change the password on it. */
+        memcpy(saved_master_key, decrypted_master_key, crypt_ftr->keysize);
+        saved_mount_point = strdup(mount_point);
+        master_key_saved = 1;
+        SLOGD("%s(): Master key saved\n", __FUNCTION__);
+        rc = 0;
+
+        // Upgrade if we're not using the latest KDF.
+        use_keymaster = keymaster_check_compatibility();
+        if (crypt_ftr->kdf_type == KDF_SCRYPT_KEYMASTER) {
+            // Don't allow downgrade
+        } else if (use_keymaster == 1 && crypt_ftr->kdf_type != KDF_SCRYPT_KEYMASTER) {
+            crypt_ftr->kdf_type = KDF_SCRYPT_KEYMASTER;
+            upgrade = 1;
+        } else if (use_keymaster == 0 && crypt_ftr->kdf_type != KDF_SCRYPT) {
+            crypt_ftr->kdf_type = KDF_SCRYPT;
+            upgrade = 1;
+        }
+
+        if (upgrade) {
+            rc = encrypt_master_key(passwd, crypt_ftr->salt, saved_master_key,
+                                    crypt_ftr->master_key, crypt_ftr);
+            if (!rc) {
+                rc = put_crypt_ftr_and_key(crypt_ftr);
+            }
+            SLOGD("Key Derivation Function upgrade: rc=%d\n", rc);
+
+            // Do not fail even if upgrade failed - machine is bootable
+            // Note that if this code is ever hit, there is a *serious* problem
+            // since KDFs should never fail. You *must* fix the kdf before
+            // proceeding!
+            if (rc) {
+                SLOGW(
+                    "Upgrade failed with error %d,"
+                    " but continuing with previous state",
+                    rc);
+                rc = 0;
+            }
+        }
+    }
+
+errout:
+    if (intermediate_key) {
+        memset(intermediate_key, 0, intermediate_key_size);
+        free(intermediate_key);
+    }
+    return rc;
+}
+
+/*
+ * Called by vold when it's asked to mount an encrypted external
+ * storage volume. The incoming partition has no crypto header/footer,
+ * as any metadata is been stored in a separate, small partition.  We
+ * assume it must be using our same crypt type and keysize.
+ */
+int cryptfs_setup_ext_volume(const char* label, const char* real_blkdev, const KeyBuffer& key,
+                             std::string* out_crypto_blkdev) {
+    auto crypto_type = get_crypto_type();
+    if (key.size() != crypto_type.get_keysize()) {
+        SLOGE("Raw keysize %zu does not match crypt keysize %zu", key.size(),
+              crypto_type.get_keysize());
+        return -1;
+    }
+    uint64_t nr_sec = 0;
+    if (::GetBlockDev512Sectors(real_blkdev, &nr_sec) != android::OK) {
+        SLOGE("Failed to get size of %s: %s", real_blkdev, strerror(errno));
+        return -1;
+    }
+
+    struct crypt_mnt_ftr ext_crypt_ftr;
+    memset(&ext_crypt_ftr, 0, sizeof(ext_crypt_ftr));
+    ext_crypt_ftr.fs_size = nr_sec;
+    ext_crypt_ftr.keysize = crypto_type.get_keysize();
+    strlcpy((char*)ext_crypt_ftr.crypto_type_name, crypto_type.get_kernel_name(),
+            MAX_CRYPTO_TYPE_NAME_LEN);
+    uint32_t flags = 0;
+    if (fscrypt_is_native() &&
+        android::base::GetBoolProperty("ro.crypto.allow_encrypt_override", false))
+        flags |= CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE;
+
+    return create_crypto_blk_dev(&ext_crypt_ftr, reinterpret_cast<const unsigned char*>(key.data()),
+                                 real_blkdev, out_crypto_blkdev, label, flags);
+}
+
+int cryptfs_crypto_complete(void) {
+    return do_crypto_complete("/data");
+}
+
+int check_unmounted_and_get_ftr(struct crypt_mnt_ftr* crypt_ftr) {
+    char encrypted_state[PROPERTY_VALUE_MAX];
+    property_get("ro.crypto.state", encrypted_state, "");
+    if (master_key_saved || strcmp(encrypted_state, "encrypted")) {
+        SLOGE(
+            "encrypted fs already validated or not running with encryption,"
+            " aborting");
+        return -1;
+    }
+
+    if (get_crypt_ftr_and_key(crypt_ftr)) {
+        SLOGE("Error getting crypt footer and key");
+        return -1;
+    }
+
+    return 0;
+}
+
+int cryptfs_check_passwd(const char* passwd) {
+    SLOGI("cryptfs_check_passwd");
+    if (fscrypt_is_native()) {
+        SLOGE("cryptfs_check_passwd not valid for file encryption");
+        return -1;
+    }
+
+    struct crypt_mnt_ftr crypt_ftr;
+    int rc;
+
+    rc = check_unmounted_and_get_ftr(&crypt_ftr);
+    if (rc) {
+        SLOGE("Could not get footer");
+        return rc;
+    }
+
+    rc = test_mount_encrypted_fs(&crypt_ftr, passwd, DATA_MNT_POINT, CRYPTO_BLOCK_DEVICE);
+    if (rc) {
+        SLOGE("Password did not match");
+        return rc;
+    }
+
+    if (crypt_ftr.flags & CRYPT_FORCE_COMPLETE) {
+        // Here we have a default actual password but a real password
+        // we must test against the scrypted value
+        // First, we must delete the crypto block device that
+        // test_mount_encrypted_fs leaves behind as a side effect
+        delete_crypto_blk_dev(CRYPTO_BLOCK_DEVICE);
+        rc = test_mount_encrypted_fs(&crypt_ftr, DEFAULT_PASSWORD, DATA_MNT_POINT,
+                                     CRYPTO_BLOCK_DEVICE);
+        if (rc) {
+            SLOGE("Default password did not match on reboot encryption");
+            return rc;
+        }
+
+        crypt_ftr.flags &= ~CRYPT_FORCE_COMPLETE;
+        put_crypt_ftr_and_key(&crypt_ftr);
+        rc = cryptfs_changepw(crypt_ftr.crypt_type, passwd);
+        if (rc) {
+            SLOGE("Could not change password on reboot encryption");
+            return rc;
+        }
+    }
+
+    if (crypt_ftr.crypt_type != CRYPT_TYPE_DEFAULT) {
+        cryptfs_clear_password();
+        password = strdup(passwd);
+        struct timespec now;
+        clock_gettime(CLOCK_BOOTTIME, &now);
+        password_expiry_time = now.tv_sec + password_max_age_seconds;
+    }
+
+    return rc;
+}
+
+int cryptfs_verify_passwd(const char* passwd) {
+    struct crypt_mnt_ftr crypt_ftr;
+    unsigned char decrypted_master_key[MAX_KEY_LEN];
+    char encrypted_state[PROPERTY_VALUE_MAX];
+    int rc;
+
+    property_get("ro.crypto.state", encrypted_state, "");
+    if (strcmp(encrypted_state, "encrypted")) {
+        SLOGE("device not encrypted, aborting");
+        return -2;
+    }
+
+    if (!master_key_saved) {
+        SLOGE("encrypted fs not yet mounted, aborting");
+        return -1;
+    }
+
+    if (!saved_mount_point) {
+        SLOGE("encrypted fs failed to save mount point, aborting");
+        return -1;
+    }
+
+    if (get_crypt_ftr_and_key(&crypt_ftr)) {
+        SLOGE("Error getting crypt footer and key\n");
+        return -1;
+    }
+
+    if (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) {
+        /* If the device has no password, then just say the password is valid */
+        rc = 0;
+    } else {
+        decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0);
+        if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) {
+            /* They match, the password is correct */
+            rc = 0;
+        } else {
+            /* If incorrect, sleep for a bit to prevent dictionary attacks */
+            sleep(1);
+            rc = 1;
+        }
+    }
+
+    return rc;
+}
+
+/* Initialize a crypt_mnt_ftr structure.  The keysize is
+ * defaulted to get_crypto_type().get_keysize() bytes, and the filesystem size to 0.
+ * Presumably, at a minimum, the caller will update the
+ * filesystem size and crypto_type_name after calling this function.
+ */
+static int cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr* ftr) {
+    off64_t off;
+
+    memset(ftr, 0, sizeof(struct crypt_mnt_ftr));
+    ftr->magic = CRYPT_MNT_MAGIC;
+    ftr->major_version = CURRENT_MAJOR_VERSION;
+    ftr->minor_version = CURRENT_MINOR_VERSION;
+    ftr->ftr_size = sizeof(struct crypt_mnt_ftr);
+    ftr->keysize = get_crypto_type().get_keysize();
+
+    switch (keymaster_check_compatibility()) {
+        case 1:
+            ftr->kdf_type = KDF_SCRYPT_KEYMASTER;
+            break;
+
+        case 0:
+            ftr->kdf_type = KDF_SCRYPT;
+            break;
+
+        default:
+            SLOGE("keymaster_check_compatibility failed");
+            return -1;
+    }
+
+    get_device_scrypt_params(ftr);
+
+    ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE;
+    if (get_crypt_ftr_info(NULL, &off) == 0) {
+        ftr->persist_data_offset[0] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET;
+        ftr->persist_data_offset[1] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET + ftr->persist_data_size;
+    }
+
+    return 0;
+}
+
+#define FRAMEWORK_BOOT_WAIT 60
+
+static int cryptfs_SHA256_fileblock(const char* filename, __le8* buf) {
+    int fd = open(filename, O_RDONLY | O_CLOEXEC);
+    if (fd == -1) {
+        SLOGE("Error opening file %s", filename);
+        return -1;
+    }
+
+    char block[CRYPT_INPLACE_BUFSIZE];
+    memset(block, 0, sizeof(block));
+    if (unix_read(fd, block, sizeof(block)) < 0) {
+        SLOGE("Error reading file %s", filename);
+        close(fd);
+        return -1;
+    }
+
+    close(fd);
+
+    SHA256_CTX c;
+    SHA256_Init(&c);
+    SHA256_Update(&c, block, sizeof(block));
+    SHA256_Final(buf, &c);
+
+    return 0;
+}
+
+static int cryptfs_enable_all_volumes(struct crypt_mnt_ftr* crypt_ftr, const char* crypto_blkdev,
+                                      const char* real_blkdev, int previously_encrypted_upto) {
+    off64_t cur_encryption_done = 0, tot_encryption_size = 0;
+    int rc = -1;
+
+    /* The size of the userdata partition, and add in the vold volumes below */
+    tot_encryption_size = crypt_ftr->fs_size;
+
+    rc = cryptfs_enable_inplace(crypto_blkdev, real_blkdev, crypt_ftr->fs_size, &cur_encryption_done,
+                                tot_encryption_size, previously_encrypted_upto, true);
+
+    if (rc == ENABLE_INPLACE_ERR_DEV) {
+        /* Hack for b/17898962 */
+        SLOGE("cryptfs_enable: crypto block dev failure. Must reboot...\n");
+        cryptfs_reboot(RebootType::reboot);
+    }
+
+    if (!rc) {
+        crypt_ftr->encrypted_upto = cur_encryption_done;
+    }
+
+    if (!rc && crypt_ftr->encrypted_upto == crypt_ftr->fs_size) {
+        /* The inplace routine never actually sets the progress to 100% due
+         * to the round down nature of integer division, so set it here */
+        property_set("vold.encrypt_progress", "100");
+    }
+
+    return rc;
+}
+
+// static int vold_unmountAll(void) {
+//     VolumeManager* vm = VolumeManager::Instance();
+//     return vm->unmountAll();
+// }
+
+int cryptfs_enable_internal(int crypt_type, const char* passwd, int no_ui) {
+    std::string crypto_blkdev;
+    std::string real_blkdev;
+    unsigned char decrypted_master_key[MAX_KEY_LEN];
+    int rc = -1, i;
+    struct crypt_mnt_ftr crypt_ftr;
+    struct crypt_persist_data* pdata;
+    char encrypted_state[PROPERTY_VALUE_MAX];
+    char lockid[32] = {0};
+    std::string key_loc;
+    int num_vols;
+    off64_t previously_encrypted_upto = 0;
+    bool rebootEncryption = false;
+    bool onlyCreateHeader = false;
+    // std::unique_ptr<android::wakelock::WakeLock> wakeLock = nullptr;
+
+    if (get_crypt_ftr_and_key(&crypt_ftr) == 0) {
+        if (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS) {
+            /* An encryption was underway and was interrupted */
+            previously_encrypted_upto = crypt_ftr.encrypted_upto;
+            crypt_ftr.encrypted_upto = 0;
+            crypt_ftr.flags &= ~CRYPT_ENCRYPTION_IN_PROGRESS;
+
+            /* At this point, we are in an inconsistent state. Until we successfully
+               complete encryption, a reboot will leave us broken. So mark the
+               encryption failed in case that happens.
+               On successfully completing encryption, remove this flag */
+            crypt_ftr.flags |= CRYPT_INCONSISTENT_STATE;
+
+            put_crypt_ftr_and_key(&crypt_ftr);
+        } else if (crypt_ftr.flags & CRYPT_FORCE_ENCRYPTION) {
+            if (!check_ftr_sha(&crypt_ftr)) {
+                memset(&crypt_ftr, 0, sizeof(crypt_ftr));
+                put_crypt_ftr_and_key(&crypt_ftr);
+                goto error_unencrypted;
+            }
+
+            /* Doing a reboot-encryption*/
+            crypt_ftr.flags &= ~CRYPT_FORCE_ENCRYPTION;
+            crypt_ftr.flags |= CRYPT_FORCE_COMPLETE;
+            rebootEncryption = true;
+        }
+    } else {
+        // We don't want to accidentally reference invalid data.
+        memset(&crypt_ftr, 0, sizeof(crypt_ftr));
+    }
+
+    property_get("ro.crypto.state", encrypted_state, "");
+    if (!strcmp(encrypted_state, "encrypted") && !previously_encrypted_upto) {
+        SLOGE("Device is already running encrypted, aborting");
+        goto error_unencrypted;
+    }
+
+    get_crypt_info(&key_loc, &real_blkdev);
+
+    /* Get the size of the real block device */
+    uint64_t nr_sec;
+    if (::GetBlockDev512Sectors(real_blkdev, &nr_sec) != android::OK) {
+        SLOGE("Cannot get size of block device %s\n", real_blkdev.c_str());
+        goto error_unencrypted;
+    }
+
+    /* If doing inplace encryption, make sure the orig fs doesn't include the crypto footer */
+    if (key_loc == KEY_IN_FOOTER) {
+        uint64_t fs_size_sec, max_fs_size_sec;
+        fs_size_sec = get_fs_size(real_blkdev.c_str());
+        if (fs_size_sec == 0) fs_size_sec = get_f2fs_filesystem_size_sec(real_blkdev.data());
+
+        max_fs_size_sec = nr_sec - (CRYPT_FOOTER_OFFSET / CRYPT_SECTOR_SIZE);
+
+        if (fs_size_sec > max_fs_size_sec) {
+            SLOGE("Orig filesystem overlaps crypto footer region.  Cannot encrypt in place.");
+            goto error_unencrypted;
+        }
+    }
+
+    /* Get a wakelock as this may take a while, and we don't want the
+     * device to sleep on us.  We'll grab a partial wakelock, and if the UI
+     * wants to keep the screen on, it can grab a full wakelock.
+     */
+    snprintf(lockid, sizeof(lockid), "enablecrypto%d", (int)getpid());
+    // wakeLock = std::make_unique<android::wakelock::WakeLock>(lockid);
+
+    /* The init files are setup to stop the class main and late start when
+     * vold sets trigger_shutdown_framework.
+     */
+    property_set("vold.decrypt", "trigger_shutdown_framework");
+    SLOGD("Just asked init to shut down class main\n");
+
+    /* Ask vold to unmount all devices that it manages */
+    // if (vold_unmountAll()) {
+    //     SLOGE("Failed to unmount all vold managed devices");
+    // }
+
+    /* no_ui means we are being called from init, not settings.
+       Now we always reboot from settings, so !no_ui means reboot
+     */
+    if (!no_ui) {
+        /* Try fallback, which is to reboot and try there */
+        onlyCreateHeader = true;
+        FILE* breadcrumb = fopen(BREADCRUMB_FILE, "we");
+        if (breadcrumb == 0) {
+            SLOGE("Failed to create breadcrumb file");
+            goto error_shutting_down;
+        }
+        fclose(breadcrumb);
+    }
+
+    /* Do extra work for a better UX when doing the long inplace encryption */
+    if (!onlyCreateHeader) {
+        /* Now that /data is unmounted, we need to mount a tmpfs
+         * /data, set a property saying we're doing inplace encryption,
+         * and restart the framework.
+         */
+        wait_and_unmount(DATA_MNT_POINT, true);
+        if (fs_mgr_do_tmpfs_mount(DATA_MNT_POINT)) {
+            goto error_shutting_down;
+        }
+        /* Tells the framework that inplace encryption is starting */
+        property_set("vold.encrypt_progress", "0");
+
+        /* restart the framework. */
+        /* Create necessary paths on /data */
+        prep_data_fs();
+
+        /* Ugh, shutting down the framework is not synchronous, so until it
+         * can be fixed, this horrible hack will wait a moment for it all to
+         * shut down before proceeding.  Without it, some devices cannot
+         * restart the graphics services.
+         */
+        sleep(2);
+    }
+
+    /* Start the actual work of making an encrypted filesystem */
+    /* Initialize a crypt_mnt_ftr for the partition */
+    if (previously_encrypted_upto == 0 && !rebootEncryption) {
+        if (cryptfs_init_crypt_mnt_ftr(&crypt_ftr)) {
+            goto error_shutting_down;
+        }
+
+        if (key_loc == KEY_IN_FOOTER) {
+            crypt_ftr.fs_size = nr_sec - (CRYPT_FOOTER_OFFSET / CRYPT_SECTOR_SIZE);
+        } else {
+            crypt_ftr.fs_size = nr_sec;
+        }
+        /* At this point, we are in an inconsistent state. Until we successfully
+           complete encryption, a reboot will leave us broken. So mark the
+           encryption failed in case that happens.
+           On successfully completing encryption, remove this flag */
+        if (onlyCreateHeader) {
+            crypt_ftr.flags |= CRYPT_FORCE_ENCRYPTION;
+        } else {
+            crypt_ftr.flags |= CRYPT_INCONSISTENT_STATE;
+        }
+        crypt_ftr.crypt_type = crypt_type;
+        strlcpy((char*)crypt_ftr.crypto_type_name, get_crypto_type().get_kernel_name(),
+                MAX_CRYPTO_TYPE_NAME_LEN);
+
+        /* Make an encrypted master key */
+        if (create_encrypted_random_key(onlyCreateHeader ? DEFAULT_PASSWORD : passwd,
+                                        crypt_ftr.master_key, crypt_ftr.salt, &crypt_ftr)) {
+            SLOGE("Cannot create encrypted master key\n");
+            goto error_shutting_down;
+        }
+
+        /* Replace scrypted intermediate key if we are preparing for a reboot */
+        if (onlyCreateHeader) {
+            unsigned char fake_master_key[MAX_KEY_LEN];
+            unsigned char encrypted_fake_master_key[MAX_KEY_LEN];
+            memset(fake_master_key, 0, sizeof(fake_master_key));
+            encrypt_master_key(passwd, crypt_ftr.salt, fake_master_key, encrypted_fake_master_key,
+                               &crypt_ftr);
+        }
+
+        /* Write the key to the end of the partition */
+        put_crypt_ftr_and_key(&crypt_ftr);
+
+        /* If any persistent data has been remembered, save it.
+         * If none, create a valid empty table and save that.
+         */
+        if (!persist_data) {
+            pdata = (crypt_persist_data*)malloc(CRYPT_PERSIST_DATA_SIZE);
+            if (pdata) {
+                init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
+                persist_data = pdata;
+            }
+        }
+        if (persist_data) {
+            save_persistent_data();
+        }
+    }
+
+    if (onlyCreateHeader) {
+        sleep(2);
+        cryptfs_reboot(RebootType::reboot);
+    }
+
+    if (!no_ui || rebootEncryption) {
+        /* startup service classes main and late_start */
+        property_set("vold.decrypt", "trigger_restart_min_framework");
+        SLOGD("Just triggered restart_min_framework\n");
+
+        /* OK, the framework is restarted and will soon be showing a
+         * progress bar.  Time to setup an encrypted mapping, and
+         * either write a new filesystem, or encrypt in place updating
+         * the progress bar as we work.
+         */
+    }
+
+    decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0);
+    ALOGE("cryptfs_enable_internal\n");
+    create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev.c_str(), &crypto_blkdev,
+                          CRYPTO_BLOCK_DEVICE, 0);
+
+    /* If we are continuing, check checksums match */
+    rc = 0;
+    if (previously_encrypted_upto) {
+        __le8 hash_first_block[SHA256_DIGEST_LENGTH];
+        rc = cryptfs_SHA256_fileblock(crypto_blkdev.c_str(), hash_first_block);
+
+        if (!rc &&
+            memcmp(hash_first_block, crypt_ftr.hash_first_block, sizeof(hash_first_block)) != 0) {
+            SLOGE("Checksums do not match - trigger wipe");
+            rc = -1;
+        }
+    }
+
+    if (!rc) {
+        rc = cryptfs_enable_all_volumes(&crypt_ftr, crypto_blkdev.c_str(), real_blkdev.data(),
+                                        previously_encrypted_upto);
+    }
+
+    /* Calculate checksum if we are not finished */
+    if (!rc && crypt_ftr.encrypted_upto != crypt_ftr.fs_size) {
+        rc = cryptfs_SHA256_fileblock(crypto_blkdev.c_str(), crypt_ftr.hash_first_block);
+        if (rc) {
+            SLOGE("Error calculating checksum for continuing encryption");
+            rc = -1;
+        }
+    }
+
+    /* Undo the dm-crypt mapping whether we succeed or not */
+    delete_crypto_blk_dev(CRYPTO_BLOCK_DEVICE);
+
+    if (!rc) {
+        /* Success */
+        crypt_ftr.flags &= ~CRYPT_INCONSISTENT_STATE;
+
+        if (crypt_ftr.encrypted_upto != crypt_ftr.fs_size) {
+            SLOGD("Encrypted up to sector %lld - will continue after reboot",
+                  crypt_ftr.encrypted_upto);
+            crypt_ftr.flags |= CRYPT_ENCRYPTION_IN_PROGRESS;
+        }
+
+        put_crypt_ftr_and_key(&crypt_ftr);
+
+        if (crypt_ftr.encrypted_upto == crypt_ftr.fs_size) {
+            char value[PROPERTY_VALUE_MAX];
+            property_get("ro.crypto.state", value, "");
+            if (!strcmp(value, "")) {
+                /* default encryption - continue first boot sequence */
+                property_set("ro.crypto.state", "encrypted");
+                property_set("ro.crypto.type", "block");
+                // wakeLock.reset(nullptr);
+                if (rebootEncryption && crypt_ftr.crypt_type != CRYPT_TYPE_DEFAULT) {
+                    // Bring up cryptkeeper that will check the password and set it
+                    property_set("vold.decrypt", "trigger_shutdown_framework");
+                    sleep(2);
+                    property_set("vold.encrypt_progress", "");
+                    cryptfs_trigger_restart_min_framework();
+                } else {
+                    cryptfs_check_passwd(DEFAULT_PASSWORD);
+                    cryptfs_restart_internal(1);
+                }
+                return 0;
+            } else {
+                sleep(2); /* Give the UI a chance to show 100% progress */
+                cryptfs_reboot(RebootType::reboot);
+            }
+        } else {
+            sleep(2); /* Partially encrypted, ensure writes flushed to ssd */
+            cryptfs_reboot(RebootType::shutdown);
+        }
+    } else {
+        char value[PROPERTY_VALUE_MAX];
+
+        property_get("ro.vold.wipe_on_crypt_fail", value, "0");
+        if (!strcmp(value, "1")) {
+            /* wipe data if encryption failed */
+            SLOGE("encryption failed - rebooting into recovery to wipe data\n");
+            std::string err;
+            const std::vector<std::string> options = {
+                "--wipe_data\n--reason=cryptfs_enable_internal\n"};
+            if (!write_bootloader_message(options, &err)) {
+                SLOGE("could not write bootloader message: %s", err.c_str());
+            }
+            cryptfs_reboot(RebootType::recovery);
+        } else {
+            /* set property to trigger dialog */
+            property_set("vold.encrypt_progress", "error_partially_encrypted");
+        }
+        return -1;
+    }
+
+    /* hrm, the encrypt step claims success, but the reboot failed.
+     * This should not happen.
+     * Set the property and return.  Hope the framework can deal with it.
+     */
+    property_set("vold.encrypt_progress", "error_reboot_failed");
+    return rc;
+
+error_unencrypted:
+    property_set("vold.encrypt_progress", "error_not_encrypted");
+    return -1;
+
+error_shutting_down:
+    /* we failed, and have not encrypted anthing, so the users's data is still intact,
+     * but the framework is stopped and not restarted to show the error, so it's up to
+     * vold to restart the system.
+     */
+    SLOGE(
+        "Error enabling encryption after framework is shutdown, no data changed, restarting "
+        "system");
+    cryptfs_reboot(RebootType::reboot);
+
+    /* shouldn't get here */
+    property_set("vold.encrypt_progress", "error_shutting_down");
+    return -1;
+}
+
+int cryptfs_enable(int type, const char* passwd, int no_ui) {
+    return cryptfs_enable_internal(type, passwd, no_ui);
+}
+
+int cryptfs_enable_default(int no_ui) {
+    return cryptfs_enable_internal(CRYPT_TYPE_DEFAULT, DEFAULT_PASSWORD, no_ui);
+}
+
+int cryptfs_changepw(int crypt_type, const char* newpw) {
+    if (fscrypt_is_native()) {
+        SLOGE("cryptfs_changepw not valid for file encryption");
+        return -1;
+    }
+
+    struct crypt_mnt_ftr crypt_ftr;
+    int rc;
+
+    /* This is only allowed after we've successfully decrypted the master key */
+    if (!master_key_saved) {
+        SLOGE("Key not saved, aborting");
+        return -1;
+    }
+
+    if (crypt_type < 0 || crypt_type > CRYPT_TYPE_MAX_TYPE) {
+        SLOGE("Invalid crypt_type %d", crypt_type);
+        return -1;
+    }
+
+    /* get key */
+    if (get_crypt_ftr_and_key(&crypt_ftr)) {
+        SLOGE("Error getting crypt footer and key");
+        return -1;
+    }
+
+    crypt_ftr.crypt_type = crypt_type;
+
+    rc = encrypt_master_key(crypt_type == CRYPT_TYPE_DEFAULT ? DEFAULT_PASSWORD : newpw,
+                            crypt_ftr.salt, saved_master_key, crypt_ftr.master_key, &crypt_ftr);
+    if (rc) {
+        SLOGE("Encrypt master key failed: %d", rc);
+        return -1;
+    }
+    /* save the key */
+    put_crypt_ftr_and_key(&crypt_ftr);
+
+    return 0;
+}
+
+static unsigned int persist_get_max_entries(int encrypted) {
+    struct crypt_mnt_ftr crypt_ftr;
+    unsigned int dsize;
+
+    /* If encrypted, use the values from the crypt_ftr, otherwise
+     * use the values for the current spec.
+     */
+    if (encrypted) {
+        if (get_crypt_ftr_and_key(&crypt_ftr)) {
+            /* Something is wrong, assume no space for entries */
+            return 0;
+        }
+        dsize = crypt_ftr.persist_data_size;
+    } else {
+        dsize = CRYPT_PERSIST_DATA_SIZE;
+    }
+
+    if (dsize > sizeof(struct crypt_persist_data)) {
+        return (dsize - sizeof(struct crypt_persist_data)) / sizeof(struct crypt_persist_entry);
+    } else {
+        return 0;
+    }
+}
+
+static int persist_get_key(const char* fieldname, char* value) {
+    unsigned int i;
+
+    if (persist_data == NULL) {
+        return -1;
+    }
+    for (i = 0; i < persist_data->persist_valid_entries; i++) {
+        if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) {
+            /* We found it! */
+            strlcpy(value, persist_data->persist_entry[i].val, PROPERTY_VALUE_MAX);
+            return 0;
+        }
+    }
+
+    return -1;
+}
+
+static int persist_set_key(const char* fieldname, const char* value, int encrypted) {
+    unsigned int i;
+    unsigned int num;
+    unsigned int max_persistent_entries;
+
+    if (persist_data == NULL) {
+        return -1;
+    }
+
+    max_persistent_entries = persist_get_max_entries(encrypted);
+
+    num = persist_data->persist_valid_entries;
+
+    for (i = 0; i < num; i++) {
+        if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) {
+            /* We found an existing entry, update it! */
+            memset(persist_data->persist_entry[i].val, 0, PROPERTY_VALUE_MAX);
+            strlcpy(persist_data->persist_entry[i].val, value, PROPERTY_VALUE_MAX);
+            return 0;
+        }
+    }
+
+    /* We didn't find it, add it to the end, if there is room */
+    if (persist_data->persist_valid_entries < max_persistent_entries) {
+        memset(&persist_data->persist_entry[num], 0, sizeof(struct crypt_persist_entry));
+        strlcpy(persist_data->persist_entry[num].key, fieldname, PROPERTY_KEY_MAX);
+        strlcpy(persist_data->persist_entry[num].val, value, PROPERTY_VALUE_MAX);
+        persist_data->persist_valid_entries++;
+        return 0;
+    }
+
+    return -1;
+}
+
+/**
+ * Test if key is part of the multi-entry (field, index) sequence. Return non-zero if key is in the
+ * sequence and its index is greater than or equal to index. Return 0 otherwise.
+ */
+int match_multi_entry(const char* key, const char* field, unsigned index) {
+    std::string key_ = key;
+    std::string field_ = field;
+
+    std::string parsed_field;
+    unsigned parsed_index;
+
+    std::string::size_type split = key_.find_last_of('_');
+    if (split == std::string::npos) {
+        parsed_field = key_;
+        parsed_index = 0;
+    } else {
+        parsed_field = key_.substr(0, split);
+        parsed_index = std::stoi(key_.substr(split + 1));
+    }
+
+    return parsed_field == field_ && parsed_index >= index;
+}
+
+/*
+ * Delete entry/entries from persist_data. If the entries are part of a multi-segment field, all
+ * remaining entries starting from index will be deleted.
+ * returns PERSIST_DEL_KEY_OK if deletion succeeds,
+ * PERSIST_DEL_KEY_ERROR_NO_FIELD if the field does not exist,
+ * and PERSIST_DEL_KEY_ERROR_OTHER if error occurs.
+ *
+ */
+static int persist_del_keys(const char* fieldname, unsigned index) {
+    unsigned int i;
+    unsigned int j;
+    unsigned int num;
+
+    if (persist_data == NULL) {
+        return PERSIST_DEL_KEY_ERROR_OTHER;
+    }
+
+    num = persist_data->persist_valid_entries;
+
+    j = 0;  // points to the end of non-deleted entries.
+    // Filter out to-be-deleted entries in place.
+    for (i = 0; i < num; i++) {
+        if (!match_multi_entry(persist_data->persist_entry[i].key, fieldname, index)) {
+            persist_data->persist_entry[j] = persist_data->persist_entry[i];
+            j++;
+        }
+    }
+
+    if (j < num) {
+        persist_data->persist_valid_entries = j;
+        // Zeroise the remaining entries
+        memset(&persist_data->persist_entry[j], 0, (num - j) * sizeof(struct crypt_persist_entry));
+        return PERSIST_DEL_KEY_OK;
+    } else {
+        // Did not find an entry matching the given fieldname
+        return PERSIST_DEL_KEY_ERROR_NO_FIELD;
+    }
+}
+
+static int persist_count_keys(const char* fieldname) {
+    unsigned int i;
+    unsigned int count;
+
+    if (persist_data == NULL) {
+        return -1;
+    }
+
+    count = 0;
+    for (i = 0; i < persist_data->persist_valid_entries; i++) {
+        if (match_multi_entry(persist_data->persist_entry[i].key, fieldname, 0)) {
+            count++;
+        }
+    }
+
+    return count;
+}
+
+/* Return the value of the specified field. */
+int cryptfs_getfield(const char* fieldname, char* value, int len) {
+    if (fscrypt_is_native()) {
+        SLOGE("Cannot get field when file encrypted");
+        return -1;
+    }
+
+    char temp_value[PROPERTY_VALUE_MAX];
+    /* CRYPTO_GETFIELD_OK is success,
+     * CRYPTO_GETFIELD_ERROR_NO_FIELD is value not set,
+     * CRYPTO_GETFIELD_ERROR_BUF_TOO_SMALL is buffer (as given by len) too small,
+     * CRYPTO_GETFIELD_ERROR_OTHER is any other error
+     */
+    int rc = CRYPTO_GETFIELD_ERROR_OTHER;
+    int i;
+    char temp_field[PROPERTY_KEY_MAX];
+
+    if (persist_data == NULL) {
+        load_persistent_data();
+        if (persist_data == NULL) {
+            SLOGE("Getfield error, cannot load persistent data");
+            goto out;
+        }
+    }
+
+    // Read value from persistent entries. If the original value is split into multiple entries,
+    // stitch them back together.
+    if (!persist_get_key(fieldname, temp_value)) {
+        // We found it, copy it to the caller's buffer and keep going until all entries are read.
+        if (strlcpy(value, temp_value, len) >= (unsigned)len) {
+            // value too small
+            rc = CRYPTO_GETFIELD_ERROR_BUF_TOO_SMALL;
+            goto out;
+        }
+        rc = CRYPTO_GETFIELD_OK;
+
+        for (i = 1; /* break explicitly */; i++) {
+            if (snprintf(temp_field, sizeof(temp_field), "%s_%d", fieldname, i) >=
+                (int)sizeof(temp_field)) {
+                // If the fieldname is very long, we stop as soon as it begins to overflow the
+                // maximum field length. At this point we have in fact fully read out the original
+                // value because cryptfs_setfield would not allow fields with longer names to be
+                // written in the first place.
+                break;
+            }
+            if (!persist_get_key(temp_field, temp_value)) {
+                if (strlcat(value, temp_value, len) >= (unsigned)len) {
+                    // value too small.
+                    rc = CRYPTO_GETFIELD_ERROR_BUF_TOO_SMALL;
+                    goto out;
+                }
+            } else {
+                // Exhaust all entries.
+                break;
+            }
+        }
+    } else {
+        /* Sadness, it's not there.  Return the error */
+        rc = CRYPTO_GETFIELD_ERROR_NO_FIELD;
+    }
+
+out:
+    return rc;
+}
+
+/* Set the value of the specified field. */
+int cryptfs_setfield(const char* fieldname, const char* value) {
+    if (fscrypt_is_native()) {
+        SLOGE("Cannot set field when file encrypted");
+        return -1;
+    }
+
+    char encrypted_state[PROPERTY_VALUE_MAX];
+    /* 0 is success, negative values are error */
+    int rc = CRYPTO_SETFIELD_ERROR_OTHER;
+    int encrypted = 0;
+    unsigned int field_id;
+    char temp_field[PROPERTY_KEY_MAX];
+    unsigned int num_entries;
+    unsigned int max_keylen;
+
+    if (persist_data == NULL) {
+        load_persistent_data();
+        if (persist_data == NULL) {
+            SLOGE("Setfield error, cannot load persistent data");
+            goto out;
+        }
+    }
+
+    property_get("ro.crypto.state", encrypted_state, "");
+    if (!strcmp(encrypted_state, "encrypted")) {
+        encrypted = 1;
+    }
+
+    // Compute the number of entries required to store value, each entry can store up to
+    // (PROPERTY_VALUE_MAX - 1) chars
+    if (strlen(value) == 0) {
+        // Empty value also needs one entry to store.
+        num_entries = 1;
+    } else {
+        num_entries = (strlen(value) + (PROPERTY_VALUE_MAX - 1) - 1) / (PROPERTY_VALUE_MAX - 1);
+    }
+
+    max_keylen = strlen(fieldname);
+    if (num_entries > 1) {
+        // Need an extra "_%d" suffix.
+        max_keylen += 1 + log10(num_entries);
+    }
+    if (max_keylen > PROPERTY_KEY_MAX - 1) {
+        rc = CRYPTO_SETFIELD_ERROR_FIELD_TOO_LONG;
+        goto out;
+    }
+
+    // Make sure we have enough space to write the new value
+    if (persist_data->persist_valid_entries + num_entries - persist_count_keys(fieldname) >
+        persist_get_max_entries(encrypted)) {
+        rc = CRYPTO_SETFIELD_ERROR_VALUE_TOO_LONG;
+        goto out;
+    }
+
+    // Now that we know persist_data has enough space for value, let's delete the old field first
+    // to make up space.
+    persist_del_keys(fieldname, 0);
+
+    if (persist_set_key(fieldname, value, encrypted)) {
+        // fail to set key, should not happen as we have already checked the available space
+        SLOGE("persist_set_key() error during setfield()");
+        goto out;
+    }
+
+    for (field_id = 1; field_id < num_entries; field_id++) {
+        snprintf(temp_field, sizeof(temp_field), "%s_%u", fieldname, field_id);
+
+        if (persist_set_key(temp_field, value + field_id * (PROPERTY_VALUE_MAX - 1), encrypted)) {
+            // fail to set key, should not happen as we have already checked the available space.
+            SLOGE("persist_set_key() error during setfield()");
+            goto out;
+        }
+    }
+
+    /* If we are running encrypted, save the persistent data now */
+    if (encrypted) {
+        if (save_persistent_data()) {
+            SLOGE("Setfield error, cannot save persistent data");
+            goto out;
+        }
+    }
+
+    rc = CRYPTO_SETFIELD_OK;
+
+out:
+    return rc;
+}
+
+/* Checks userdata. Attempt to mount the volume if default-
+ * encrypted.
+ * On success trigger next init phase and return 0.
+ * Currently do not handle failure - see TODO below.
+ */
+int cryptfs_mount_default_encrypted(void) {
+    int crypt_type = cryptfs_get_password_type();
+    if (crypt_type < 0 || crypt_type > CRYPT_TYPE_MAX_TYPE) {
+        SLOGE("Bad crypt type - error");
+    } else if (crypt_type != CRYPT_TYPE_DEFAULT) {
+        SLOGD(
+            "Password is not default - "
+            "starting min framework to prompt");
+        property_set("vold.decrypt", "trigger_restart_min_framework");
+        return 0;
+    } else if (cryptfs_check_passwd(DEFAULT_PASSWORD) == 0) {
+        SLOGD("Password is default - restarting filesystem");
+        cryptfs_restart_internal(0);
+        return 0;
+    } else {
+        SLOGE("Encrypted, default crypt type but can't decrypt");
+    }
+
+    /** Corrupt. Allow us to boot into framework, which will detect bad
+        crypto when it calls do_crypto_complete, then do a factory reset
+     */
+    property_set("vold.decrypt", "trigger_restart_min_framework");
+    return 0;
+}
+
+/* Returns type of the password, default, pattern, pin or password.
+ */
+int cryptfs_get_password_type(void) {
+    if (fscrypt_is_native()) {
+        SLOGE("cryptfs_get_password_type not valid for file encryption");
+        return -1;
+    }
+
+    struct crypt_mnt_ftr crypt_ftr;
+
+    if (get_crypt_ftr_and_key(&crypt_ftr)) {
+        SLOGE("Error getting crypt footer and key\n");
+        return -1;
+    }
+
+    if (crypt_ftr.flags & CRYPT_INCONSISTENT_STATE) {
+        return -1;
+    }
+
+    return crypt_ftr.crypt_type;
+}
+
+const char* cryptfs_get_password() {
+    if (fscrypt_is_native()) {
+        SLOGE("cryptfs_get_password not valid for file encryption");
+        return 0;
+    }
+
+    struct timespec now;
+    clock_gettime(CLOCK_BOOTTIME, &now);
+    if (now.tv_sec < password_expiry_time) {
+        return password;
+    } else {
+        cryptfs_clear_password();
+        return 0;
+    }
+}
+
+void cryptfs_clear_password() {
+    if (password) {
+        size_t len = strlen(password);
+        memset(password, 0, len);
+        free(password);
+        password = 0;
+        password_expiry_time = 0;
+    }
+}
+
+int cryptfs_isConvertibleToFBE() {
+    auto entry = GetEntryForMountPoint(&fstab_default, DATA_MNT_POINT);
+    return entry && entry->fs_mgr_flags.force_fde_or_fbe;
+}