Merge "Refractor the code for imgdiff" am: a2e7a07031
am: 68571e27d8
Change-Id: Ia09afb0b5c510171196e9b072506d973019dc60d
diff --git a/applypatch/Android.mk b/applypatch/Android.mk
index 47ddad6..8be5c36 100644
--- a/applypatch/Android.mk
+++ b/applypatch/Android.mk
@@ -136,6 +136,9 @@
libbsdiff \
libdivsufsort \
libdivsufsort64 \
+ libziparchive \
+ libutils \
+ liblog \
libbase \
libz
diff --git a/applypatch/imgdiff.cpp b/applypatch/imgdiff.cpp
index 2f0e165..fba74e8 100644
--- a/applypatch/imgdiff.cpp
+++ b/applypatch/imgdiff.cpp
@@ -132,502 +132,611 @@
#include <sys/types.h>
#include <unistd.h>
+#include <algorithm>
+#include <string>
+#include <vector>
+
#include <android-base/file.h>
+#include <android-base/logging.h>
+#include <android-base/memory.h>
#include <android-base/unique_fd.h>
+#include <ziparchive/zip_archive.h>
#include <bsdiff.h>
#include <zlib.h>
#include "utils.h"
-typedef struct {
- int type; // CHUNK_NORMAL, CHUNK_DEFLATE
- size_t start; // offset of chunk in original image file
+using android::base::get_unaligned;
- size_t len;
- unsigned char* data; // data to be patched (uncompressed, for deflate chunks)
+static constexpr auto BUFFER_SIZE = 0x8000;
- size_t source_start;
- size_t source_len;
+class ImageChunk {
+ public:
+ static constexpr auto WINDOWBITS = -15; // 32kb window; negative to indicate a raw stream.
+ static constexpr auto MEMLEVEL = 8; // the default value.
+ static constexpr auto METHOD = Z_DEFLATED;
+ static constexpr auto STRATEGY = Z_DEFAULT_STRATEGY;
+
+ ImageChunk(int type, size_t start, const std::vector<uint8_t>* file_content, size_t raw_data_len)
+ : type_(type),
+ start_(start),
+ input_file_ptr_(file_content),
+ raw_data_len_(raw_data_len),
+ entry_name_(""),
+ compress_level_(6),
+ source_start_(0),
+ source_len_(0),
+ source_uncompressed_len_(0) {}
+
+ int GetType() const {
+ return type_;
+ }
+ size_t GetRawDataLength() const {
+ return raw_data_len_;
+ }
+ const std::string& GetEntryName() const {
+ return entry_name_;
+ }
+
+ // CHUNK_DEFLATE will return the uncompressed data for diff, while other types will simply return
+ // the raw data.
+ const uint8_t * DataForPatch() const;
+ size_t DataLengthForPatch() const;
+
+ void Dump() const {
+ printf("type %d start %zu len %zu\n", type_, start_, DataLengthForPatch());
+ }
+
+ void SetSourceInfo(const ImageChunk& other);
+ void SetEntryName(std::string entryname);
+ void SetUncompressedData(std::vector<uint8_t> data);
+ bool SetBonusData(const std::vector<uint8_t>& bonus_data);
+
+ bool operator==(const ImageChunk& other) const;
+ bool operator!=(const ImageChunk& other) const {
+ return !(*this == other);
+ }
+
+ size_t GetHeaderSize(size_t patch_size) const;
+ size_t WriteHeaderToFile(FILE* f, const std::vector<uint8_t> patch, size_t offset);
+
+ /*
+ * Cause a gzip chunk to be treated as a normal chunk (ie, as a blob
+ * of uninterpreted data). The resulting patch will likely be about
+ * as big as the target file, but it lets us handle the case of images
+ * where some gzip chunks are reconstructible but others aren't (by
+ * treating the ones that aren't as normal chunks).
+ */
+ void ChangeDeflateChunkToNormal();
+ bool ChangeChunkToRaw(size_t patch_size);
+
+ /*
+ * Verify that we can reproduce exactly the same compressed data that
+ * we started with. Sets the level, method, windowBits, memLevel, and
+ * strategy fields in the chunk to the encoding parameters needed to
+ * produce the right output.
+ */
+ bool ReconstructDeflateChunk();
+ bool IsAdjacentNormal(const ImageChunk& other) const;
+ void MergeAdjacentNormal(const ImageChunk& other);
+
+ private:
+ int type_; // CHUNK_NORMAL, CHUNK_DEFLATE, CHUNK_RAW
+ size_t start_; // offset of chunk in the original input file
+ const std::vector<uint8_t>* input_file_ptr_; // pointer to the full content of original input file
+ size_t raw_data_len_;
// --- for CHUNK_DEFLATE chunks only: ---
-
- // original (compressed) deflate data
- size_t deflate_len;
- unsigned char* deflate_data;
-
- char* filename; // used for zip entries
+ std::vector<uint8_t> uncompressed_data_;
+ std::string entry_name_; // used for zip entries
// deflate encoder parameters
- int level, method, windowBits, memLevel, strategy;
+ int compress_level_;
- size_t source_uncompressed_len;
-} ImageChunk;
+ size_t source_start_;
+ size_t source_len_;
+ size_t source_uncompressed_len_;
-typedef struct {
- int data_offset;
- int deflate_len;
- int uncomp_len;
- char* filename;
-} ZipFileEntry;
+ const uint8_t* GetRawData() const;
+ bool TryReconstruction(int level);
+};
-static int fileentry_compare(const void* a, const void* b) {
- int ao = ((ZipFileEntry*)a)->data_offset;
- int bo = ((ZipFileEntry*)b)->data_offset;
- if (ao < bo) {
- return -1;
- } else if (ao > bo) {
- return 1;
- } else {
- return 0;
+const uint8_t* ImageChunk::GetRawData() const {
+ CHECK_LE(start_ + raw_data_len_, input_file_ptr_->size());
+ return input_file_ptr_->data() + start_;
+}
+
+const uint8_t * ImageChunk::DataForPatch() const {
+ if (type_ == CHUNK_DEFLATE) {
+ return uncompressed_data_.data();
+ }
+ return GetRawData();
+}
+
+size_t ImageChunk::DataLengthForPatch() const {
+ if (type_ == CHUNK_DEFLATE) {
+ return uncompressed_data_.size();
+ }
+ return raw_data_len_;
+}
+
+bool ImageChunk::operator==(const ImageChunk& other) const {
+ if (type_ != other.type_) {
+ return false;
+ }
+ return (raw_data_len_ == other.raw_data_len_ &&
+ memcmp(GetRawData(), other.GetRawData(), raw_data_len_) == 0);
+}
+
+void ImageChunk::SetSourceInfo(const ImageChunk& src) {
+ source_start_ = src.start_;
+ if (type_ == CHUNK_NORMAL) {
+ source_len_ = src.raw_data_len_;
+ } else if (type_ == CHUNK_DEFLATE) {
+ source_len_ = src.raw_data_len_;
+ source_uncompressed_len_ = src.uncompressed_data_.size();
}
}
-unsigned char* ReadZip(const char* filename,
- int* num_chunks, ImageChunk** chunks,
- int include_pseudo_chunk) {
- struct stat st;
- if (stat(filename, &st) != 0) {
- printf("failed to stat \"%s\": %s\n", filename, strerror(errno));
- return NULL;
+void ImageChunk::SetEntryName(std::string entryname) {
+ entry_name_ = entryname;
+}
+
+void ImageChunk::SetUncompressedData(std::vector<uint8_t> data) {
+ uncompressed_data_ = data;
+}
+
+bool ImageChunk::SetBonusData(const std::vector<uint8_t>& bonus_data) {
+ if (type_ != CHUNK_DEFLATE) {
+ return false;
+ }
+ uncompressed_data_.insert(uncompressed_data_.end(), bonus_data.begin(), bonus_data.end());
+ return true;
+}
+
+// Convert CHUNK_NORMAL & CHUNK_DEFLATE to CHUNK_RAW if the terget size is
+// smaller. Also take the header size into account during size comparison.
+bool ImageChunk::ChangeChunkToRaw(size_t patch_size) {
+ if (type_ == CHUNK_RAW) {
+ return true;
+ } else if (type_ == CHUNK_NORMAL && (raw_data_len_ <= 160 || raw_data_len_ < patch_size)) {
+ type_ = CHUNK_RAW;
+ return true;
+ }
+ return false;
+}
+
+void ImageChunk::ChangeDeflateChunkToNormal() {
+ if (type_ != CHUNK_DEFLATE) return;
+ type_ = CHUNK_NORMAL;
+ uncompressed_data_.clear();
+}
+
+// Header size:
+// header_type 4 bytes
+// CHUNK_NORMAL 8*3 = 24 bytes
+// CHUNK_DEFLATE 8*5 + 4*5 = 60 bytes
+// CHUNK_RAW 4 bytes
+size_t ImageChunk::GetHeaderSize(size_t patch_size) const {
+ switch (type_) {
+ case CHUNK_NORMAL:
+ return 4 + 8 * 3;
+ case CHUNK_DEFLATE:
+ return 4 + 8 * 5 + 4 * 5;
+ case CHUNK_RAW:
+ return 4 + 4 + patch_size;
+ default:
+ printf("unexpected chunk type: %d\n", type_); // should not reach here.
+ CHECK(false);
+ return 0;
+ }
+}
+
+size_t ImageChunk::WriteHeaderToFile(FILE* f, const std::vector<uint8_t> patch, size_t offset) {
+ Write4(type_, f);
+ switch (type_) {
+ case CHUNK_NORMAL:
+ printf("normal (%10zu, %10zu) %10zu\n", start_, raw_data_len_, patch.size());
+ Write8(source_start_, f);
+ Write8(source_len_, f);
+ Write8(offset, f);
+ return offset + patch.size();
+ case CHUNK_DEFLATE:
+ printf("deflate (%10zu, %10zu) %10zu %s\n", start_, raw_data_len_, patch.size(),
+ entry_name_.c_str());
+ Write8(source_start_, f);
+ Write8(source_len_, f);
+ Write8(offset, f);
+ Write8(source_uncompressed_len_, f);
+ Write8(uncompressed_data_.size(), f);
+ Write4(compress_level_, f);
+ Write4(METHOD, f);
+ Write4(WINDOWBITS, f);
+ Write4(MEMLEVEL, f);
+ Write4(STRATEGY, f);
+ return offset + patch.size();
+ case CHUNK_RAW:
+ printf("raw (%10zu, %10zu)\n", start_, raw_data_len_);
+ Write4(patch.size(), f);
+ fwrite(patch.data(), 1, patch.size(), f);
+ return offset;
+ default:
+ printf("unexpected chunk type: %d\n", type_);
+ CHECK(false);
+ return offset;
+ }
+}
+
+bool ImageChunk::IsAdjacentNormal(const ImageChunk& other) const {
+ if (type_ != CHUNK_NORMAL || other.type_ != CHUNK_NORMAL) {
+ return false;
+ }
+ return (other.start_ == start_ + raw_data_len_);
+}
+
+void ImageChunk::MergeAdjacentNormal(const ImageChunk& other) {
+ CHECK(IsAdjacentNormal(other));
+ raw_data_len_ = raw_data_len_ + other.raw_data_len_;
+}
+
+bool ImageChunk::ReconstructDeflateChunk() {
+ if (type_ != CHUNK_DEFLATE) {
+ printf("attempt to reconstruct non-deflate chunk\n");
+ return false;
}
- size_t sz = static_cast<size_t>(st.st_size);
- unsigned char* img = static_cast<unsigned char*>(malloc(sz));
- FILE* f = fopen(filename, "rb");
- if (fread(img, 1, sz, f) != sz) {
- printf("failed to read \"%s\" %s\n", filename, strerror(errno));
- fclose(f);
- free(img);
- return NULL;
- }
- fclose(f);
-
- // look for the end-of-central-directory record.
-
- int i;
- for (i = st.st_size-20; i >= 0 && i > st.st_size - 65600; --i) {
- if (img[i] == 0x50 && img[i+1] == 0x4b &&
- img[i+2] == 0x05 && img[i+3] == 0x06) {
- break;
+ // We only check two combinations of encoder parameters: level 6
+ // (the default) and level 9 (the maximum).
+ for (int level = 6; level <= 9; level += 3) {
+ if (TryReconstruction(level)) {
+ compress_level_ = level;
+ return true;
}
}
- // double-check: this archive consists of a single "disk"
- if (!(img[i+4] == 0 && img[i+5] == 0 && img[i+6] == 0 && img[i+7] == 0)) {
- printf("can't process multi-disk archive\n");
- return NULL;
- }
- int cdcount = Read2(img+i+8);
- int cdoffset = Read4(img+i+16);
-
- ZipFileEntry* temp_entries = static_cast<ZipFileEntry*>(malloc(
- cdcount * sizeof(ZipFileEntry)));
- int entrycount = 0;
-
- unsigned char* cd = img+cdoffset;
- for (i = 0; i < cdcount; ++i) {
- if (!(cd[0] == 0x50 && cd[1] == 0x4b && cd[2] == 0x01 && cd[3] == 0x02)) {
- printf("bad central directory entry %d\n", i);
- free(temp_entries);
- return NULL;
- }
-
- int clen = Read4(cd+20); // compressed len
- int ulen = Read4(cd+24); // uncompressed len
- int nlen = Read2(cd+28); // filename len
- int xlen = Read2(cd+30); // extra field len
- int mlen = Read2(cd+32); // file comment len
- int hoffset = Read4(cd+42); // local header offset
-
- char* filename = static_cast<char*>(malloc(nlen+1));
- memcpy(filename, cd+46, nlen);
- filename[nlen] = '\0';
-
- int method = Read2(cd+10);
-
- cd += 46 + nlen + xlen + mlen;
-
- if (method != 8) { // 8 == deflate
- free(filename);
- continue;
- }
-
- unsigned char* lh = img + hoffset;
-
- if (!(lh[0] == 0x50 && lh[1] == 0x4b && lh[2] == 0x03 && lh[3] == 0x04)) {
- printf("bad local file header entry %d\n", i);
- return NULL;
- }
-
- if (Read2(lh+26) != nlen || memcmp(lh+30, filename, nlen) != 0) {
- printf("central dir filename doesn't match local header\n");
- return NULL;
- }
-
- xlen = Read2(lh+28); // extra field len; might be different from CD entry?
-
- temp_entries[entrycount].data_offset = hoffset+30+nlen+xlen;
- temp_entries[entrycount].deflate_len = clen;
- temp_entries[entrycount].uncomp_len = ulen;
- temp_entries[entrycount].filename = filename;
- ++entrycount;
- }
-
- qsort(temp_entries, entrycount, sizeof(ZipFileEntry), fileentry_compare);
-
-#if 0
- printf("found %d deflated entries\n", entrycount);
- for (i = 0; i < entrycount; ++i) {
- printf("off %10d len %10d unlen %10d %p %s\n",
- temp_entries[i].data_offset,
- temp_entries[i].deflate_len,
- temp_entries[i].uncomp_len,
- temp_entries[i].filename,
- temp_entries[i].filename);
- }
-#endif
-
- *num_chunks = 0;
- *chunks = static_cast<ImageChunk*>(malloc((entrycount*2+2) * sizeof(ImageChunk)));
- ImageChunk* curr = *chunks;
-
- if (include_pseudo_chunk) {
- curr->type = CHUNK_NORMAL;
- curr->start = 0;
- curr->len = st.st_size;
- curr->data = img;
- curr->filename = NULL;
- ++curr;
- ++*num_chunks;
- }
-
- int pos = 0;
- int nextentry = 0;
-
- while (pos < st.st_size) {
- if (nextentry < entrycount && pos == temp_entries[nextentry].data_offset) {
- curr->type = CHUNK_DEFLATE;
- curr->start = pos;
- curr->deflate_len = temp_entries[nextentry].deflate_len;
- curr->deflate_data = img + pos;
- curr->filename = temp_entries[nextentry].filename;
-
- curr->len = temp_entries[nextentry].uncomp_len;
- curr->data = static_cast<unsigned char*>(malloc(curr->len));
-
- z_stream strm;
- strm.zalloc = Z_NULL;
- strm.zfree = Z_NULL;
- strm.opaque = Z_NULL;
- strm.avail_in = curr->deflate_len;
- strm.next_in = curr->deflate_data;
-
- // -15 means we are decoding a 'raw' deflate stream; zlib will
- // not expect zlib headers.
- int ret = inflateInit2(&strm, -15);
- if (ret < 0) {
- printf("failed to initialize inflate: %d\n", ret);
- return NULL;
- }
-
- strm.avail_out = curr->len;
- strm.next_out = curr->data;
- ret = inflate(&strm, Z_NO_FLUSH);
- if (ret != Z_STREAM_END) {
- printf("failed to inflate \"%s\"; %d\n", curr->filename, ret);
- return NULL;
- }
-
- inflateEnd(&strm);
-
- pos += curr->deflate_len;
- ++nextentry;
- ++*num_chunks;
- ++curr;
- continue;
- }
-
- // use a normal chunk to take all the data up to the start of the
- // next deflate section.
-
- curr->type = CHUNK_NORMAL;
- curr->start = pos;
- if (nextentry < entrycount) {
- curr->len = temp_entries[nextentry].data_offset - pos;
- } else {
- curr->len = st.st_size - pos;
- }
- curr->data = img + pos;
- curr->filename = NULL;
- pos += curr->len;
-
- ++*num_chunks;
- ++curr;
- }
-
- free(temp_entries);
- return img;
+ return false;
}
/*
- * Read the given file and break it up into chunks, putting the number
- * of chunks and their info in *num_chunks and **chunks,
- * respectively. Returns a malloc'd block of memory containing the
- * contents of the file; various pointers in the output chunk array
- * will point into this block of memory. The caller should free the
- * return value when done with all the chunks. Returns NULL on
- * failure.
+ * Takes the uncompressed data stored in the chunk, compresses it
+ * using the zlib parameters stored in the chunk, and checks that it
+ * matches exactly the compressed data we started with (also stored in
+ * the chunk).
*/
-unsigned char* ReadImage(const char* filename, int* num_chunks, ImageChunk** chunks) {
+bool ImageChunk::TryReconstruction(int level) {
+ z_stream strm;
+ strm.zalloc = Z_NULL;
+ strm.zfree = Z_NULL;
+ strm.opaque = Z_NULL;
+ strm.avail_in = uncompressed_data_.size();
+ strm.next_in = uncompressed_data_.data();
+ int ret = deflateInit2(&strm, level, METHOD, WINDOWBITS, MEMLEVEL, STRATEGY);
+ if (ret < 0) {
+ printf("failed to initialize deflate: %d\n", ret);
+ return false;
+ }
+
+ std::vector<uint8_t> buffer(BUFFER_SIZE);
+ size_t offset = 0;
+ do {
+ strm.avail_out = buffer.size();
+ strm.next_out = buffer.data();
+ ret = deflate(&strm, Z_FINISH);
+ if (ret < 0) {
+ printf("failed to deflate: %d\n", ret);
+ return false;
+ }
+
+ size_t compressed_size = buffer.size() - strm.avail_out;
+ if (memcmp(buffer.data(), input_file_ptr_->data() + start_ + offset, compressed_size) != 0) {
+ // mismatch; data isn't the same.
+ deflateEnd(&strm);
+ return false;
+ }
+ offset += compressed_size;
+ } while (ret != Z_STREAM_END);
+ deflateEnd(&strm);
+
+ if (offset != raw_data_len_) {
+ // mismatch; ran out of data before we should have.
+ return false;
+ }
+ return true;
+}
+
+// EOCD record
+// offset 0: signature 0x06054b50, 4 bytes
+// offset 4: number of this disk, 2 bytes
+// ...
+// offset 20: comment length, 2 bytes
+// offset 22: comment, n bytes
+static bool GetZipFileSize(const std::vector<uint8_t>& zip_file, size_t* input_file_size) {
+ if (zip_file.size() < 22) {
+ printf("file is too small to be a zip file\n");
+ return false;
+ }
+
+ // Look for End of central directory record of the zip file, and calculate the actual
+ // zip_file size.
+ for (int i = zip_file.size() - 22; i >= 0; i--) {
+ if (zip_file[i] == 0x50) {
+ if (get_unaligned<uint32_t>(&zip_file[i]) == 0x06054b50) {
+ // double-check: this archive consists of a single "disk".
+ CHECK_EQ(get_unaligned<uint16_t>(&zip_file[i + 4]), 0);
+
+ uint16_t comment_length = get_unaligned<uint16_t>(&zip_file[i + 20]);
+ size_t file_size = i + 22 + comment_length;
+ CHECK_LE(file_size, zip_file.size());
+ *input_file_size = file_size;
+ return true;
+ }
+ }
+ }
+
+ // EOCD not found, this file is likely not a valid zip file.
+ return false;
+}
+
+static bool ReadZip(const char* filename, std::vector<ImageChunk>* chunks,
+ std::vector<uint8_t>* zip_file, bool include_pseudo_chunk) {
+ CHECK(zip_file != nullptr);
struct stat st;
if (stat(filename, &st) != 0) {
printf("failed to stat \"%s\": %s\n", filename, strerror(errno));
- return NULL;
+ return false;
}
size_t sz = static_cast<size_t>(st.st_size);
- unsigned char* img = static_cast<unsigned char*>(malloc(sz));
+ zip_file->resize(sz);
android::base::unique_fd fd(open(filename, O_RDONLY));
- if (!android::base::ReadFully(fd, img, sz)) {
+ if (fd == -1) {
+ printf("failed to open \"%s\" %s\n", filename, strerror(errno));
+ return false;
+ }
+ if (!android::base::ReadFully(fd, zip_file->data(), sz)) {
printf("failed to read \"%s\" %s\n", filename, strerror(errno));
- return nullptr;
+ return false;
+ }
+ fd.reset();
+
+ // Trim the trailing zeros before we pass the file to ziparchive handler.
+ size_t zipfile_size;
+ if (!GetZipFileSize(*zip_file, &zipfile_size)) {
+ printf("failed to parse the actual size of %s\n", filename);
+ return false;
+ }
+ ZipArchiveHandle handle;
+ int err = OpenArchiveFromMemory(zip_file->data(), zipfile_size, filename, &handle);
+ if (err != 0) {
+ printf("failed to open zip file %s: %s\n", filename, ErrorCodeString(err));
+ CloseArchive(handle);
+ return false;
+ }
+
+ // Create a list of deflated zip entries, sorted by offset.
+ std::vector<std::pair<std::string, ZipEntry>> temp_entries;
+ void* cookie;
+ int ret = StartIteration(handle, &cookie, nullptr, nullptr);
+ if (ret != 0) {
+ printf("failed to iterate over entries in %s: %s\n", filename, ErrorCodeString(ret));
+ CloseArchive(handle);
+ return false;
+ }
+
+ ZipString name;
+ ZipEntry entry;
+ while ((ret = Next(cookie, &entry, &name)) == 0) {
+ if (entry.method == kCompressDeflated) {
+ std::string entryname(name.name, name.name + name.name_length);
+ temp_entries.push_back(std::make_pair(entryname, entry));
+ }
+ }
+
+ if (ret != -1) {
+ printf("Error while iterating over zip entries: %s\n", ErrorCodeString(ret));
+ CloseArchive(handle);
+ return false;
+ }
+ std::sort(temp_entries.begin(), temp_entries.end(),
+ [](auto& entry1, auto& entry2) {
+ return entry1.second.offset < entry2.second.offset;
+ });
+
+ EndIteration(cookie);
+
+ if (include_pseudo_chunk) {
+ chunks->emplace_back(CHUNK_NORMAL, 0, zip_file, zip_file->size());
+ }
+
+ size_t pos = 0;
+ size_t nextentry = 0;
+ while (pos < zip_file->size()) {
+ if (nextentry < temp_entries.size() &&
+ static_cast<off64_t>(pos) == temp_entries[nextentry].second.offset) {
+ // compose the next deflate chunk.
+ std::string entryname = temp_entries[nextentry].first;
+ size_t uncompressed_len = temp_entries[nextentry].second.uncompressed_length;
+ std::vector<uint8_t> uncompressed_data(uncompressed_len);
+ if ((ret = ExtractToMemory(handle, &temp_entries[nextentry].second, uncompressed_data.data(),
+ uncompressed_len)) != 0) {
+ printf("failed to extract %s with size %zu: %s\n", entryname.c_str(), uncompressed_len,
+ ErrorCodeString(ret));
+ CloseArchive(handle);
+ return false;
+ }
+
+ size_t compressed_len = temp_entries[nextentry].second.compressed_length;
+ ImageChunk curr(CHUNK_DEFLATE, pos, zip_file, compressed_len);
+ curr.SetEntryName(std::move(entryname));
+ curr.SetUncompressedData(std::move(uncompressed_data));
+ chunks->push_back(curr);
+
+ pos += compressed_len;
+ ++nextentry;
+ continue;
+ }
+
+ // Use a normal chunk to take all the data up to the start of the next deflate section.
+ size_t raw_data_len;
+ if (nextentry < temp_entries.size()) {
+ raw_data_len = temp_entries[nextentry].second.offset - pos;
+ } else {
+ raw_data_len = zip_file->size() - pos;
+ }
+ chunks->emplace_back(CHUNK_NORMAL, pos, zip_file, raw_data_len);
+
+ pos += raw_data_len;
+ }
+
+ CloseArchive(handle);
+ return true;
+}
+
+// Read the given file and break it up into chunks, and putting the data in to a vector.
+static bool ReadImage(const char* filename, std::vector<ImageChunk>* chunks,
+ std::vector<uint8_t>* img) {
+ CHECK(img != nullptr);
+ struct stat st;
+ if (stat(filename, &st) != 0) {
+ printf("failed to stat \"%s\": %s\n", filename, strerror(errno));
+ return false;
+ }
+
+ size_t sz = static_cast<size_t>(st.st_size);
+ img->resize(sz);
+ android::base::unique_fd fd(open(filename, O_RDONLY));
+ if (fd == -1) {
+ printf("failed to open \"%s\" %s\n", filename, strerror(errno));
+ return false;
+ }
+ if (!android::base::ReadFully(fd, img->data(), sz)) {
+ printf("failed to read \"%s\" %s\n", filename, strerror(errno));
+ return false;
}
size_t pos = 0;
- *num_chunks = 0;
- *chunks = NULL;
-
while (pos < sz) {
- unsigned char* p = img + pos;
-
- if (sz - pos >= 4 &&
- p[0] == 0x1f && p[1] == 0x8b &&
- p[2] == 0x08 && // deflate compression
- p[3] == 0x00) { // no header flags
+ if (sz - pos >= 4 && img->at(pos) == 0x1f && img->at(pos + 1) == 0x8b &&
+ img->at(pos + 2) == 0x08 && // deflate compression
+ img->at(pos + 3) == 0x00) { // no header flags
// 'pos' is the offset of the start of a gzip chunk.
size_t chunk_offset = pos;
- *num_chunks += 3;
- *chunks = static_cast<ImageChunk*>(realloc(*chunks, *num_chunks * sizeof(ImageChunk)));
- ImageChunk* curr = *chunks + (*num_chunks-3);
+ // The remaining data is too small to be a gzip chunk; treat them as a normal chunk.
+ if (sz - pos < GZIP_HEADER_LEN + GZIP_FOOTER_LEN) {
+ chunks->emplace_back(CHUNK_NORMAL, pos, img, sz - pos);
+ break;
+ }
- // create a normal chunk for the header.
- curr->start = pos;
- curr->type = CHUNK_NORMAL;
- curr->len = GZIP_HEADER_LEN;
- curr->data = p;
+ // We need three chunks for the deflated image in total, one normal chunk for the header,
+ // one deflated chunk for the body, and another normal chunk for the footer.
+ chunks->emplace_back(CHUNK_NORMAL, pos, img, GZIP_HEADER_LEN);
+ pos += GZIP_HEADER_LEN;
- pos += curr->len;
- p += curr->len;
- ++curr;
-
- curr->type = CHUNK_DEFLATE;
- curr->filename = NULL;
-
- // We must decompress this chunk in order to discover where it
- // ends, and so we can put the uncompressed data and its length
- // into curr->data and curr->len.
-
- size_t allocated = 32768;
- curr->len = 0;
- curr->data = static_cast<unsigned char*>(malloc(allocated));
- curr->start = pos;
- curr->deflate_data = p;
+ // We must decompress this chunk in order to discover where it ends, and so we can update
+ // the uncompressed_data of the image body and its length.
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = sz - pos;
- strm.next_in = p;
+ strm.next_in = img->data() + pos;
// -15 means we are decoding a 'raw' deflate stream; zlib will
// not expect zlib headers.
int ret = inflateInit2(&strm, -15);
if (ret < 0) {
printf("failed to initialize inflate: %d\n", ret);
- return NULL;
+ return false;
}
+ size_t allocated = BUFFER_SIZE;
+ std::vector<uint8_t> uncompressed_data(allocated);
+ size_t uncompressed_len = 0, raw_data_len = 0;
do {
- strm.avail_out = allocated - curr->len;
- strm.next_out = curr->data + curr->len;
+ strm.avail_out = allocated - uncompressed_len;
+ strm.next_out = uncompressed_data.data() + uncompressed_len;
ret = inflate(&strm, Z_NO_FLUSH);
if (ret < 0) {
- printf("Warning: inflate failed [%s] at offset [%zu],"
- " treating as a normal chunk\n",
+ printf("Warning: inflate failed [%s] at offset [%zu], treating as a normal chunk\n",
strm.msg, chunk_offset);
break;
}
- curr->len = allocated - strm.avail_out;
+ uncompressed_len = allocated - strm.avail_out;
if (strm.avail_out == 0) {
allocated *= 2;
- curr->data = static_cast<unsigned char*>(realloc(curr->data, allocated));
+ uncompressed_data.resize(allocated);
}
} while (ret != Z_STREAM_END);
- curr->deflate_len = sz - strm.avail_in - pos;
+ raw_data_len = sz - strm.avail_in - pos;
inflateEnd(&strm);
if (ret < 0) {
- free(curr->data);
- *num_chunks -= 2;
continue;
}
- pos += curr->deflate_len;
- p += curr->deflate_len;
- ++curr;
+ ImageChunk body(CHUNK_DEFLATE, pos, img, raw_data_len);
+ uncompressed_data.resize(uncompressed_len);
+ body.SetUncompressedData(std::move(uncompressed_data));
+ chunks->push_back(body);
+
+ pos += raw_data_len;
// create a normal chunk for the footer
+ chunks->emplace_back(CHUNK_NORMAL, pos, img, GZIP_FOOTER_LEN);
- curr->type = CHUNK_NORMAL;
- curr->start = pos;
- curr->len = GZIP_FOOTER_LEN;
- curr->data = img+pos;
-
- pos += curr->len;
- p += curr->len;
- ++curr;
+ pos += GZIP_FOOTER_LEN;
// The footer (that we just skipped over) contains the size of
// the uncompressed data. Double-check to make sure that it
// matches the size of the data we got when we actually did
// the decompression.
- size_t footer_size = Read4(p-4);
- if (footer_size != curr[-2].len) {
- printf("Error: footer size %zu != decompressed size %zu\n", footer_size, curr[-2].len);
- free(img);
- return NULL;
+ size_t footer_size = Read4(img->data() + pos - 4);
+ if (footer_size != body.DataLengthForPatch()) {
+ printf("Error: footer size %zu != decompressed size %zu\n", footer_size,
+ body.GetRawDataLength());
+ return false;
}
} else {
- // Reallocate the list for every chunk; we expect the number of
- // chunks to be small (5 for typical boot and recovery images).
- ++*num_chunks;
- *chunks = static_cast<ImageChunk*>(realloc(*chunks, *num_chunks * sizeof(ImageChunk)));
- ImageChunk* curr = *chunks + (*num_chunks-1);
- curr->start = pos;
+ // Use a normal chunk to take all the contents until the next gzip chunk (or EOF); we expect
+ // the number of chunks to be small (5 for typical boot and recovery images).
- // 'pos' is not the offset of the start of a gzip chunk, so scan
- // forward until we find a gzip header.
- curr->type = CHUNK_NORMAL;
- curr->data = p;
-
- for (curr->len = 0; curr->len < (sz - pos); ++curr->len) {
- if (sz - pos >= 4 && p[curr->len] == 0x1f && p[curr->len + 1] == 0x8b &&
- p[curr->len + 2] == 0x08 && p[curr->len + 3] == 0x00) {
+ // Scan forward until we find a gzip header.
+ size_t data_len = 0;
+ while (data_len + pos < sz) {
+ if (data_len + pos + 4 <= sz && img->at(pos + data_len) == 0x1f &&
+ img->at(pos + data_len + 1) == 0x8b && img->at(pos + data_len + 2) == 0x08 &&
+ img->at(pos + data_len + 3) == 0x00) {
break;
}
+ data_len++;
}
- pos += curr->len;
+ chunks->emplace_back(CHUNK_NORMAL, pos, img, data_len);
+
+ pos += data_len;
}
}
- return img;
-}
-
-#define BUFFER_SIZE 32768
-
-/*
- * Takes the uncompressed data stored in the chunk, compresses it
- * using the zlib parameters stored in the chunk, and checks that it
- * matches exactly the compressed data we started with (also stored in
- * the chunk). Return 0 on success.
- */
-int TryReconstruction(ImageChunk* chunk, unsigned char* out) {
- size_t p = 0;
-
-#if 0
- printf("trying %d %d %d %d %d\n",
- chunk->level, chunk->method, chunk->windowBits,
- chunk->memLevel, chunk->strategy);
-#endif
-
- z_stream strm;
- strm.zalloc = Z_NULL;
- strm.zfree = Z_NULL;
- strm.opaque = Z_NULL;
- strm.avail_in = chunk->len;
- strm.next_in = chunk->data;
- int ret;
- ret = deflateInit2(&strm, chunk->level, chunk->method, chunk->windowBits,
- chunk->memLevel, chunk->strategy);
- if (ret < 0) {
- printf("failed to initialize deflate: %d\n", ret);
- return -1;
- }
- do {
- strm.avail_out = BUFFER_SIZE;
- strm.next_out = out;
- ret = deflate(&strm, Z_FINISH);
- if (ret < 0) {
- printf("failed to deflate: %d\n", ret);
- return -1;
- }
- size_t have = BUFFER_SIZE - strm.avail_out;
-
- if (memcmp(out, chunk->deflate_data+p, have) != 0) {
- // mismatch; data isn't the same.
- deflateEnd(&strm);
- return -1;
- }
- p += have;
- } while (ret != Z_STREAM_END);
- deflateEnd(&strm);
- if (p != chunk->deflate_len) {
- // mismatch; ran out of data before we should have.
- return -1;
- }
- return 0;
-}
-
-/*
- * Verify that we can reproduce exactly the same compressed data that
- * we started with. Sets the level, method, windowBits, memLevel, and
- * strategy fields in the chunk to the encoding parameters needed to
- * produce the right output. Returns 0 on success.
- */
-int ReconstructDeflateChunk(ImageChunk* chunk) {
- if (chunk->type != CHUNK_DEFLATE) {
- printf("attempt to reconstruct non-deflate chunk\n");
- return -1;
- }
-
- unsigned char* out = static_cast<unsigned char*>(malloc(BUFFER_SIZE));
-
- // We only check two combinations of encoder parameters: level 6
- // (the default) and level 9 (the maximum).
- for (chunk->level = 6; chunk->level <= 9; chunk->level += 3) {
- chunk->windowBits = -15; // 32kb window; negative to indicate a raw stream.
- chunk->memLevel = 8; // the default value.
- chunk->method = Z_DEFLATED;
- chunk->strategy = Z_DEFAULT_STRATEGY;
-
- if (TryReconstruction(chunk, out) == 0) {
- free(out);
- return 0;
- }
- }
-
- free(out);
- return -1;
+ return true;
}
/*
* Given source and target chunks, compute a bsdiff patch between them.
- * Return the patch data, placing its length in *size. Return NULL on failure.
+ * Store the result in the patch_data.
* |bsdiff_cache| can be used to cache the suffix array if the same |src| chunk
* is used repeatedly, pass nullptr if not needed.
*/
-unsigned char* MakePatch(ImageChunk* src, ImageChunk* tgt, size_t* size, saidx_t** bsdiff_cache) {
- if (tgt->type == CHUNK_NORMAL) {
- if (tgt->len <= 160) {
- tgt->type = CHUNK_RAW;
- *size = tgt->len;
- return tgt->data;
- }
+static bool MakePatch(const ImageChunk* src, ImageChunk* tgt, std::vector<uint8_t>* patch_data,
+ saidx_t** bsdiff_cache) {
+ if (tgt->ChangeChunkToRaw(0)) {
+ size_t patch_size = tgt->DataLengthForPatch();
+ patch_data->resize(patch_size);
+ std::copy(tgt->DataForPatch(), tgt->DataForPatch() + patch_size, patch_data->begin());
+ return true;
}
#if defined(__ANDROID__)
@@ -635,104 +744,51 @@
#else
char ptemp[] = "/tmp/imgdiff-patch-XXXXXX";
#endif
+
int fd = mkstemp(ptemp);
-
if (fd == -1) {
- printf("MakePatch failed to create a temporary file: %s\n",
- strerror(errno));
- return NULL;
+ printf("MakePatch failed to create a temporary file: %s\n", strerror(errno));
+ return false;
}
- close(fd); // temporary file is created and we don't need its file
- // descriptor
+ close(fd);
- int r = bsdiff::bsdiff(src->data, src->len, tgt->data, tgt->len, ptemp, bsdiff_cache);
+ int r = bsdiff::bsdiff(src->DataForPatch(), src->DataLengthForPatch(), tgt->DataForPatch(),
+ tgt->DataLengthForPatch(), ptemp, bsdiff_cache);
if (r != 0) {
printf("bsdiff() failed: %d\n", r);
- return NULL;
+ return false;
}
struct stat st;
if (stat(ptemp, &st) != 0) {
- printf("failed to stat patch file %s: %s\n",
- ptemp, strerror(errno));
- return NULL;
+ printf("failed to stat patch file %s: %s\n", ptemp, strerror(errno));
+ return false;
}
size_t sz = static_cast<size_t>(st.st_size);
- // TODO: Memory leak on error return.
- unsigned char* data = static_cast<unsigned char*>(malloc(sz));
-
- if (tgt->type == CHUNK_NORMAL && tgt->len <= sz) {
+ if (tgt->ChangeChunkToRaw(sz)) {
unlink(ptemp);
-
- tgt->type = CHUNK_RAW;
- *size = tgt->len;
- return tgt->data;
+ size_t patch_size = tgt->DataLengthForPatch();
+ patch_data->resize(patch_size);
+ std::copy(tgt->DataForPatch(), tgt->DataForPatch() + patch_size, patch_data->begin());
+ return true;
}
- *size = sz;
-
- FILE* f = fopen(ptemp, "rb");
- if (f == NULL) {
- printf("failed to open patch %s: %s\n", ptemp, strerror(errno));
- return NULL;
+ android::base::unique_fd patch_fd(open(ptemp, O_RDONLY));
+ if (patch_fd == -1) {
+ printf("failed to open %s: %s\n", ptemp, strerror(errno));
+ return false;
}
- if (fread(data, 1, sz, f) != sz) {
- printf("failed to read patch %s: %s\n", ptemp, strerror(errno));
- return NULL;
+ patch_data->resize(sz);
+ if (!android::base::ReadFully(patch_fd, patch_data->data(), sz)) {
+ printf("failed to read \"%s\" %s\n", ptemp, strerror(errno));
+ return false;
}
- fclose(f);
unlink(ptemp);
+ tgt->SetSourceInfo(*src);
- tgt->source_start = src->start;
- switch (tgt->type) {
- case CHUNK_NORMAL:
- tgt->source_len = src->len;
- break;
- case CHUNK_DEFLATE:
- tgt->source_len = src->deflate_len;
- tgt->source_uncompressed_len = src->len;
- break;
- }
-
- return data;
-}
-
-/*
- * Cause a gzip chunk to be treated as a normal chunk (ie, as a blob
- * of uninterpreted data). The resulting patch will likely be about
- * as big as the target file, but it lets us handle the case of images
- * where some gzip chunks are reconstructible but others aren't (by
- * treating the ones that aren't as normal chunks).
- */
-void ChangeDeflateChunkToNormal(ImageChunk* ch) {
- if (ch->type != CHUNK_DEFLATE) return;
- ch->type = CHUNK_NORMAL;
- free(ch->data);
- ch->data = ch->deflate_data;
- ch->len = ch->deflate_len;
-}
-
-/*
- * Return true if the data in the chunk is identical (including the
- * compressed representation, for gzip chunks).
- */
-int AreChunksEqual(ImageChunk* a, ImageChunk* b) {
- if (a->type != b->type) return 0;
-
- switch (a->type) {
- case CHUNK_NORMAL:
- return a->len == b->len && memcmp(a->data, b->data, a->len) == 0;
-
- case CHUNK_DEFLATE:
- return a->deflate_len == b->deflate_len &&
- memcmp(a->deflate_data, b->deflate_data, a->deflate_len) == 0;
-
- default:
- printf("unknown chunk type %d\n", a->type);
- return 0;
- }
+ return true;
}
/*
@@ -740,71 +796,42 @@
* a single chunk. (Such runs can be produced when deflate chunks are
* changed to normal chunks.)
*/
-void MergeAdjacentNormalChunks(ImageChunk* chunks, int* num_chunks) {
- int out = 0;
- int in_start = 0, in_end;
- while (in_start < *num_chunks) {
- if (chunks[in_start].type != CHUNK_NORMAL) {
- in_end = in_start+1;
- } else {
- // in_start is a normal chunk. Look for a run of normal chunks
- // that constitute a solid block of data (ie, each chunk begins
- // where the previous one ended).
- for (in_end = in_start+1;
- in_end < *num_chunks && chunks[in_end].type == CHUNK_NORMAL &&
- (chunks[in_end].start ==
- chunks[in_end-1].start + chunks[in_end-1].len &&
- chunks[in_end].data ==
- chunks[in_end-1].data + chunks[in_end-1].len);
- ++in_end);
+static void MergeAdjacentNormalChunks(std::vector<ImageChunk>* chunks) {
+ size_t merged_last = 0, cur = 0;
+ while (cur < chunks->size()) {
+ // Look for normal chunks adjacent to the current one. If such chunk exists, extend the
+ // length of the current normal chunk.
+ size_t to_check = cur + 1;
+ while (to_check < chunks->size() && chunks->at(cur).IsAdjacentNormal(chunks->at(to_check))) {
+ chunks->at(cur).MergeAdjacentNormal(chunks->at(to_check));
+ to_check++;
}
- if (in_end == in_start+1) {
-#if 0
- printf("chunk %d is now %d\n", in_start, out);
-#endif
- if (out != in_start) {
- memcpy(chunks+out, chunks+in_start, sizeof(ImageChunk));
- }
- } else {
-#if 0
- printf("collapse normal chunks %d-%d into %d\n", in_start, in_end-1, out);
-#endif
-
- // Merge chunks [in_start, in_end-1] into one chunk. Since the
- // data member of each chunk is just a pointer into an in-memory
- // copy of the file, this can be done without recopying (the
- // output chunk has the first chunk's start location and data
- // pointer, and length equal to the sum of the input chunk
- // lengths).
- chunks[out].type = CHUNK_NORMAL;
- chunks[out].start = chunks[in_start].start;
- chunks[out].data = chunks[in_start].data;
- chunks[out].len = chunks[in_end-1].len +
- (chunks[in_end-1].start - chunks[in_start].start);
+ if (merged_last != cur) {
+ chunks->at(merged_last) = std::move(chunks->at(cur));
}
-
- ++out;
- in_start = in_end;
+ merged_last++;
+ cur = to_check;
}
- *num_chunks = out;
+ if (merged_last < chunks->size()) {
+ chunks->erase(chunks->begin() + merged_last, chunks->end());
+ }
}
-ImageChunk* FindChunkByName(const char* name, ImageChunk* chunks, int num_chunks) {
- for (int i = 0; i < num_chunks; ++i) {
- if (chunks[i].type == CHUNK_DEFLATE && chunks[i].filename &&
- strcmp(name, chunks[i].filename) == 0) {
- return chunks+i;
+static ImageChunk* FindChunkByName(const std::string& name, std::vector<ImageChunk>& chunks) {
+ for (size_t i = 0; i < chunks.size(); ++i) {
+ if (chunks[i].GetType() == CHUNK_DEFLATE && chunks[i].GetEntryName() == name) {
+ return &chunks[i];
}
}
- return NULL;
+ return nullptr;
}
-void DumpChunks(ImageChunk* chunks, int num_chunks) {
- for (int i = 0; i < num_chunks; ++i) {
- printf("chunk %d: type %d start %zu len %zu\n",
- i, chunks[i].type, chunks[i].start, chunks[i].len);
- }
+static void DumpChunks(const std::vector<ImageChunk>& chunks) {
+ for (size_t i = 0; i < chunks.size(); ++i) {
+ printf("chunk %zu: ", i);
+ chunks[i].Dump();
+ }
}
int imgdiff(int argc, const char** argv) {
@@ -816,26 +843,24 @@
++argv;
}
- size_t bonus_size = 0;
- unsigned char* bonus_data = NULL;
+ std::vector<uint8_t> bonus_data;
if (argc >= 3 && strcmp(argv[1], "-b") == 0) {
struct stat st;
if (stat(argv[2], &st) != 0) {
printf("failed to stat bonus file %s: %s\n", argv[2], strerror(errno));
return 1;
}
- bonus_size = st.st_size;
- bonus_data = static_cast<unsigned char*>(malloc(bonus_size));
- FILE* f = fopen(argv[2], "rb");
- if (f == NULL) {
+ size_t bonus_size = st.st_size;
+ bonus_data.resize(bonus_size);
+ android::base::unique_fd fd(open(argv[2], O_RDONLY));
+ if (fd == -1) {
printf("failed to open bonus file %s: %s\n", argv[2], strerror(errno));
return 1;
}
- if (fread(bonus_data, 1, bonus_size, f) != bonus_size) {
+ if (!android::base::ReadFully(fd, bonus_data.data(), bonus_size)) {
printf("failed to read bonus file %s: %s\n", argv[2], strerror(errno));
return 1;
}
- fclose(f);
argc -= 2;
argv += 2;
@@ -847,27 +872,26 @@
return 2;
}
- int num_src_chunks;
- ImageChunk* src_chunks;
- int num_tgt_chunks;
- ImageChunk* tgt_chunks;
- int i;
+ std::vector<ImageChunk> src_chunks;
+ std::vector<ImageChunk> tgt_chunks;
+ std::vector<uint8_t> src_file;
+ std::vector<uint8_t> tgt_file;
if (zip_mode) {
- if (ReadZip(argv[1], &num_src_chunks, &src_chunks, 1) == NULL) {
+ if (!ReadZip(argv[1], &src_chunks, &src_file, true)) {
printf("failed to break apart source zip file\n");
return 1;
}
- if (ReadZip(argv[2], &num_tgt_chunks, &tgt_chunks, 0) == NULL) {
+ if (!ReadZip(argv[2], &tgt_chunks, &tgt_file, false)) {
printf("failed to break apart target zip file\n");
return 1;
}
} else {
- if (ReadImage(argv[1], &num_src_chunks, &src_chunks) == NULL) {
+ if (!ReadImage(argv[1], &src_chunks, &src_file)) {
printf("failed to break apart source image\n");
return 1;
}
- if (ReadImage(argv[2], &num_tgt_chunks, &tgt_chunks) == NULL) {
+ if (!ReadImage(argv[2], &tgt_chunks, &tgt_file)) {
printf("failed to break apart target image\n");
return 1;
}
@@ -875,48 +899,47 @@
// Verify that the source and target images have the same chunk
// structure (ie, the same sequence of deflate and normal chunks).
- // Merge the gzip header and footer in with any adjacent
- // normal chunks.
- MergeAdjacentNormalChunks(tgt_chunks, &num_tgt_chunks);
- MergeAdjacentNormalChunks(src_chunks, &num_src_chunks);
+ // Merge the gzip header and footer in with any adjacent normal chunks.
+ MergeAdjacentNormalChunks(&tgt_chunks);
+ MergeAdjacentNormalChunks(&src_chunks);
- if (num_src_chunks != num_tgt_chunks) {
+ if (src_chunks.size() != tgt_chunks.size()) {
printf("source and target don't have same number of chunks!\n");
printf("source chunks:\n");
- DumpChunks(src_chunks, num_src_chunks);
+ DumpChunks(src_chunks);
printf("target chunks:\n");
- DumpChunks(tgt_chunks, num_tgt_chunks);
+ DumpChunks(tgt_chunks);
return 1;
}
- for (i = 0; i < num_src_chunks; ++i) {
- if (src_chunks[i].type != tgt_chunks[i].type) {
- printf("source and target don't have same chunk structure! (chunk %d)\n", i);
+ for (size_t i = 0; i < src_chunks.size(); ++i) {
+ if (src_chunks[i].GetType() != tgt_chunks[i].GetType()) {
+ printf("source and target don't have same chunk structure! (chunk %zu)\n", i);
printf("source chunks:\n");
- DumpChunks(src_chunks, num_src_chunks);
+ DumpChunks(src_chunks);
printf("target chunks:\n");
- DumpChunks(tgt_chunks, num_tgt_chunks);
+ DumpChunks(tgt_chunks);
return 1;
}
}
}
- for (i = 0; i < num_tgt_chunks; ++i) {
- if (tgt_chunks[i].type == CHUNK_DEFLATE) {
+ for (size_t i = 0; i < tgt_chunks.size(); ++i) {
+ if (tgt_chunks[i].GetType() == CHUNK_DEFLATE) {
// Confirm that given the uncompressed chunk data in the target, we
// can recompress it and get exactly the same bits as are in the
// input target image. If this fails, treat the chunk as a normal
// non-deflated chunk.
- if (ReconstructDeflateChunk(tgt_chunks+i) < 0) {
- printf("failed to reconstruct target deflate chunk %d [%s]; "
- "treating as normal\n", i, tgt_chunks[i].filename);
- ChangeDeflateChunkToNormal(tgt_chunks+i);
+ if (!tgt_chunks[i].ReconstructDeflateChunk()) {
+ printf("failed to reconstruct target deflate chunk %zu [%s]; treating as normal\n", i,
+ tgt_chunks[i].GetEntryName().c_str());
+ tgt_chunks[i].ChangeDeflateChunkToNormal();
if (zip_mode) {
- ImageChunk* src = FindChunkByName(tgt_chunks[i].filename, src_chunks, num_src_chunks);
- if (src) {
- ChangeDeflateChunkToNormal(src);
+ ImageChunk* src = FindChunkByName(tgt_chunks[i].GetEntryName(), src_chunks);
+ if (src != nullptr) {
+ src->ChangeDeflateChunkToNormal();
}
} else {
- ChangeDeflateChunkToNormal(src_chunks+i);
+ src_chunks[i].ChangeDeflateChunkToNormal();
}
continue;
}
@@ -929,16 +952,16 @@
// data.
ImageChunk* src;
if (zip_mode) {
- src = FindChunkByName(tgt_chunks[i].filename, src_chunks, num_src_chunks);
+ src = FindChunkByName(tgt_chunks[i].GetEntryName(), src_chunks);
} else {
- src = src_chunks+i;
+ src = &src_chunks[i];
}
- if (src == NULL || AreChunksEqual(tgt_chunks+i, src)) {
- ChangeDeflateChunkToNormal(tgt_chunks+i);
- if (src) {
- ChangeDeflateChunkToNormal(src);
- }
+ if (src == nullptr) {
+ tgt_chunks[i].ChangeDeflateChunkToNormal();
+ } else if (tgt_chunks[i] == *src) {
+ tgt_chunks[i].ChangeDeflateChunkToNormal();
+ src->ChangeDeflateChunkToNormal();
}
}
}
@@ -948,14 +971,15 @@
// For zips, we only need to do this to the target: deflated
// chunks are matched via filename, and normal chunks are patched
// using the entire source file as the source.
- MergeAdjacentNormalChunks(tgt_chunks, &num_tgt_chunks);
+ MergeAdjacentNormalChunks(&tgt_chunks);
+
} else {
// For images, we need to maintain the parallel structure of the
// chunk lists, so do the merging in both the source and target
// lists.
- MergeAdjacentNormalChunks(tgt_chunks, &num_tgt_chunks);
- MergeAdjacentNormalChunks(src_chunks, &num_src_chunks);
- if (num_src_chunks != num_tgt_chunks) {
+ MergeAdjacentNormalChunks(&tgt_chunks);
+ MergeAdjacentNormalChunks(&src_chunks);
+ if (src_chunks.size() != tgt_chunks.size()) {
// This shouldn't happen.
printf("merging normal chunks went awry\n");
return 1;
@@ -965,117 +989,68 @@
// Compute bsdiff patches for each chunk's data (the uncompressed
// data, in the case of deflate chunks).
- DumpChunks(src_chunks, num_src_chunks);
+ DumpChunks(src_chunks);
- printf("Construct patches for %d chunks...\n", num_tgt_chunks);
- unsigned char** patch_data = static_cast<unsigned char**>(malloc(
- num_tgt_chunks * sizeof(unsigned char*)));
- size_t* patch_size = static_cast<size_t*>(malloc(num_tgt_chunks * sizeof(size_t)));
+ printf("Construct patches for %zu chunks...\n", tgt_chunks.size());
+ std::vector<std::vector<uint8_t>> patch_data(tgt_chunks.size());
saidx_t* bsdiff_cache = nullptr;
- for (i = 0; i < num_tgt_chunks; ++i) {
+ for (size_t i = 0; i < tgt_chunks.size(); ++i) {
if (zip_mode) {
ImageChunk* src;
- if (tgt_chunks[i].type == CHUNK_DEFLATE &&
- (src = FindChunkByName(tgt_chunks[i].filename, src_chunks, num_src_chunks))) {
- patch_data[i] = MakePatch(src, tgt_chunks + i, patch_size + i, nullptr);
+ if (tgt_chunks[i].GetType() == CHUNK_DEFLATE &&
+ (src = FindChunkByName(tgt_chunks[i].GetEntryName(), src_chunks))) {
+ MakePatch(src, &tgt_chunks[i], &patch_data[i], nullptr);
} else {
- patch_data[i] = MakePatch(src_chunks, tgt_chunks + i, patch_size + i, &bsdiff_cache);
+ MakePatch(&src_chunks[0], &tgt_chunks[i], &patch_data[i], &bsdiff_cache);
}
} else {
- if (i == 1 && bonus_data) {
- printf(" using %zu bytes of bonus data for chunk %d\n", bonus_size, i);
- src_chunks[i].data =
- static_cast<unsigned char*>(realloc(src_chunks[i].data, src_chunks[i].len + bonus_size));
- memcpy(src_chunks[i].data + src_chunks[i].len, bonus_data, bonus_size);
- src_chunks[i].len += bonus_size;
+ if (i == 1 && !bonus_data.empty()) {
+ printf(" using %zu bytes of bonus data for chunk %zu\n", bonus_data.size(), i);
+ src_chunks[i].SetBonusData(bonus_data);
}
- patch_data[i] = MakePatch(src_chunks + i, tgt_chunks + i, patch_size + i, nullptr);
+ MakePatch(&src_chunks[i], &tgt_chunks[i], &patch_data[i], nullptr);
}
- printf("patch %3d is %zu bytes (of %zu)\n", i, patch_size[i], tgt_chunks[i].source_len);
+ printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data[i].size(),
+ src_chunks[i].GetRawDataLength());
}
- free(bsdiff_cache);
- free(src_chunks);
+
+ if (bsdiff_cache != nullptr) {
+ free(bsdiff_cache);
+ }
// Figure out how big the imgdiff file header is going to be, so
// that we can correctly compute the offset of each bsdiff patch
// within the file.
size_t total_header_size = 12;
- for (i = 0; i < num_tgt_chunks; ++i) {
- total_header_size += 4;
- switch (tgt_chunks[i].type) {
- case CHUNK_NORMAL:
- total_header_size += 8*3;
- break;
- case CHUNK_DEFLATE:
- total_header_size += 8*5 + 4*5;
- break;
- case CHUNK_RAW:
- total_header_size += 4 + patch_size[i];
- break;
- }
+ for (size_t i = 0; i < tgt_chunks.size(); ++i) {
+ total_header_size += tgt_chunks[i].GetHeaderSize(patch_data[i].size());
}
size_t offset = total_header_size;
FILE* f = fopen(argv[3], "wb");
+ if (f == nullptr) {
+ printf("failed to open \"%s\": %s\n", argv[3], strerror(errno));
+ }
// Write out the headers.
fwrite("IMGDIFF2", 1, 8, f);
- Write4(num_tgt_chunks, f);
- for (i = 0; i < num_tgt_chunks; ++i) {
- Write4(tgt_chunks[i].type, f);
-
- switch (tgt_chunks[i].type) {
- case CHUNK_NORMAL:
- printf("chunk %3d: normal (%10zu, %10zu) %10zu\n", i,
- tgt_chunks[i].start, tgt_chunks[i].len, patch_size[i]);
- Write8(tgt_chunks[i].source_start, f);
- Write8(tgt_chunks[i].source_len, f);
- Write8(offset, f);
- offset += patch_size[i];
- break;
-
- case CHUNK_DEFLATE:
- printf("chunk %3d: deflate (%10zu, %10zu) %10zu %s\n", i,
- tgt_chunks[i].start, tgt_chunks[i].deflate_len, patch_size[i],
- tgt_chunks[i].filename);
- Write8(tgt_chunks[i].source_start, f);
- Write8(tgt_chunks[i].source_len, f);
- Write8(offset, f);
- Write8(tgt_chunks[i].source_uncompressed_len, f);
- Write8(tgt_chunks[i].len, f);
- Write4(tgt_chunks[i].level, f);
- Write4(tgt_chunks[i].method, f);
- Write4(tgt_chunks[i].windowBits, f);
- Write4(tgt_chunks[i].memLevel, f);
- Write4(tgt_chunks[i].strategy, f);
- offset += patch_size[i];
- break;
-
- case CHUNK_RAW:
- printf("chunk %3d: raw (%10zu, %10zu)\n", i,
- tgt_chunks[i].start, tgt_chunks[i].len);
- Write4(patch_size[i], f);
- fwrite(patch_data[i], 1, patch_size[i], f);
- break;
- }
+ Write4(static_cast<int32_t>(tgt_chunks.size()), f);
+ for (size_t i = 0; i < tgt_chunks.size(); ++i) {
+ printf("chunk %zu: ", i);
+ offset = tgt_chunks[i].WriteHeaderToFile(f, patch_data[i], offset);
}
// Append each chunk's bsdiff patch, in order.
-
- for (i = 0; i < num_tgt_chunks; ++i) {
- if (tgt_chunks[i].type != CHUNK_RAW) {
- fwrite(patch_data[i], 1, patch_size[i], f);
+ for (size_t i = 0; i < tgt_chunks.size(); ++i) {
+ if (tgt_chunks[i].GetType() != CHUNK_RAW) {
+ fwrite(patch_data[i].data(), 1, patch_data[i].size(), f);
}
}
- free(tgt_chunks);
- free(patch_data);
- free(patch_size);
-
fclose(f);
return 0;
diff --git a/tests/Android.mk b/tests/Android.mk
index c7d3325..ec971b3 100644
--- a/tests/Android.mk
+++ b/tests/Android.mk
@@ -177,6 +177,7 @@
libbsdiff \
libbspatch \
libziparchive \
+ libutils \
libbase \
libcrypto \
libbz \
diff --git a/tests/component/imgdiff_test.cpp b/tests/component/imgdiff_test.cpp
index 7ad3307..be2dd38 100644
--- a/tests/component/imgdiff_test.cpp
+++ b/tests/component/imgdiff_test.cpp
@@ -236,6 +236,62 @@
ASSERT_EQ(tgt, patched);
}
+TEST(ImgdiffTest, zip_mode_smoke_trailer_zeros) {
+ // Construct src and tgt zip files.
+ TemporaryFile src_file;
+ FILE* src_file_ptr = fdopen(src_file.fd, "wb");
+ ZipWriter src_writer(src_file_ptr);
+ ASSERT_EQ(0, src_writer.StartEntry("file1.txt", ZipWriter::kCompress));
+ const std::string src_content("abcdefg");
+ ASSERT_EQ(0, src_writer.WriteBytes(src_content.data(), src_content.size()));
+ ASSERT_EQ(0, src_writer.FinishEntry());
+ ASSERT_EQ(0, src_writer.Finish());
+ ASSERT_EQ(0, fclose(src_file_ptr));
+
+ TemporaryFile tgt_file;
+ FILE* tgt_file_ptr = fdopen(tgt_file.fd, "wb");
+ ZipWriter tgt_writer(tgt_file_ptr);
+ ASSERT_EQ(0, tgt_writer.StartEntry("file1.txt", ZipWriter::kCompress));
+ const std::string tgt_content("abcdefgxyz");
+ ASSERT_EQ(0, tgt_writer.WriteBytes(tgt_content.data(), tgt_content.size()));
+ ASSERT_EQ(0, tgt_writer.FinishEntry());
+ ASSERT_EQ(0, tgt_writer.Finish());
+ // Add trailing zeros to the target zip file.
+ std::vector<uint8_t> zeros(10);
+ ASSERT_EQ(zeros.size(), fwrite(zeros.data(), sizeof(uint8_t), zeros.size(), tgt_file_ptr));
+ ASSERT_EQ(0, fclose(tgt_file_ptr));
+
+ // Compute patch.
+ TemporaryFile patch_file;
+ std::vector<const char*> args = {
+ "imgdiff", "-z", src_file.path, tgt_file.path, patch_file.path,
+ };
+ ASSERT_EQ(0, imgdiff(args.size(), args.data()));
+
+ // Verify.
+ std::string tgt;
+ ASSERT_TRUE(android::base::ReadFileToString(tgt_file.path, &tgt));
+ std::string src;
+ ASSERT_TRUE(android::base::ReadFileToString(src_file.path, &src));
+ std::string patch;
+ ASSERT_TRUE(android::base::ReadFileToString(patch_file.path, &patch));
+
+ // Expect three entries: CHUNK_RAW (header) + CHUNK_DEFLATE (data) + CHUNK_RAW (footer).
+ size_t num_normal;
+ size_t num_raw;
+ size_t num_deflate;
+ verify_patch_header(patch, &num_normal, &num_raw, &num_deflate);
+ ASSERT_EQ(0U, num_normal);
+ ASSERT_EQ(1U, num_deflate);
+ ASSERT_EQ(2U, num_raw);
+
+ std::string patched;
+ ASSERT_EQ(0, ApplyImagePatch(reinterpret_cast<const unsigned char*>(src.data()), src.size(),
+ reinterpret_cast<const unsigned char*>(patch.data()), patch.size(),
+ MemorySink, &patched));
+ ASSERT_EQ(tgt, patched);
+}
+
TEST(ImgdiffTest, image_mode_simple) {
// src: "abcdefgh" + gzipped "xyz" (echo -n "xyz" | gzip -f | hd).
const std::vector<char> src_data = { 'a', 'b', 'c', 'd', 'e', 'f', 'g',