FsCrypt update: support fscrypt policies v1 and v2

This patchset introduces support decryption for Android 11.

In this update we deprecate ext4crypt. To specify the
policy version to use, use TW_USE_FSCRYPT_POLICY := 1 or
TW_USE_FSCRYPT_POLICY := 2. By default policy version will
be set to 2 if this variable is omitted.

Change-Id: I62a29c1bef36c259ec4b11259f71be613d20a112
diff --git a/crypto/fscrypt/Checkpoint.cpp b/crypto/fscrypt/Checkpoint.cpp
new file mode 100644
index 0000000..cdfc8aa
--- /dev/null
+++ b/crypto/fscrypt/Checkpoint.cpp
@@ -0,0 +1,743 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "Checkpoint"
+#include "Checkpoint.h"
+#include "VoldUtil.h"
+#include "VolumeManager.h"
+
+#include <fstream>
+#include <list>
+#include <memory>
+#include <string>
+#include <thread>
+#include <vector>
+
+#include <android-base/file.h>
+#include <android-base/logging.h>
+#include <android-base/parseint.h>
+#include <android-base/properties.h>
+#include <android-base/unique_fd.h>
+#include <android/hardware/boot/1.0/IBootControl.h>
+#include <cutils/android_reboot.h>
+#include <fcntl.h>
+#include <fs_mgr.h>
+#include <linux/fs.h>
+#include <mntent.h>
+#include <sys/mount.h>
+#include <sys/stat.h>
+#include <sys/statvfs.h>
+#include <unistd.h>
+
+using android::base::GetBoolProperty;
+using android::base::GetUintProperty;
+using android::base::SetProperty;
+using android::binder::Status;
+using android::fs_mgr::Fstab;
+using android::fs_mgr::ReadDefaultFstab;
+using android::fs_mgr::ReadFstabFromFile;
+using android::hardware::hidl_string;
+using android::hardware::boot::V1_0::BoolResult;
+using android::hardware::boot::V1_0::CommandResult;
+using android::hardware::boot::V1_0::IBootControl;
+using android::hardware::boot::V1_0::Slot;
+
+
+namespace {
+const std::string kMetadataCPFile = "/metadata/vold/checkpoint";
+
+android::binder::Status error(const std::string& msg) {
+    PLOG(ERROR) << msg;
+    return android::binder::Status::fromServiceSpecificError(errno, android::String8(msg.c_str()));
+}
+
+android::binder::Status error(int error, const std::string& msg) {
+    LOG(ERROR) << msg;
+    return android::binder::Status::fromServiceSpecificError(error, android::String8(msg.c_str()));
+}
+
+bool setBowState(std::string const& block_device, std::string const& state) {
+    std::string bow_device = fs_mgr_find_bow_device(block_device);
+    if (bow_device.empty()) return false;
+
+    if (!android::base::WriteStringToFile(state, bow_device + "/bow/state")) {
+        PLOG(ERROR) << "Failed to write to file " << bow_device + "/bow/state";
+        return false;
+    }
+
+    return true;
+}
+
+}  // namespace
+
+Status cp_supportsCheckpoint(bool& result) {
+    result = false;
+
+    for (const auto& entry : fstab_default) {
+        if (entry.fs_mgr_flags.checkpoint_blk || entry.fs_mgr_flags.checkpoint_fs) {
+            result = true;
+            return Status::ok();
+        }
+    }
+    return Status::ok();
+}
+
+Status cp_supportsBlockCheckpoint(bool& result) {
+    result = false;
+
+    for (const auto& entry : fstab_default) {
+        if (entry.fs_mgr_flags.checkpoint_blk) {
+            result = true;
+            return Status::ok();
+        }
+    }
+    return Status::ok();
+}
+
+Status cp_supportsFileCheckpoint(bool& result) {
+    result = false;
+
+    for (const auto& entry : fstab_default) {
+        if (entry.fs_mgr_flags.checkpoint_fs) {
+            result = true;
+            return Status::ok();
+        }
+    }
+    return Status::ok();
+}
+
+Status cp_startCheckpoint(int retry) {
+    bool result;
+    if (!cp_supportsCheckpoint(result).isOk() || !result)
+        return error(ENOTSUP, "Checkpoints not supported");
+
+    if (retry < -1) return error(EINVAL, "Retry count must be more than -1");
+    std::string content = std::to_string(retry + 1);
+    if (retry == -1) {
+        android::sp<IBootControl> module = IBootControl::getService();
+        if (module) {
+            std::string suffix;
+            auto cb = [&suffix](hidl_string s) { suffix = s; };
+            if (module->getSuffix(module->getCurrentSlot(), cb).isOk()) content += " " + suffix;
+        }
+    }
+    if (!android::base::WriteStringToFile(content, kMetadataCPFile))
+        return error("Failed to write checkpoint file");
+    return Status::ok();
+}
+
+namespace {
+
+volatile bool isCheckpointing = false;
+
+volatile bool needsCheckpointWasCalled = false;
+
+// Protects isCheckpointing, needsCheckpointWasCalled and code that makes decisions based on status
+// of isCheckpointing
+std::mutex isCheckpointingLock;
+}
+
+Status cp_commitChanges() {
+    std::lock_guard<std::mutex> lock(isCheckpointingLock);
+
+    if (!isCheckpointing) {
+        return Status::ok();
+    }
+    if (android::base::GetProperty("persist.vold.dont_commit_checkpoint", "0") == "1") {
+        LOG(WARNING)
+            << "NOT COMMITTING CHECKPOINT BECAUSE persist.vold.dont_commit_checkpoint IS 1";
+        return Status::ok();
+    }
+    android::sp<IBootControl> module = IBootControl::getService();
+    if (module) {
+        CommandResult cr;
+        module->markBootSuccessful([&cr](CommandResult result) { cr = result; });
+        if (!cr.success)
+            return error(EINVAL, "Error marking booted successfully: " + std::string(cr.errMsg));
+        LOG(INFO) << "Marked slot as booted successfully.";
+        // Clears the warm reset flag for next reboot.
+        if (!SetProperty("ota.warm_reset", "0")) {
+            LOG(WARNING) << "Failed to reset the warm reset flag";
+        }
+    }
+    // Must take action for list of mounted checkpointed things here
+    // To do this, we walk the list of mounted file systems.
+    // But we also need to get the matching fstab entries to see
+    // the original flags
+    std::string err_str;
+
+    Fstab mounts;
+    if (!ReadFstabFromFile("/proc/mounts", &mounts)) {
+        return error(EINVAL, "Failed to get /proc/mounts");
+    }
+
+    // Walk mounted file systems
+    for (const auto& mount_rec : mounts) {
+        const auto fstab_rec = GetEntryForMountPoint(&fstab_default, mount_rec.mount_point);
+        if (!fstab_rec) continue;
+
+        if (fstab_rec->fs_mgr_flags.checkpoint_fs) {
+            if (fstab_rec->fs_type == "f2fs") {
+                std::string options = mount_rec.fs_options + ",checkpoint=enable";
+                if (mount(mount_rec.blk_device.c_str(), mount_rec.mount_point.c_str(), "none",
+                          MS_REMOUNT | fstab_rec->flags, options.c_str())) {
+                    return error(EINVAL, "Failed to remount");
+                }
+            }
+        } else if (fstab_rec->fs_mgr_flags.checkpoint_blk) {
+            if (!setBowState(mount_rec.blk_device, "2"))
+                return error(EINVAL, "Failed to set bow state");
+        }
+    }
+    SetProperty("vold.checkpoint_committed", "1");
+    LOG(INFO) << "Checkpoint has been committed.";
+    isCheckpointing = false;
+    if (!android::base::RemoveFileIfExists(kMetadataCPFile, &err_str))
+        return error(err_str.c_str());
+
+    return Status::ok();
+}
+
+namespace {
+void abort_metadata_file() {
+    std::string oldContent, newContent;
+    int retry = 0;
+    struct stat st;
+    int result = stat(kMetadataCPFile.c_str(), &st);
+
+    // If the file doesn't exist, we aren't managing a checkpoint retry counter
+    if (result != 0) return;
+    if (!android::base::ReadFileToString(kMetadataCPFile, &oldContent)) {
+        PLOG(ERROR) << "Failed to read checkpoint file";
+        return;
+    }
+    std::string retryContent = oldContent.substr(0, oldContent.find_first_of(" "));
+
+    if (!android::base::ParseInt(retryContent, &retry)) {
+        PLOG(ERROR) << "Could not parse retry count";
+        return;
+    }
+    if (retry > 0) {
+        newContent = "0";
+        if (!android::base::WriteStringToFile(newContent, kMetadataCPFile))
+            PLOG(ERROR) << "Could not write checkpoint file";
+    }
+}
+}  // namespace
+
+void cp_abortChanges(const std::string& message, bool retry) {
+    if (!cp_needsCheckpoint()) return;
+    if (!retry) abort_metadata_file();
+    android_reboot(ANDROID_RB_RESTART2, 0, message.c_str());
+}
+
+bool cp_needsRollback() {
+    std::string content;
+    bool ret;
+
+    ret = android::base::ReadFileToString(kMetadataCPFile, &content);
+    if (ret) {
+        if (content == "0") return true;
+        if (content.substr(0, 3) == "-1 ") {
+            std::string oldSuffix = content.substr(3);
+            android::sp<IBootControl> module = IBootControl::getService();
+            std::string newSuffix;
+
+            if (module) {
+                auto cb = [&newSuffix](hidl_string s) { newSuffix = s; };
+                module->getSuffix(module->getCurrentSlot(), cb);
+                if (oldSuffix == newSuffix) return true;
+            }
+        }
+    }
+    return false;
+}
+
+bool cp_needsCheckpoint() {
+    std::lock_guard<std::mutex> lock(isCheckpointingLock);
+
+    // Make sure we only return true during boot. See b/138952436 for discussion
+    if (needsCheckpointWasCalled) return isCheckpointing;
+    needsCheckpointWasCalled = true;
+
+    bool ret;
+    std::string content;
+    android::sp<IBootControl> module = IBootControl::getService();
+
+    if (isCheckpointing) return isCheckpointing;
+
+    if (module && module->isSlotMarkedSuccessful(module->getCurrentSlot()) == BoolResult::FALSE) {
+        isCheckpointing = true;
+        return true;
+    }
+    ret = android::base::ReadFileToString(kMetadataCPFile, &content);
+    if (ret) {
+        ret = content != "0";
+        isCheckpointing = ret;
+        return ret;
+    }
+    return false;
+}
+
+bool cp_isCheckpointing() {
+    return isCheckpointing;
+}
+
+namespace {
+const std::string kSleepTimeProp = "ro.sys.cp_msleeptime";
+const uint32_t msleeptime_default = 1000;  // 1 s
+const uint32_t max_msleeptime = 3600000;   // 1 h
+
+const std::string kMinFreeBytesProp = "ro.sys.cp_min_free_bytes";
+const uint64_t min_free_bytes_default = 100 * (1 << 20);  // 100 MiB
+
+const std::string kCommitOnFullProp = "ro.sys.cp_commit_on_full";
+const bool commit_on_full_default = true;
+
+static void cp_healthDaemon(std::string mnt_pnt, std::string blk_device, bool is_fs_cp) {
+    struct statvfs data;
+    uint32_t msleeptime = GetUintProperty(kSleepTimeProp, msleeptime_default, max_msleeptime);
+    uint64_t min_free_bytes =
+        GetUintProperty(kMinFreeBytesProp, min_free_bytes_default, (uint64_t)-1);
+    bool commit_on_full = GetBoolProperty(kCommitOnFullProp, commit_on_full_default);
+
+    struct timespec req;
+    req.tv_sec = msleeptime / 1000;
+    msleeptime %= 1000;
+    req.tv_nsec = msleeptime * 1000000;
+    while (isCheckpointing) {
+        uint64_t free_bytes = 0;
+        if (is_fs_cp) {
+            statvfs(mnt_pnt.c_str(), &data);
+            free_bytes = ((uint64_t) data.f_bavail) * data.f_frsize;
+        } else {
+            std::string bow_device = fs_mgr_find_bow_device(blk_device);
+            if (!bow_device.empty()) {
+                std::string content;
+                if (android::base::ReadFileToString(bow_device + "/bow/free", &content)) {
+                    free_bytes = std::strtoull(content.c_str(), NULL, 10);
+                }
+            }
+        }
+        if (free_bytes < min_free_bytes) {
+            if (commit_on_full) {
+                LOG(INFO) << "Low space for checkpointing. Commiting changes";
+                cp_commitChanges();
+                break;
+            } else {
+                LOG(INFO) << "Low space for checkpointing. Rebooting";
+                cp_abortChanges("checkpoint,low_space", false);
+                break;
+            }
+        }
+        nanosleep(&req, NULL);
+    }
+}
+
+}  // namespace
+
+Status cp_prepareCheckpoint() {
+    // Log to notify CTS - see b/137924328 for context
+    LOG(INFO) << "cp_prepareCheckpoint called";
+    std::lock_guard<std::mutex> lock(isCheckpointingLock);
+    if (!isCheckpointing) {
+        return Status::ok();
+    }
+
+    Fstab mounts;
+    if (!ReadFstabFromFile("/proc/mounts", &mounts)) {
+        return error(EINVAL, "Failed to get /proc/mounts");
+    }
+
+    for (const auto& mount_rec : mounts) {
+        const auto fstab_rec = GetEntryForMountPoint(&fstab_default, mount_rec.mount_point);
+        if (!fstab_rec) continue;
+
+        if (fstab_rec->fs_mgr_flags.checkpoint_blk) {
+            android::base::unique_fd fd(
+                TEMP_FAILURE_RETRY(open(mount_rec.mount_point.c_str(), O_RDONLY | O_CLOEXEC)));
+            if (fd == -1) {
+                PLOG(ERROR) << "Failed to open mount point" << mount_rec.mount_point;
+                continue;
+            }
+
+            struct fstrim_range range = {};
+            range.len = ULLONG_MAX;
+            nsecs_t start = systemTime(SYSTEM_TIME_BOOTTIME);
+            if (ioctl(fd, FITRIM, &range)) {
+                PLOG(ERROR) << "Failed to trim " << mount_rec.mount_point;
+                continue;
+            }
+            nsecs_t time = systemTime(SYSTEM_TIME_BOOTTIME) - start;
+            LOG(INFO) << "Trimmed " << range.len << " bytes on " << mount_rec.mount_point << " in "
+                      << nanoseconds_to_milliseconds(time) << "ms for checkpoint";
+
+            setBowState(mount_rec.blk_device, "1");
+        }
+        if (fstab_rec->fs_mgr_flags.checkpoint_blk || fstab_rec->fs_mgr_flags.checkpoint_fs) {
+            std::thread(cp_healthDaemon, std::string(mount_rec.mount_point),
+                        std::string(mount_rec.blk_device),
+                        fstab_rec->fs_mgr_flags.checkpoint_fs == 1)
+                .detach();
+        }
+    }
+    return Status::ok();
+}
+
+namespace {
+const int kSectorSize = 512;
+
+typedef uint64_t sector_t;
+
+struct log_entry {
+    sector_t source;  // in sectors of size kSectorSize
+    sector_t dest;    // in sectors of size kSectorSize
+    uint32_t size;    // in bytes
+    uint32_t checksum;
+} __attribute__((packed));
+
+struct log_sector_v1_0 {
+    uint32_t magic;
+    uint16_t header_version;
+    uint16_t header_size;
+    uint32_t block_size;
+    uint32_t count;
+    uint32_t sequence;
+    uint64_t sector0;
+} __attribute__((packed));
+
+// MAGIC is BOW in ascii
+const int kMagic = 0x00574f42;
+// Partially restored MAGIC is WOB in ascii
+const int kPartialRestoreMagic = 0x00424f57;
+
+void crc32(const void* data, size_t n_bytes, uint32_t* crc) {
+    static uint32_t table[0x100] = {
+        0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535,
+        0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD,
+        0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D,
+        0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC,
+        0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4,
+        0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C,
+        0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x26D930AC,
+        0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
+        0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB,
+        0xB6662D3D,
+
+        0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5,
+        0xE8B8D433, 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D,
+        0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED,
+        0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C,
+        0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, 0x4DB26158, 0x3AB551CE, 0xA3BC0074,
+        0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0x346ED9FC,
+        0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C,
+        0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
+        0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B,
+        0xC0BA6CAD,
+
+        0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615,
+        0x73DC1683, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D,
+        0x0A00AE27, 0x7D079EB1, 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D,
+        0x806567CB, 0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC,
+        0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4,
+        0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, 0xD80D2BDA, 0xAF0A1B4C,
+        0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79, 0xCB61B38C,
+        0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F,
+        0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B,
+        0x5BDEAE1D,
+
+        0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785,
+        0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D,
+        0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD,
+        0xF6B9265B, 0x6FB077E1, 0x18B74777, 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C,
+        0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xD70DD2EE, 0x4E048354,
+        0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC,
+        0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, 0xBDBDF21C,
+        0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF,
+        0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B,
+        0x2D02EF8D};
+
+    for (size_t i = 0; i < n_bytes; ++i) {
+        *crc ^= ((uint8_t*)data)[i];
+        *crc = table[(uint8_t)*crc] ^ *crc >> 8;
+    }
+}
+
+// A map of relocations.
+// The map must be initialized so that relocations[0] = 0
+// During restore, we replay the log records in reverse, copying from dest to
+// source
+// To validate, we must be able to read the 'dest' sectors as though they had
+// been copied but without actually copying. This map represents how the sectors
+// would have been moved. To read a sector s, find the index <= s and read
+// relocations[index] + s - index
+typedef std::map<sector_t, sector_t> Relocations;
+
+void relocate(Relocations& relocations, sector_t dest, sector_t source, int count) {
+    // Find first one we're equal to or greater than
+    auto s = --relocations.upper_bound(source);
+
+    // Take slice
+    Relocations slice;
+    slice[dest] = source - s->first + s->second;
+    ++s;
+
+    // Add rest of elements
+    for (; s != relocations.end() && s->first < source + count; ++s)
+        slice[dest - source + s->first] = s->second;
+
+    // Split range at end of dest
+    auto dest_end = --relocations.upper_bound(dest + count);
+    relocations[dest + count] = dest + count - dest_end->first + dest_end->second;
+
+    // Remove all elements in [dest, dest + count)
+    relocations.erase(relocations.lower_bound(dest), relocations.lower_bound(dest + count));
+
+    // Add new elements
+    relocations.insert(slice.begin(), slice.end());
+}
+
+// A map of sectors that have been written to.
+// The final entry must always be False.
+// When we restart the restore after an interruption, we must take care that
+// when we copy from dest to source, that the block we copy to was not
+// previously copied from.
+// i e. A->B C->A; If we replay this sequence, we end up copying C->B
+// We must save our partial result whenever we finish a page, or when we copy
+// to a location that was copied from earlier (our source is an earlier dest)
+typedef std::map<sector_t, bool> Used_Sectors;
+
+bool checkCollision(Used_Sectors& used_sectors, sector_t start, sector_t end) {
+    auto second_overlap = used_sectors.upper_bound(start);
+    auto first_overlap = --second_overlap;
+
+    if (first_overlap->second) {
+        return true;
+    } else if (second_overlap != used_sectors.end() && second_overlap->first < end) {
+        return true;
+    }
+    return false;
+}
+
+void markUsed(Used_Sectors& used_sectors, sector_t start, sector_t end) {
+    auto start_pos = used_sectors.insert_or_assign(start, true).first;
+    auto end_pos = used_sectors.insert_or_assign(end, false).first;
+
+    if (start_pos == used_sectors.begin() || !std::prev(start_pos)->second) {
+        start_pos++;
+    }
+    if (std::next(end_pos) != used_sectors.end() && !std::next(end_pos)->second) {
+        end_pos++;
+    }
+    if (start_pos->first < end_pos->first) {
+        used_sectors.erase(start_pos, end_pos);
+    }
+}
+
+// Restores the given log_entry's data from dest -> source
+// If that entry is a log sector, set the magic to kPartialRestoreMagic and flush.
+void restoreSector(int device_fd, Used_Sectors& used_sectors, std::vector<char>& ls_buffer,
+                   log_entry* le, std::vector<char>& buffer) {
+    log_sector_v1_0& ls = *reinterpret_cast<log_sector_v1_0*>(&ls_buffer[0]);
+    uint32_t index = le - ((log_entry*)&ls_buffer[ls.header_size]);
+    int count = (le->size - 1) / kSectorSize + 1;
+
+    if (checkCollision(used_sectors, le->source, le->source + count)) {
+        fsync(device_fd);
+        lseek64(device_fd, 0, SEEK_SET);
+        ls.count = index + 1;
+        ls.magic = kPartialRestoreMagic;
+        write(device_fd, &ls_buffer[0], ls.block_size);
+        fsync(device_fd);
+        used_sectors.clear();
+        used_sectors[0] = false;
+    }
+
+    markUsed(used_sectors, le->dest, le->dest + count);
+
+    if (index == 0 && ls.sequence != 0) {
+        log_sector_v1_0* next = reinterpret_cast<log_sector_v1_0*>(&buffer[0]);
+        if (next->magic == kMagic) {
+            next->magic = kPartialRestoreMagic;
+        }
+    }
+
+    lseek64(device_fd, le->source * kSectorSize, SEEK_SET);
+    write(device_fd, &buffer[0], le->size);
+
+    if (index == 0) {
+        fsync(device_fd);
+    }
+}
+
+// Read from the device
+// If we are validating, the read occurs as though the relocations had happened
+std::vector<char> relocatedRead(int device_fd, Relocations const& relocations, bool validating,
+                                sector_t sector, uint32_t size, uint32_t block_size) {
+    if (!validating) {
+        std::vector<char> buffer(size);
+        lseek64(device_fd, sector * kSectorSize, SEEK_SET);
+        read(device_fd, &buffer[0], size);
+        return buffer;
+    }
+
+    std::vector<char> buffer(size);
+    for (uint32_t i = 0; i < size; i += block_size, sector += block_size / kSectorSize) {
+        auto relocation = --relocations.upper_bound(sector);
+        lseek64(device_fd, (sector + relocation->second - relocation->first) * kSectorSize,
+                SEEK_SET);
+        read(device_fd, &buffer[i], block_size);
+    }
+
+    return buffer;
+}
+
+}  // namespace
+
+Status cp_restoreCheckpoint(const std::string& blockDevice, int restore_limit) {
+    bool validating = true;
+    std::string action = "Validating";
+    int restore_count = 0;
+
+    for (;;) {
+        Relocations relocations;
+        relocations[0] = 0;
+        Status status = Status::ok();
+
+        LOG(INFO) << action << " checkpoint on " << blockDevice;
+        android::base::unique_fd device_fd(open(blockDevice.c_str(), O_RDWR | O_CLOEXEC));
+        if (device_fd < 0) return error("Cannot open " + blockDevice);
+
+        log_sector_v1_0 original_ls;
+        read(device_fd, reinterpret_cast<char*>(&original_ls), sizeof(original_ls));
+        if (original_ls.magic == kPartialRestoreMagic) {
+            validating = false;
+            action = "Restoring";
+        } else if (original_ls.magic != kMagic) {
+            return error(EINVAL, "No magic");
+        }
+
+        LOG(INFO) << action << " " << original_ls.sequence << " log sectors";
+
+        for (int sequence = original_ls.sequence; sequence >= 0 && status.isOk(); sequence--) {
+            auto ls_buffer = relocatedRead(device_fd, relocations, validating, 0,
+                                           original_ls.block_size, original_ls.block_size);
+            log_sector_v1_0& ls = *reinterpret_cast<log_sector_v1_0*>(&ls_buffer[0]);
+
+            Used_Sectors used_sectors;
+            used_sectors[0] = false;
+
+            if (ls.magic != kMagic && (ls.magic != kPartialRestoreMagic || validating)) {
+                status = error(EINVAL, "No magic");
+                break;
+            }
+
+            if (ls.block_size != original_ls.block_size) {
+                status = error(EINVAL, "Block size mismatch");
+                break;
+            }
+
+            if ((int)ls.sequence != sequence) {
+                status = error(EINVAL, "Expecting log sector " + std::to_string(sequence) +
+                                           " but got " + std::to_string(ls.sequence));
+                break;
+            }
+
+            LOG(INFO) << action << " from log sector " << ls.sequence;
+            for (log_entry* le =
+                     reinterpret_cast<log_entry*>(&ls_buffer[ls.header_size]) + ls.count - 1;
+                 le >= reinterpret_cast<log_entry*>(&ls_buffer[ls.header_size]); --le) {
+                // This is very noisy - limit to DEBUG only
+                LOG(VERBOSE) << action << " " << le->size << " bytes from sector " << le->dest
+                             << " to " << le->source << " with checksum " << std::hex
+                             << le->checksum;
+
+                auto buffer = relocatedRead(device_fd, relocations, validating, le->dest, le->size,
+                                            ls.block_size);
+                uint32_t checksum = le->source / (ls.block_size / kSectorSize);
+                for (size_t i = 0; i < le->size; i += ls.block_size) {
+                    crc32(&buffer[i], ls.block_size, &checksum);
+                }
+
+                if (le->checksum && checksum != le->checksum) {
+                    status = error(EINVAL, "Checksums don't match");
+                    break;
+                }
+
+                if (validating) {
+                    relocate(relocations, le->source, le->dest, (le->size - 1) / kSectorSize + 1);
+                } else {
+                    restoreSector(device_fd, used_sectors, ls_buffer, le, buffer);
+                    restore_count++;
+                    if (restore_limit && restore_count >= restore_limit) {
+                        status = error(EAGAIN, "Hit the test limit");
+                        break;
+                    }
+                }
+            }
+        }
+
+        if (!status.isOk()) {
+            if (!validating) {
+                LOG(ERROR) << "Checkpoint restore failed even though checkpoint validation passed";
+                return status;
+            }
+
+            LOG(WARNING) << "Checkpoint validation failed - attempting to roll forward";
+            auto buffer = relocatedRead(device_fd, relocations, false, original_ls.sector0,
+                                        original_ls.block_size, original_ls.block_size);
+            lseek64(device_fd, 0, SEEK_SET);
+            write(device_fd, &buffer[0], original_ls.block_size);
+            return Status::ok();
+        }
+
+        if (!validating) break;
+
+        validating = false;
+        action = "Restoring";
+    }
+
+    return Status::ok();
+}
+
+Status cp_markBootAttempt() {
+    std::string oldContent, newContent;
+    int retry = 0;
+    struct stat st;
+    int result = stat(kMetadataCPFile.c_str(), &st);
+
+    // If the file doesn't exist, we aren't managing a checkpoint retry counter
+    if (result != 0) return Status::ok();
+    if (!android::base::ReadFileToString(kMetadataCPFile, &oldContent))
+        return error("Failed to read checkpoint file");
+    std::string retryContent = oldContent.substr(0, oldContent.find_first_of(" "));
+
+    if (!android::base::ParseInt(retryContent, &retry))
+        return error(EINVAL, "Could not parse retry count");
+    if (retry > 0) {
+        retry--;
+
+        newContent = std::to_string(retry);
+        if (!android::base::WriteStringToFile(newContent, kMetadataCPFile))
+            return error("Could not write checkpoint file");
+    }
+    return Status::ok();
+}
+
+void cp_resetCheckpoint() {
+    std::lock_guard<std::mutex> lock(isCheckpointingLock);
+    needsCheckpointWasCalled = false;
+}